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Abstract  
In recent years, digitization has created a significant impact on food production systems, 

allowing various technologies and advanced data processing strategies to be implemented. 

Alongside the introduction of tools for the digitalization of the field, the automation of tasks 

through the use of mobile robots has also been growing in the last decades. These systems are 

nourished by the acquisition of field data to carry out autonomous operations including weed 

management, application of fertilizers, and harvesting, among others. One of the current 

challenges of integrating robotic solutions in the digital age of agriculture is the development 

of scalable and interoperable systems, able to manage data obtained from third parties. This 

work presents an overall methodology for map creation by using open-source tools, which 

allows data in the daily activities of an agricultural farm to be managed, and autonomous tasks 

of robotic systems to be planned and supervised. 
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1. Introduction 

The current state-of-the-art in precision agriculture (PA) is shifting in favor of production quality 

with the aim of maximizing resources and reducing environmental impact. In this context, various 

applications are being developed that favor the digital management of the infrastructures involved in 

crop monitoring through the Internet of Things (IoT) [1], the optimization and management of resources 

[2] and the prevention of diseases and pests [3], among others. 

On the one hand, the digitization of the agents involved in the different agricultural activities (e.g., 

seeding, cultivation and harvesting) constitutes a significant advance in the phases of prototyping and 

implementation of configurations in unstructured environments. However, the analysis and processing 

of data can be described as a real challenge due to involvement in a sector governed by the dynamic 

laws of nature [4]. On the other hand, autonomous robots have drawn the attention of farmers in the last 

decades. They have the ability to carry advanced sensors and tools throughout the field, and they are 

able to execute the most complex tasks efficiently, as well as reduce both the workload of the operator 

and the impact on the environment. One of the characteristics that existing robotic systems have in 

common is that they depend on their own mapping system (including manual field surveillance) as well 

as missions and tasks planning. The interoperability of these robotic systems with other tools such as 

Farm Management Systems is a current challenge, as the implicit learning curve for farmers and their 

teams is complex. Decision-making is not carried out by a single individual, so these systems need to 

be user-friendly. Another problem is that the integration of a global system is complicated by the 

volume of data to be processed and the scarce development of specialized software [5], and depends 

largely on the use of standard communication systems and the definition of common data models. 

This paper presents a methodology to digitally represent the working area in an agricultural 

environment based on standard data models, and that can be used by robotic systems to enable 

 
Proceedings of HAICTA 2022, September 22–25, 2022, Athens, Greece 
EMAIL: luis.emmi@car.upm-csic.es (A. 1); rebeca.parra@car.upm-csic.es (A. 2); pablo.gonzalez@csic.es (A. 3)  

ORCID: 0000-0003-4030-1038 (A. 1); 0000-0003-0440-518X (A. 2); 0000-0002-0219-3155 (A. 3) 

 
©️  2022 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



 62 

autonomous navigation both on the farm and in the field. To achieve this objective, a methodology is 

proposed that is capable of providing information related to the conceptual state of a farm, as well as 

the devices involved in the processes carried out on it. Open-source standards and tools such as 

FIWARE [6] and Geojson.io [7] are used to provide semantic structures to the agricultural entities being 

digitized. The final purpose is to represent, virtually, the ecosystem of an autonomous robot for weeding 

using laser technologies, as a use-case within the WeLASER project [8]. 

2. Context and Related Work  

It could be complex to establish interconnections between infrastructures of different types, 

especially when some of them have dynamic singularities. Fortunately, there is a multitude of 

applications capable of achieving this. In the case of PA, one of the most convenient links would be the 

one established between the farmer, the field and the agricultural machinery that performs any 

production technique on it. 

The FIWARE foundation is a network of European organizations promoting the development of a 

data ecosystem of open-source technologies. One of its domains, Smart AgriFood, proposes a 

sustainability-oriented optimization of farm production based on monitoring, so that every decision is 

supported, cost-effective, scalable and interoperable [9]. 

There are few use cases developed in this sector applying this technology. One of them, OpenPD, is 

based on the exchange of information through an open community for the rapid identification of pests 

and diseases in crops [10]. In another instance, the QUHOMA platform provides architectures for crop 

data mining to process, distribute and monetize sustainable agriculture information through a web 

environment [11]. These applications share different technologies with the end-users, providing them 

with a direct interaction interface with the ecosystem. 

In terms of agricultural robotics, the representation is limited. The application of this casuistry has 

not yet been sufficiently deepened, so that certain tasks are still cumbersome and repetitive for humans. 

In our use case, it is required to harmonize the final results provided by the examples given above. 

3. Methodology 

One of our objectives is to streamline the coordination of systems, supporting farmers to make use 

of the robotic system in a simple, reliable and robust way. To achieve this, the farmer must be able to 

give the robot enough information a priori (e.g., field locations, crop type and status, boundaries, etc.). 

This task (field surveillance or field mapping) can be carried out in different ways. A graphical model 

of the operational environment (the farm) has been created using geojson.io, a mapping tool based on 

various cartographic databases, which allows maps and geospatial data to be created, visualized and 

shared, in a simple and multi-format way. This map is later used by the robot to navigate on the farm, 

although the precision of the geometric points is not at the centimeter level. This is possible because 

the robot is expected to rely on on-board sensors to correct map inaccuracies, increasing the robustness 

of the system and without relying heavily on accurate and up-to-date maps. 

This graphic interaction generates static data that has been adapted to the FIWARE smart-data-

model formats after a transformation, and that will be of great use throughout the agricultural process 

(see Fig. 1). In this particular case, two standardized FIWARE main entities have been selected and 

used for describing the operational area:  

• AgriFarm [12], referred to the harmonized environment of a generic farm made up of buildings 

and parcels (fields).  

• AgriParcel [13], related to a generic parcel of land, i.e. an agricultural field. This demonstrates 

the verticality of the standard, as AgriParcel will always belong to the AgriFarm entity. 
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Figure 1: Process Plan in project WeLaser. 

However, within the WeLASER project it has been detected that the description of the AgriParcel 

entity lacks some relevant information, and in particular for autonomous navigation tasks. Therefore, 

some properties have been added to those already defined by FIWARE: 

1. bearing, which marks the clockwise angle from true north of a field's crop line. 

2. headlandWidth, which indicates the existing headland meters in each field. 

3. gateLocation, indicating the entry point into a field. 

4. interRowDistance, indicating the meters between crop rows. 

5. cropRow, representing the crop rows. 

6. weedStatus, weed cover map. 

 

Regarding the AgriFarm entity, it is also essential to define restricted areas and roads that help the 

robotic systems to plan and navigate properly. Both the RestrictedTrafficArea [14] and Road [15] 

entities are part of FIWARE data models in another domain (Transportation). Figure 2 presents the 

relations and properties of the FIWARE entities under study. To incorporate these relationships, the 

inclusion of the following properties in the AgriFarm entity is proposed: 

1. hasRestrictedArea, which limits restricted areas within the farm. 

2. hasRoad, which marks the roads present on the farm. 

 

To convert maps based on geojson into the FIWARE entities, a local API (Application Programming 
Interface) called WeLaser MB (WeLaser Map Builder) has been developed. The methodology followed 

for the creation of this API is described as follows: 

1. Selection of the place of action in geojson.io: This platform, consisting of a geographic viewer, 

an editor, and a series of geometric tools, allows territorial elements to be added, edited and 

characterized. 

2. Assignment of essential attributes to comply with the standard proposed by FIWARE: The 

attributes added correspond to those that the farmer must provide on the basis of his intrinsic 

knowledge. There are two types of data that can be integrated in the API: static and dynamic 

data. Static data, as shown in Fig. 2, are those parameters that are identified in the geojson.io 

interface (i.e. location, type, category). Dynamic data, on the other hand, are those provided by 

means of forms or configuration parameters (i.e. crop type and status, planting date, etc.). 
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Figure 2: Relations and properties of several entities of FIWARE. 

 

3. Export in *.geojson format: The map obtained will be imported and processed thanks to the 

WeLaserMB proposal, extracting the necessary information to fill in the predefined templates 

for each type of FIWARE entity contained in the map. 

 

All this data collection will be essential to sustain an interoperability structure within the WeLASER 

project. Thanks to the conversion, the connection of the robot will be facilitated through the 

standardization of data, with a view to achieving autonomous and safe human-machine management 

when defining the robot's context of action. 

 

 
Figure 3: Example of a study field designed in geojson.io. 
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4. Discussion 

The results obtained after testing a use case in the facilities of the Centre for Automatics and 

Robotics of the Spanish National Research Council (CAR- CSIC) prove that the WeLaserMB API is 

well adapted to its function. A site consisting of several fields and a road has been characterized. The 

information has been extracted and transformed into .json format following the standard implemented 

by FIWARE. 

The acquisition of Smart Data models within this project offers the opportunity to provide new 

archetypes that have not yet been studied in the field of Smart AgriFood. The proposed model is also 

scalable, as it could support data from other mapping applications such as QGIS, Geoman.io or 

OpenStreetMap. 

One of the main purposes is to simulate, in a virtual way, the ecosystem underlying the WeLASER 

project. Based on this and the previous collection of information, the different behaviors of the robot 

with its domain will be examined, as well as the optimal conditions of use to achieve the maximum 

performance and capacity of the system. A predictive behavioral model is also planned to avoid 

situations that could lead to a decrease in the efficiency of agricultural processes. 

5. Conclusions 

The context shown gives us the opportunity to implement new archetypes that have not yet been 

studied. Following the conceptual design, development and implementation of the use case presented, 

several main conclusions can be identified: 

1. Standardization of data relating to the physical elements that make up a precision farming 

system improves optimization and efficiency. This homogenization of information faces one of 

the still great challenges in the agriculture of the future, due to the diversity of interconnections 

and existing formats.  

2. Adaptability is essential for the correct implementation of the model. It needs to be integrated 

into intuitive interfaces that are scalable for different devices.  

3. The data, when processed, becomes an essential source for the design of processes by the robot 

and, in addition, its storage and subsequent analysis can provide forecasts with negligible 

margins of error when predicting future scenarios that occur in the field or directly to the 

behavior of the robot. It is possible to implement a digital twin from these, which replicates the 

behavior of the environment and analyses the optimum operating conditions depending on what 

happens in each case. 

As a future line of research, the creation of a digital twin instance (DTI) in a 3D robotic simulator is 

proposed, based on the data obtained in the use case described above, which will allow testing in 

different scenarios of use. 
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