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Abstract
In Conversational Recommendation Systems (CRS), a user can provide natural language feedback on suggested items, which
the recommender uses to produce improved suggestions. Therefore, the success of a user’s conversation with the CRS
is determined by how well the system is able to interpret the user’s feedback and the quality of the recommendations.
Knowing whether a conversation is likely to be successful may allow the CRS to adjust accordingly - for instance, changing
its retrieval strategy, or asking a clarifying question. Existing work on Query Performance Prediction (QPP) has examined a
number of predictors that indicate the effectiveness of a search engine’s ranking in response to a query. Inspired by existing
work in QPP, we propose a framework for Conversational Performance Prediction (CPP) that aims to predict conversation
failures by considering the recommendation ranking at different turns of a conversation, either one turn at a time, or by
considering multiple consecutive turns. In this regard, we adapt post-retrieval predictors to address the multi-turn nature of
the CRS task. We conduct our analysis on Shoes and FashionIQ Shirts & Dresses datasets. In particular, as a ground truth, we
measure conversation difficulty by the effectiveness of the ranking at a given turn of the conversation. Overall, we find some
promise in score-based retrieval predictors for CPP, obtaining medium strength correlations with conversation difficulty - for
instance, observing a Spearman’s 𝜌 of 0.423 on the Shoes dataset, which is comparable to correlations observed for standard
QPP predictors on adhoc search tasks.

1. Introduction
Traditionally, Recommender Systems (RS) help users to
find items of interest on the basis of user feedback in
terms of ratings, clicks or reviews. In contrast, Conversa-
tional Recommendation Systems (CRS), such as personal
digital assistants [1], have facilitated more complex rec-
ommendation settings by suggesting items in response
to voice or (natural language) chat interactions. In par-
ticular, a CRS allows a multi-turn dialogue with users
and aim to assist them with achieving a number of task-
oriented goals [2]. Indeed, at each turn users can provide
their feedback or critique [3], which helps the system to
improve recommendations [4].

One important aspect of natural language-based CRS
is that they allow users to explore the range of available
options and elicit their preferences. For example, Bursz-
tyn et al. [7] created a multi-modal system, where users
navigate in a setting of limited options, such as finding
a restaurant near their location. In this setting, users
start exploring an initial set of restaurants and have the
opportunity to see their details by clicking through the
options, while they are asked about the reasons for any
negative feedback they provide. Another example of user
exploration is the MusicBot [8, 9], a music chatbot that
first collects users’ preferences and then makes sugges-
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Figure 1: Example of Dialog-based recommendation in CRS.
Pictures and dialogues from the Shoes dataset [5, 6].

tions based on different techniques of critiquing the song
recommendations. In our work, we are focused upon
conversational fashion image recommendation [5, 6, 10],
an example of which is shown in Figure 1. In this task,
the user has a target item in mind, and provides textual
feedback (critiques) to direct the system towards retriev-
ing images of fashion products that are more similar to
to their perceived target item.

However, not all conversations may lead to a satisfying
outcome for the user. This can be easily quantified in
offline evaluation scenarios, where the CRS is evaluated
across a pre-defined number of turns. For example, Yu
et al. [11] found that, although users had the option to
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explore a list of options for a number of turns, the sys-
tem was unable to find a relevant recommendation by
turn 7, which might mean that the algorithm was still
exploring the space. Also, in Wu et al. [10], the target
item was found by the system at rank 1 in only 42% of
conversations after (a maximum of) 10 turns. Therefore,
exploration might result in an increased number of turns,
which on one hand might mean more engaged users [8],
but at the same time suggests that often the conversa-
tions might fail (i.e., target item not found). In this regard,
we are interested in identifying indicators that can detect
how this happens – for example, a conversation could
fail because the system is unable to find the target item
or because the target item is not available.

In what follows, inspired by existing work on Query
Performance Prediction (QPP) (e.g., [12, 13, 14, 15]), we
aim to predict conversational failures by identifying spe-
cific indicators that are correlated with failure. In par-
ticular, we aim to determine the quality of multi-turn
critiquing-based CRS recommendation by proposing pre-
dictors that consider the multi-turn aspect of conver-
sational recommendation. The proposed predictors ad-
dress characteristics of the retrieved scores of the top-
recommended items and can predict poor performance
across a shorter or longer number of turns in the con-
versation, which we call prediction horizons. In summary,
this work makes the following contributions: (i) We pro-
pose a framework for Conversational Performance Pre-
diction (CPP), which extends the existing work on QPP to
a conversational recommendation setting; (ii) We show
how to adapt QPP evaluation methodology to a multi-
turn conversational setting which allows to evaluate CPP
predictors for both short- and long-term prediction hori-
zons; (iii) We evaluate some of our proposed predictors
on the Shoes [5, 6] dataset and the Fashion IQ Dresses
and Shirts categories [16], using a state-of-the-art user
simulator [6]. The rest of the paper is structured as fol-
lows: Section 2 presents the existing research on QPP,
including pre- and post-retrieval predictors, as well as
their probabilistic interpretation; Section 4 outlines our
new proposed framework and predictors; Section 5 de-
scribes our experimental setup; Sections 6 & 7 present
our results and provide concluding remarks.

2. Related Work
In order to predict why a conversation with a CRS might
fail, we need to identify indicators that show when the
user is unable to find the target item during the interac-
tion. In this regard, we are inspired by existing work from
Query Performance Prediction (QPP), which we discuss in
Section 2.1; Later, in Section 2.2, we discuss applications
of QPP in conversational contexts.

2.1. Query Performance Prediction
Traditionally, QPP is used to predict the effectiveness of
a search results page performed in response to a query
in the absence of human relevance judgments [15]. It
has applications to selective retrieval approaches [17, 18]
and query features for learning-to-rank [19], to name
but a few. Query performance predictors are generally
grouped into pre-retrieval, and post-retrieval, which we
discuss further below.

2.1.1. Pre-retrieval Query Performance Predictors

Pre-retrieval predictors are used to estimate the perfor-
mance of queries before the retrieval stage, and therefore,
are independent of the search performed and the ranked
list of results [14]. This means that pre-retrieval predic-
tors base their predictions on properties of query-terms
or corpus-based statistics [12, 13, 14, 20, 21, 22]. Exam-
ples of pre-retrieval predictors that describe the statistical
properties of the query terms or the corpus include the
query length (number of non-stop words in the query),
the standard deviation of the inverse document frequency
of the query terms, the simplified query clarity score
(SCS), which measures the occurrence of a query term
in the query relative to its occurrence in the collection,
and AvICTF, which considers the overall informative-
ness of the query terms using the collection model [23].
Another class of pre-retrieval predictors refers to linguis-
tic features of the queries, such as syntactic complexity
(distance between syntactically linked words) and word
polysemy (number of semantic classes a word belongs
to) [22]. Overall, with limited information available be-
fore retrieval commences, pre-retrieval predictors are
widely considered less accurate for performance predic-
tion than post-retrieval predictors [14].

2.1.2. Post-retrieval Query Performance
Predictors

On the other hand, post-retrieval predictors are applied on
the list of the top-ranked retrieved documents, and there-
fore use the relevance scores or the (textual) contents of
the returned items. A first group of post-retrieval predic-
tors examines the difference of the result list from the
corpus, or the focus of the result list. For example, Clarity
[12] measures the focus of the resulting ranking with
respect to the corpus using the KL divergence between
their respective language models, while the Weighted
Information Gain (WIG) corresponds to the difference be-
tween the average retrieval score of the result list and of
that of the corpus [24]. A second group includes the dis-
tribution of the retrieval scores of the top-ranked items.
Predictors in this group include Normalized Query Com-
mitment (NQC) [25] (the standard deviation of the re-
trieval scores in the result list). The standard deviation is



considered to be negatively correlated with the amount
of query drift (the non-related information in the result
list) [26]. Also, this group includes the modeling of re-
trieval scores; the top-ranked items could be modeled as a
certain mixture of distributions corresponding to relevant
and non-relevant items [27]. Another related predictor
is autocorrelation [28], which assumes that documents
whose vector space embeddings are closely related re-
ceive similar scores, and therefore, closely related scores
would indicate similar performance.

A third group of post-retrieval predictors refers to
the relation of the top-ranked retrieval scores with a
particular reference list. Recently, a more generalised ap-
proach for estimating the effectiveness of a ranking was
proposed, based on the assumption that high association
with pseudo-effective reference lists and low association
with pseudo-ineffective lists improves effectiveness [29].
One example refers to the utility estimation framework
(UEF) [30], which estimates the utility of a given ranking
with respect to how much it represents an underlying
information need [31]. The utility is estimated by the
expected similarity between a given document ranking
and those induced by estimates of relevance language
models (these rankings are assumed to be representative
of the information need). [32]. A similar predictor to
the UEF approach is query feedback (QF) [24], which
measures the overlap of top items between the result
list and a reference list retrieved from the corpus
using a language model induced from the result list.
Autocorrelation [28] could also fall under this category, if
we compare the result list of the original retrieval scores
with a reference list that contains either a perturbed
version of the scores diffused in space or a list with
the averaged values from multiple retrievals for the
same query. Lastly, an inter-list similarity predictor is
a measure of rank-biased overlap (RBO), which measures
the expected average overlap between two rankings [33]
and can be applied to the QPP task.

Finally, we note some recent QPP work (e.g. [29, 34])
has focused upon probabilistic frameworks for QPP,
which can integrate both pre-retrieval and post-retrieval
predictors. However, many of the underlying intuitions
encapsulated by these frameworks are already addressed
in the previously described predictors.

2.2. Query Performance Prediction in
Conversational Search

Natural language-based conversational systems allow
users to express complex feedback through a dialogue,
thus resulting in more natural interactions [35]. To be
able to predict the likelihood of success of a conversation,
we need to consider the salient aspect of the conversa-
tional setting, such as the users’ feedback and the iterative
turn-based nature of the interaction process.

However, while QPP has been widely explored for
(single turn) queries in search settings, the area of con-
versational search or recommendation has seen much
less work. For example, one recent work examines the
predicted effectiveness of the top-retrieved documents
for deciding to generate clarifying questions, and specifi-
cally some extracted features, such as noun phrases or
named entities [36]. Indeed, clarifications are useful for
both the user and the system [37, 38, 39]. Also, Roit-
man et al. [40] examined a constrained retrieval setting,
namely the interaction with a conversational assistant,
where the assistant needs to decide whether the provided
answer could be accepted. The authors built a classifier
that determines the answer quality by adapting some
existing QPPs to the answer level (using the score of the
top item, which is provided as the answer).

However, QPP for conversational recommendation has
not been addressed. In particular, we are interested in
creating a prediction framework for identifying poorly
performing or failed conversations in a recommendation
setting. We postulate that these predictors can be useful
in several use cases, for instance knowing when to ask
for clarifications, or when the users target item cannot
be found. Towards achieving this goal, we explore score-
based predictors, adapting to the multiple turn nature
of the task. In the next section, we define the CRS task;
Later in Section 4, we define our CPP framework.

3. Conversational Image
Recommendation

Figure 1 describes the context of dialog-based image rec-
ommendation in a CRS. At each interaction turn, the
user provides a critique of the current recommendation
(candidate item) back to the system, aimed at direct-
ing it towards the desired target item. More formally,
at a given interaction turn 𝑘, the user provides textual
feedback 𝑓𝑘 on the current top-ranked candidate item
𝑖𝑘,1. Based on this feedback, the conversational rec-
ommendation system 𝒞() provides a new ranking , i.e.:
𝒞(𝑖𝑘,1, 𝑓𝑘) → 𝑆𝑘 , where 𝑆𝑘 is a ranking of 𝑛 items with
corresponding descending retrieval scores 𝑠1 . . . 𝑠𝑛, i.e.:
𝑆𝑘 = [⟨𝑖𝑘+1,1𝑠1⟩, . . . ⟨𝑖𝑘+1,𝑛, 𝑠𝑛⟩].

However, it is challenging to train and evaluate a natu-
ral language-based CRS. For training, reinforcement learn-
ing (RL) is widely used, as it allows optimising the recom-
mendation model based on the long-term rewards [41],
i.e. based not just on retrieving the correct item in any
current iteration, but also retrieving it in later iterations.
However, such a model needs to be trained while interact-
ing with an environment, and obtaining many samples
is hard by relying on real users [41, 42]. For evaluation,
ideally human users are needed to judge the system’s
efficiency and user satisfaction [43]. Instead, user simula-



tors are deployed as surrogates for human users, trained
on relative caption data - a form of human-annotated di-
alogues on pairs of images. Recommendation models
trained and evaluated using user simulators have been
found to be correlated with human satisfaction [6].

Specifically, for the purposes of training a user sim-
ulator with human-annotated dialogues, Guo et al. [6]
proposed the relative captioning task. In this task, hu-
man annotators recruited through crowdsourcing are
placed in a context of online shopping, where the CRS
acts as the shopping assistant and they play the role of the
customer. During the process, annotators are presented
with candidate recommended images of items and they
are asked to provide single instance critiques. In each
interaction round, they are shown a given candidate item
and based on a given target item, they provide a critique
on the current candidate item. These differences between
the candidate and the target image are described with
natural language phrases and form the relative captions.
Hence, a relative captioning dataset contains tuples of
the following form: ⟨𝑖𝑡, 𝑖𝑐, 𝑡𝑞𝑐,𝑡⟩ where 𝑖𝑡 is a represen-
tation of the target item (for instance an image), 𝑖𝑐 is
the current candidate item being presented to the user
and 𝑡𝑞𝑐,𝑡 is the critique by the user on the candidate,
intended to direct the system more towards the target.
Relative captioning data can be used to train a user sim-
ulator, which is then deployed for training or evaluating
a CRS [6, 10, 11, 16, 44, 45].

Using a user simulator for evaluation, the overall suc-
cess of a CRS system can be reliably measured, in a offline
Cranfield-like setting, by using ranking evaluation mea-
sures, such as NDCG, upon the ranked list of recommen-
dations produced at each turn. From such an evaluation,
it can be seen that even after 10 turns, some CRS models
may not be able to identify the target item for some con-
versations. For this reason, making a prediction as to the
likelihood of a user being satisfied with a conversation
may have utility to improving the user experience. In the
next section we introduce our proposal for conversation
performance prediction for CRS.

4. Performance Prediction in
Conversational
Recommendation

Our aim for conversational performance prediction
differs from existing approaches on QPP in a number of
ways. While QPP focuses on estimating the relevance of
a ranking to a given single query (single-turn), to predict
the user’s satisfaction of a conversation, we need to take
into account the nature of the task, which is to consider
the ranking quality across multiple turns. Another im-
portant difference is that many QPP techniques are based

on textual queries and textual documents. In contrast,
in our fashion-based CRS, the “units of retrieval" are
images, with embedded representations - this precludes
the use of textual content-based predictors. Furthermore,
our “query units" are critiques, which are based on the
retrieval of the previous turn. Therefore, it can be seen
that there is no clear distinction between pre-retrieval
and post-retrieval predictors, since what is considered
post-retrieval of one turn could be seen as a pre-retrieval
predictor of the following turn. For this reason, we
propose a new framework for performance prediction
in a conversational setting, in particular conversational
fashion retrieval, which we describe in Section 4.1 below.
Later in Section 4.2, we describe the initial score-based
predictors we can adapted to this framework.

4.1. CPP Framework
We present a framework for Conversational Performance
Prediction (CPP) applied to the domain of fashion recom-
mendation for image retrieval [6, 16]. In this regard, we
define recommendation success as the identification of
the target image item by the system before a maximum
number of turns is reached, which corresponds to a user
being satisfied with the conversation. More formally, the
CPP task can be described as a function of the form

𝐶𝑃𝑃 (𝐹, 𝑆) → R

where 𝐹 is a sequence each containing 𝑓 feedback cri-
tiques over 1 or more turns, and 𝑆 is a sequence of results
lists consisting of retrieval scores, over 1 or more turns.

This framework can be instantiated for single-turns,
or multiple turns. For instance, in a single-turn setting,
we can instance CPP task at a given turn 𝑘, i.e.:

𝐶𝑃𝑃single([𝑓𝑘], [𝑠𝑘]).

On the other hand, for two consecutive turns, 𝑘 and 𝑘+1,
prediction takes the following form:

𝐶𝑃𝑃consecutive([𝑓𝑘, 𝑓𝑘+1], [𝑠𝑘, 𝑠𝑘+1]).

Overall, from the above different formulations, it is clear
that CPP is a distinct task from QPP that can be addressed
by different families of predictors. In this initial work, we
adapt one category of score-based QPP predictors into
the CPP framework, which we discuss further below.

4.2. Score-based Predictors for CPP
In this work, we are inspired by post-retrieval predictors
that study the distributions of retrieval scores and the use
of reference lists, as introduced in Section 2.1.2. In partic-
ular, we have the following initial intuitions concerning
successful interactions in the CRS task:



Table 1
Proposed CPP predictors according to number of turns in-
volved.

Single-turn Consecutive Turns
Top-1 item score (maximum score) Difference in maximum score
Mean score of top-n items Overlap of top-ranked items
Standard deviation (sd) of top-n items

• For a single turn, if the score of the top-ranked
item(s) is high, then the system has a clear repre-
sentation of the user’s desired item, and it can find
item(s) that closely matches that representation.

• In a successful conversation, the scores of the
top-ranked item(s) will increase across multiple
turns, as the system becomes more confident in
its predictions.

• In a successful conversation, the retrieved items
become more similar across turns as the system
becomes more confident in its predictions and
focuses on the correct part of the item catalogue.

Adapting the notation of Section 4.1 to disregard the
feedback sequences, we define a number of score-based
CPPs, for single turns – in the form of 𝐶𝑃𝑃 ([𝑠𝑘]) and
for consecutive turns – 𝐶𝑃𝑃 ([𝑠𝑘, 𝑠𝑘+1)]. All predictors
are described in Table 1. For instance, top-1 denotes
the maximum score of any retrieved item, while mean
denotes the average of the scores of the retrieved items.
When applying these predictors, we also denote the turn
𝑘 that the predictor is calculated, i.e. top-1@k is the
maximum score of any item retrieved in the ranking
produced for turn 𝑘. In the remainder of this paper,
we evaluate these predictors on several conversational
fashion recommendation datasets.

5. Experimental Setup
We now experiment to address salient aspects upon both
the nature of the predictors (single-turn and consecutive
turn), as well as upon the accuracy of the predictors on
different prediction horizons, i.e., at what point can a
prediction be made, and how does it correspond to the
effectiveness of the CRS, as measured at a later turn. In
particular, we measure short-term horizons (i.e., can we
predict the effectiveness of the next turn?); and long-term
horizons (i.e., can we predict the effectiveness of the last
turn); as well as measuring the longevity of the prediction
(i.e., how useful is an early prediction?). Focusing initially
on single-turn predictors, our first research question is:

RQ1 Can we predict conversation performance with
predictors based on retrieval scores of a single turn, in
terms of (a) long-term and (b) short-term prediction, as
well as (c) longevity?
Secondly, we consider the consecutive-turn predictors:

RQ2 Can we predict conversation performance with
predictors based on (a) differences in retrieval scores
between consecutive turns and (b) overlap in retrieved
items of two consecutive turns?

To evaluate our CPP approaches, we use the Shoes
dataset [5, 6], which contains one relative critique
(describing relative differences between recommended
and target image pairs) for pairs of shoe images, and
the Dresses & Shirts categories of the Fashion IQ
dataset [16], which contains two relative captions per
candidate-target pair.

For a CRS, we apply a supervised GRU sequential rec-
ommendation model [6, 46], which is trained using triplet
loss and uses the natural language feedback and the pre-
vious recommended images as input, thus maximizing
short-term rewards. To train our recommendation model,
we use a recently developed user simulator for dialog-
based interactive image retrieval based and the relative
captioning task [6]. The GRU model is configured to
retrieve 100 items at each turn.

In QPP, the accuracy of predictors is evaluated at the
query level (a given query is easy or difficult compared to
other queries in a set). Specifically, a ranking of queries by
the effectiveness of a system, i.e., in terms of Mean Aver-
age Precision (ground truth) is correlated with a ranking
induced by a predictor. In contrast, we evaluate CPP pre-
dictors at the conversation level (across multiple dialog
turns). Consequently, for the ground truth, we evaluate
the effectiveness of each conversation at identifying the
user’s target item – more specifically, by considering the
rank of the target item at a specific turn of the conver-
sation. Following existing CRS work [6, 10, 11, 16, 44],
we set the maximum number of turns to be 10.

In this regard, for our proposed single-turn predictors
in Table 1, we use three different ground truth settings:
the rank of the target item at the end of the conversation
(turn 10); the rank of the target item during the conversa-
tion, i.e. at a given turn 𝑘; and the rank of the target item
directly after the prediction is made (i.e. 𝑘 + 1 for a pre-
diction at turn 𝑘). Through these different ground truth
settings, we can measure CPP accuracy at both short-
term and long-term horizons, as well as their longevity.

Finally, for quantifying the correlations, we report
Spearman’s 𝜌. Significance testing is achieved by ex-
amining the p-value associated with 𝜌, which indicates
the probability of an uncorrelated ranking producing a
Spearman correlation as high as that observed.1

6. Results
In this section we report experiments for score-based CPP
predictors, for single-turn (Section 6.1) and consecutive-
turn (Section 6.2) scenarios.

1See also https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.spearmanr.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html


Table 2
Results of single-turn predictors for short and long-term prediction of rank of target items at various turns. * denotes signif-
icant correlations; for Shoes, all correlations are significant, so * is omitted (𝑝 < 0.05). In the first group of columns, bold
values denote the maximum correlation over all turns for the same predictor and the same ground truth value. For the other
two sets of columns, bold values denote the highest performing predictor of the three examined single-turn predictors in the
given evaluation setting for each turn – this is because comparison of correlation values across turns (rows) is not possible,
since the ground truth changes for each row.

Prediction at turn 𝑘 with rank@turn10 Prediction at turn 2 with rank@turn 𝑘 Prediction at turn 𝑘 with rank@turn 𝑘 + 1

k top-1@k mean@k sd@k rank@k top-1@k mean@k sd@k k, rank@k top-1@k mean@k sd@k
Shoes

2 -0.144 -0.141 -0.081 2 -0.405 -0.385 -0.059 2,3 -0.423 -0.413 -0.201
3 -0.145 -0.145 -0.097 3 -0.423 -0.413 -0.201 3,4 -0.356 -0.355 -0.254
4 -0.148 -0.148 -0.105 4 -0.357 -0.349 -0.183 4,5 -0.318 -0.317 -0.211
5 -0.155 -0.153 -0.089 5 -0.314 -0.309 -0.177 5,6 -0.293 -0.292 -0.180
6 -0.165 -0.165 -0.093 6 -0.270 -0.267 -0.163 6,7 -0.254 -0.254 -0.135
7 -0.173 -0.173 -0.100 7 -0.230 -0.226 -0.140 7,8 -0.235 -0.234 -0.126
8 -0.178 -0.177 -0.073 8 -0.213 -0.210 -0.136 8,9 -0.208 -0.207 -0.067
9 -0.184 -0.183 -0.064 9 -0.175 -0.173 -0.1149 9,10 -0.183 -0.183 -0.064
10 -0.183 -0.181 -0.026 10 -0.144 -0.141 -0.081

Dresses
2 0.012 0.003 -0.036 2 -0.281* -0.279* -0.161* 2,3 -0.248* -0.256* -0.197*
3 -0.017 -0.015 -0.004 3 -0.248* -0.256* -0.197* 3,4 -0.262* -0.257* -0.075*
4 -0.045* -0.047* -0.014 4 -0.187* -0.198* -0.173* 4,5 -0.246* -0.239* -0.038
5 -0.055* -0.051* -0.007 5 -0.128* -0.140* -0.137* 5,6 -0.206* -0.198* -0.008
6 -0.063* -0.063* -0.041* 6 -0.079* -0.092* -0.102* 6,7 -0.172* -0.168* -0.034
7 -0.069* -0.072* -0.033 7 -0.052* -0.067* -0.091* 7,8 -0.139* -0.142* -0.044*
8 -0.075* -0.076* -0.021 8 -0.039 -0.051* -0.072* 8,9 -0.103* -0.101* -0.000
9 -0.073* -0.071* -0.018 9 -0.005 -0.018 -0.053* 9,10 -0.073* -0.071* -0.018
10 -0.080* -0.078* 0.003 10 0.0127 0.003 -0.036

Shirts
2 -0.092* -0.089* -0.074* 2 -0.305* -0.298* -0.141* 2,3 -0.297* -0.305* -0.201*
3 -0.124* -0.119* -0.033 3 -0.297* -0.305* -0.201* 3,4 -0.336* -0.326* -0.03*
4 -0.145* -0.137* 0.011 4 -0.264* -0.273* -0.192* 4,5 -0.323* -0.308* 0.019
5 -0.148* -0.142* -0.016 5 -0.228* -0.231* -0.157* 5,6 -0.305* -0.293* 0.018
6 -0.139* -0.134* -0.003 6 -0.198* -0.206* -0.155* 6,7 -0.248* -0.238* 0.026
7 -0.152* -0.150* -0.003 7 -0.166* -0.168* -0.122* 7,8 -0.203* -0.196* 0.017
8 -0.160* -0.153* 0.031 8 -0.1346* -0.135* -0.096* 8,9 -0.192* -0.184* 0.049*
9 -0.149* -0.142* 0.003 9 -0.120* -0.118* -0.089* 9,10 -0.149* -0.142* 0.003
10 -0.147* -0.138* 0.053* 10 -0.092* -0.089* -0.074*

6.1. RQ1 - Single-Turn predictors
Table 2 shows the results for the three single-turn
predictors, namely: the score of the top-ranked item at
a given turn 𝑘 (denoted top-1@k); the mean value of all
top-ranked items in the recommendation list at a given
turn (mean@k); and the standard deviation values of the
scores of all top-ranked items (sd@k).

The table is grouped into three sets of columns defining
the prediction turn and the ground truth turn. Specifi-
cally, Prediction at turn 𝑘 with rank@turn10 addresses
long-term prediction; the middle group, Prediction at
turn 2 with rank@turn 𝑘, addresses whether prediction
at an early turn can help identify success at early or late
turns; finally, the third group, Prediction at turn 𝑘 with
rank@turn 𝑘 + 1, addresses short-term prediction.

We first examine the first group of columns, which

aims to determine the extent that the overall conversa-
tion can be successfully predicted (i.e. the ground truth
is the rank of the target item at turn 10). Overall, the
correlations2 are weak (-0.184 is the strongest observed
for Shoes, and -0.160 for Shirts; Dresses is lower still at
-0.080), yet significant (𝑝 < 0.05). This suggest the diffi-
culty of the long-term prediction task. We do observe that
correlations are relatively higher as the prediction turn
increases - thus indicating that it is easier to predict per-
formance at turn 10 using evidence of the ranking at turn
10. Finally, among the predictors, the maximum score
at each turn, along with the mean score, exhibit higher
correlations the standard deviation. To answer RQ1 (a),
we cannot sufficiently predict long-term conversation
2In our analysis, we ignore the sign of the correlation - indeed, the
observed correlations are negative, as our CRS system uses repre-
sentation distances rather than similarities.



performance using single-turn score-based predictors.
Turning next to the second group of columns, we ob-

serve stronger correlations. Indeed, the overall higher
correlations suggests that predicting at turn 2 gives more
accurate predictions, particularly when aiming to predict
conversation performance at turn 2 or shortly thereafter.
In particular, for the Shoes datasets, medium strength
correlations of -0.423 are observed - these are in line
with the best accuracy of some QPP predictors for adhoc
search tasks [12, 25, 30, 24]. Correlations of -0.305 and
−0.281 are observed for Shirts and Dresses, respectively.
Among the predictors, top-1@k is again most successful
on Shoes, but on Dresses and Shirts, where correlations
are lower, the overall picture is less clear across different
prediction horizons (i.e. as the ground truth 𝑘 is varied).
For these datasets, mean is the most accurate for most
values of 𝑘 ≥ 2. In general, when predicting conver-
sation performance using single-turn retrieval scores,
prediction becomes less accurate as the longevity of the
prediction increases, thus answering RQ1(c).

Finally, the last set of columns of the table shows the
correlation of the scores of each turn 𝑘 (as a predictor)
when the effectiveness of the following turn 𝑘+1 is used
as the ground truth (i.e. applying a short-term horizon).
The scores of both the top-ranked item and the average
score of the top-ranked items at turn 𝑘 sufficiently pre-
dict the rank of turn 𝑘+1, especially for early turns. This
trend weakens as the number of turns increases, but the
observed correlations remain quite high for some cases.
For example, for Shoes, we start with a correlation of
-0.423 (maximum score) and -0.413 (average score) for
turns 2, 3 and at turns 8− 9 the correlation is still -0.20.
For Shirts, the maximum and average score of top items
sufficiently predict the ranking of turn 3 at -0.30 and the
score of turn 8 still at -0.20. Finally, although weaker
than the other two datasets, the two predictors work rea-
sonably well for Dresses, achieving a maximum value of
-0.26 for predicting the rank of turn 3. These values sug-
gest some evidence for short-term prediction when using
single-turn score-based predictors, to answer RQ1(b).

Overall, we observe that there is some evidence for
short (score of one turn predicting the rank of the fol-
lowing turn) and early prediction (a score of initial turn
predicting the rank of some turns ahead). The score
of the top-ranked item and the mean scores of the rec-
ommendation list are shown to be the most promising
single-turn predictors. However, contrary to previous
QPP research [25], the results for the standard deviation
are not as encouraging. The results for long-term predic-
tion are weaker, but still, the score of the initial turn is
predictive of later stages. In general, prediction of the
system performance (whether it finds the target in the
context of a conversation) is possible by using single-turn
score-based predictors, particularly for the success of the
conversation at early turns and prediction of the next

Figure 2: Results of the difference in the top-1 ranked item
(maximum score) between pairs of consecutive turns as a con-
secutive turn CPP predictor for each of the datasets.

turn. In RQ2 below, we focus on short-term (next turn
prediction), as the most promising CPP setting.

6.2. RQ2 - Consecutive-Turn predictors
Figure 2 presents the results of our first consecutive-turn
predictor, namely the difference in maximum score (top-
1 item) for each pair of turns 𝑘, 𝑘 + 1 when predicting
the rank of the target item at turn 𝑘 + 1. Within the
figure, each dataset is represented as a separate curve.
Considering the different datasets, for Shirts and Dresses,
we observe a similar trend across turns, starting from
a correlation of -0.18 (the maximum value obtained for
this predictor) at turns 2-3, which gradually decreases as
the number of turns increases. In contrast, Shoes does
not achieve any correlation stronger than -0.016 at turns
3-4. Therefore, we observe only weak correlations for
this predictor at short-term prediction, although some
correlations are significant. To answer RQ2(a), using the
scores of two consecutive turns, does not sufficiently pre-
dict conversation performance, and is indeed generally
less effective than the predictors examined in RQ1.

Next, we test our final predictor, which considers the
overlap of top-ranked items (i.e., the size of intersection)
between consecutive turns. We considered various rank
cutoff values for calculating the overlap, ranging from
rank 5 to rank 1000, and all pairs of turns. Figure 3 re-
ports the observed correlations (y-axis), where each pair
of turns is a curve, and the x-axis is the rank cutoff at
which overlap is calculated. Recall that we expect that
when the retrieved items are generally similar, this may
be indicative that the CRS is reaching a stable conclu-
sion of the likely relative items. If this occurs at a later
turn, we may be further confident in the likely positive
performance of the system.

On analysing Figure 3, we note that Dresses & Shirts
(Figure 3(b) & (c), respectively) – which are both Fashion
IQ datasets – we observe a strengthening trend in the
correlations as we increase the rank cutoff value (more



(a) Shoes (b) Dresses (c) Shirts

Figure 3: For each dataset, results for overlap of top-ranked items as a consecutive predictor for all pairs of turns 𝑘, 𝑘 + 1
for a number of rank cutoff values.

items are considered). This happens for all pairs of turns
except the initial turn. In addition, the correlations are
stronger for later turns than earlier turns, indicating that
this predictor is more useful for later turns (as expected).
Indeed, improved prediction at later turns is particularly
notable, as this contrasts with our results in RQ1, where
earlier prediction was more accurate.

On the other hand, for the Shoes dataset, the highest
correlations are observed for turns 3-4 and 4-5, and for
cutoff values at 50 and 100. The correlations for item over-
lap in Shoes are weaker than the other two datasets, con-
trasting with the observations in RQ1 (where Shoes ex-
hibited higher correlations for the single-turn predictors
than Dresses or Shirts). We note that, as a CRS dataset,
Shoes is “easier” than Dresses (e.g. the GRU model can
attain Mean Reciprocal Rank 0.2 at turn 10 on Shoes,
compared to Mean Reciprocal Rank 0.075 at turn 10 on
Dresses [10]). We postulate that early single-turn pre-
diction works well on Shoes, as more conversations are
answered at earlier turns; in contrast, on Dresses, more
critiques are required for successful conversations, and
the overlap-based evidence later in the conversation is
therefore more useful for prediction.

Overall, these results suggest some weak-medium cor-
relations (upto -0.25 𝜌) on the overlap-based consecutive
turn predictor, thereby answering RQ2(b).

7. Conclusions
We have presented a novel framework for conversational
performance prediction (CPP) that aims to detect the fac-
tors that indicate effective performance by taking into
account the multi-turn aspect of the task of conversa-
tional interactive image retrieval. In this regard, we
proposed a number of predictors that can be used for
both short-term and long-term prediction, and explored
the retrieval scores and retrieved items, of both a single
turn and consecutive turns. We conducted our analy-
ses on three widely-used relative captioning datasets for
conversational recommendation systems (CRS) and ex-
amined the extent to which our proposed predictors are

indicative of the ranking of the users’ target items in the
recommendation list.

In our analysis of the proposed single-turn predictors,
we found that examining the score of the top-ranked
items had a medium correlation with the effectiveness of
the conversation, particularly the effectiveness at early
turns. Indeed, we observed a Spearman’s 𝜌 of 0.423 on
the Shoes dataset, which is comparable to correlations
observed for standard QPP predictors on adhoc search
tasks [12, 24, 25, 30]. However, these single-turn
predictors became less useful at predicting the success of
later turns. On the other hand, among our consecutive
turn predictors, simply examining the overlap of the
retrieved lists had a weak-medium correlation with late
turn effectiveness on two out of our three datasets.

Overall, the weak-medium correlations observed for
our simple unsupervised predictors of different families
suggests that there is significant scope to extend this
work, for instance by introducing supervised predictors.
Moreover, our proposed framework for CPP is generalis-
able - for instance, we can also envisage predictors that
examine aspects of the critiques (for instance, repeated
critiques), or characteristics of the retrieved images (are
item colours or styles varied). We leave these for future
work. Furthermore, we also aim to extend our analyses
to a classification task that aims to predict whether a
conversation would fail, as well as testing the efficacy of
interventions for failing conversations.

Finally, this study takes place in the context of user
simulators for evaluation of CRS - such user simulators
are common in the training and evaluation of conversa-
tional systems. Logging the interactions of a deployed
CRS would allow to verify the results depicted here.
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