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Abstract
We propose a method to relight scenes in a single image while removing unwanted objects by the combination
of 3D-aware inpainting and relighting for a new functionality in image editing. First, the proposed method
estimates the depth image from an RGB image using single-view depth estimation. Next, the RGB and
depth images are masked by the user by specifying unwanted objects. Then, the masked RGB and depth
images are simultaneously inpainted by our proposed neural network. For relighiting, a 3D mesh model is first
reconstructed from the inpainted depth image, and is then relit with a standard relighting pipeline. In this
process, removing cast shadows and sky areas and albedo estimation are optionally performed to suppress the
artifacts in outdoor scenes. Through these processes, various types of relighting can be achieved from a single
photograph while excluding the colors and shapes of unwanted objects.
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1. Introduction
VR systems using real-world photographs have been
spreading, referred to as augmented virtuality [1].
For example, image-based rendering allows users
to walk through a virtual space that imitates a
real environment [2]. Also, systems such as "Tour
into the picture" allow users to experience as if
they jump into the world inside a photograph by
setting up a single photograph and its corresponding
geometry [3]. Since real-world photographs can
enhance reality in VR, building VR systems using
real-world images is essential.

Two issues must be addressed when using real-
world photographs for those applications. (1) When
using a photograph taken at a certain time with a
certain light source, it is desirable to change the pho-
tograph’s appearance so that users can experience
a VR space that imitates the real world at various
conditions. (2) In places such as sightseeing spots,
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many people can be included in the photographs.
It is desirable to use such photographs as they are
for the creation of some VR systems. In addition,
some objects in the photographs, such as billboards
for advertisements, can be obstacles for some VR
creators.

Each issue has conventionally been solved as fol-
lows. For (1), geometry-based and learning-based
methods have been proposed for relighting a sin-
gle image. For (2), diffusion-based, patch-based,
and learning-based inpainting methods have been
proposed to remove unwanted objects from a sin-
gle image. However, these two issues have been
studied separately and are not integrated into one
framework. To the best of our knowledge, no frame-
work solves them simultaneously for image synthesis.
Such a framework is essential for creating VR sys-
tems.

We propose a method for relighting scenes in
an image while removing unwanted objects in one
framework. The proposed method first estimates
the depth image from an input RGB image using
neural network-based single-view depth estimation.
Next, the RGB and depth images are masked with
a mask image by specifying unwanted objects by
the user. They are simultaneously inpainted by our
proposed neural network. Then, a 3D mesh model is
reconstructed from the inpainted depth image. The
mesh model is used to relight the inpainted image
by taking into account the scene geometry from the
3D model. In this process, removing cast shadows
and sky areas and albedo estimation are performed
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to suppress the influence of existing light sources in
outdoor scenes. Through these processes, various
types of relighting can be achieved from a single
photograph while excluding the colors and shapes
of unwanted objects. Finally, the processed image
can be applied to VR applications, image editing,
and other applications using image synthesis.

2. Related Work
2.1. Relighting
Image relighting is a technique to reproduce the
shadows, brightness, and color of an object or scene
taken in a different lighting environment. It solves
the problem of reconstructing the light of a photo-
graph. We classify the algorithms into geometry-
based and learning-based approaches.

2.1.1. Geometry-based Methods

Prior work on image relighting has generally relied
on scene geometry, light, and reflectance models us-
ing inverse rendering. The full use of geometry, ma-
terials, and lighting in scene representation allows
for conventional rendering and shading techniques
with promising results. Techniques such as semi-
automatic vision-based geometry reconstruction [4]
or parameter estimation by viewing the same scene
under different lighting conditions [5] can simplify
the capture process. In addition, advanced capture
setups such as Light Stage have been used in film
production [6].

2.1.2. Learning-based Methods

Learning-based methods have significantly improved
the performance of multiview relighting systems
for scene-scale relighting. A typical approach is
to use a single neural network to map the input
image and a set of approximate guide maps, such
as depth maps or shadow maps, to new lighting
conditions [7]. Some methods remove the original
lighting influence and transform it into new lighting
conditions, depending on the geometric property [8].

2.2. RGB Image Inpainting
RGB image inpainting is a technique that fills in
missing regions (ROI: Region of Interest) with im-
age texture consistency throughout the entire image.
The techniques remove scratches and text masks in
photographs, remove unwanted targets, and repro-
duce image block contents due to network packet
loss during image transmission. We classify the

algorithms into diffusion-based, patch-based, and
learning-based approaches.

2.2.1. Diffusion-based and Patch-based Methods

Diffusion-based methods smoothly transfer the ef-
fective information from the known region to the
target region by diffusing the pixels at the junc-
tion. The method of Bertalmio et al., who first
proposed the term "image inpainting" as an early
study, belongs to this category [9]. In this category,
diffusion is mathematically formulated in various
manners. Mumford-Shah segmentation model was
adapted for image inpainting by introducing Euler’s
Elastica [10]. Li et al. proposed diffusion-based
inpainting by analyzing the local variance of image
Laplacian along the isophote direction [11].

Patch-based methods search for patches that can
match the ROI in the source region of the image and
then fill it with the patches. An early study [12] syn-
thesizes patches into the ROI sequentially, followed
by overall optimization of patch-based costs [13].
Various improvements have been made since then.
For example, the Markov random field (MRF) mod-
eling method segments the image into blocks and
uses a prior to limit the effective matching context
candidate patches of the source region [14]. An-
other method uses Gaussian-weighted nonlocal tex-
ture similarity measure to obtain multiple candidate
patches and nonlinear filtering (𝛼-trimmed mean
filter) to the inpainting target region in pixel [15].

2.2.2. Learning-based Methods

Deep neural networks have been introduced for
image inpainting. We divide the mainstream ap-
proaches into convolutional neural networks (CNN)
and generative adversarial networks (GAN) based
on the network architecture.

CNN-based approaches can compensate for the
lack of global information distortion. Networks with
the encoder-decoder structure are common in this
field. The context encoder in the encoder-decoder
network [16] can effectively use the local information
around the target region and the global information
of the whole image to generate information. Zeng
et al. proposed a pyramidal context encoding the
network PEN-Net based on the U-Net structure [17].
It can encode the contextual semantics from the full-
resolution input and decode the learned semantic
features for inpainting defective content.

GAN-based approaches have become the active re-
search direction in image synthesis. The face feature
point generation network [18], an image inpainting
method for human faces, consists of three branching



networks of image segmentation networks, and a
cooperative GAN based on CGAN was proposed.
Two-branch network Pluralistic [19] based on the
CGAN architecture. One path is a reconstruction,
and the other path is a generative path.

2.3. Depth Image Inpainting
Studies have been conducted to inpaint missing re-
gions not only in RGB images but also in depth
images. As for the inpainting of depth images, some
research has been conducted to fill in missing re-
gions in a depth image using the corresponding
RGB image as a guide because missing regions are
more likely to occur in depth images than in RGB
images due to the difference in the measurement de-
vice [20]. As a different application, a patch-based
method has been proposed for removing unwanted
objects from two stereo RGB images while preserv-
ing consistency and reconstructing the depths of the
two images [21]. The method most relevant to this
research has been proposed to remove unwanted
objects from RGB and depth images and simulta-
neously inpaint the ROI in RGB and depth images
using a neural network [22].

2.4. Summary and Our Contribution
As mentioned above, relighting and inpainting have
been studied separately. In other words, there is
no study that has performed them simultaneously
for image synthesis. In this paper, we propose an
integrated framework that takes advantage of the
features of these studies. First, due to the excel-
lent performance of deep learning on inpainting,
we take a cue from the literature [22] and use neu-
ral networks to simultaneously inpaint RGB and
depth images. This two-stage structure can reduce
the gap between the RGB map and the estimated
depth map to some extent since we use the same
intermediate output as a guide. Then, for now,
learning-based relighting methods do not allow for
free illumination changes or reasonable shadow gen-
eration. We utilize the inpainted depths to achieve
relighting in a geometry-based manner.

3. Proposed Method
3.1. Overview
The goal of the proposed method is to remove un-
wanted objects from a photograph and change light-
ing conditions by considering 3D geometry. The
method takes a single RGB image and an object
mask that the user wants to remove as input. The

inpainted image is used as input for relighting so
that the user is free to change the illumination to
output the requested image.

The overview of our proposed method is illus-
trated in Fig. 1. First, the depth image is estimated
from the input RGB image by using single-view
depth estimation (Fig. 1(a)) with MegaDepth [23].
The RGB and estimated depth images are in-
painted together with our proposed inpainting
network (Fig. 1(c)) after removing target regions
masked by the user (Fig. 1(b)). Then, optional
processing is performed before relighting for the
outdoor environment (Fig. 1(d)). The processing
includes shadow removal, sky removal for outdoor
scenes, and albedo map estimation. The 3D mesh
model is generated from the depth image, and is
used for relighiting with a conventional rendering
pipeline (Fig. 1(e)). By feeding the image with il-
lumination mapping, we can obtain an image relit
with new illumination that users can control freely.

The depth of the RGB image is first estimated
to obtain the geometry of the RGB image by us-
ing the proposed depth estimation method. Next,
the estimated depth map and the original image
are masked with the object mask image and are
inpainted by the inpainting network. Relighting
runs the conventional rendering pipeline on the 3D
model recovered from the depth map.

3.2. Single-View Depth Dstimation
In our method, the depth image estimation is im-
portant to realize relighting because the input is
only a single RGB image. A depth image can be
obtained in various ways, such as a depth camera
or a depth map estimated using a depth estima-
tion algorithm. Since surface normals have a strong
guiding effect on illumination, the depth estimation
with surface estimation is essential for relighting.
In our implementation, we estimate a depth image
from a single RGB image with MegaDepth [23].

3.3. Masking and RGBD Inpainting
Both the estimated depth image and the input RGB
image are masked with the object mask image gen-
erated by the user. Since our method requires in-
painting both the RGB image and its depth image,
we propose to inpaint a 4-channel RGBD image to
increase their information agreement.

3.3.1. Network Architecture

We propose an inpainting network based on two-
stage structure [24]: 1) edge generators and 2) image
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Figure 1: Method overview.

generators, referring to the two-stage GAN network
architecture shown in Fig. 2. Both stages consist
of a bundle of generators and discriminators. Let
𝐺𝑒𝑑𝑔𝑒 and 𝐷𝑒𝑑𝑔𝑒 denote the generator and discrim-
inator of the edge generator, 𝐺𝑖𝑚𝑎𝑔𝑒 and 𝐷𝑖𝑚𝑎𝑔𝑒

denote the generator and discriminator of the image
inpainting network, 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 be an RGBD image, and
𝐸𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐼𝑔𝑟𝑎𝑦 be an edge image generated by
an edge detector and a grayscale image of the RGB
image, respectively. The edge generator takes the
masked grayscale image 𝐼𝑔𝑟𝑎𝑦 = 𝐼𝑔𝑟𝑎𝑦

⨀︀
�̄� , the

corresponding edge image �̃�𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐸𝑠𝑜𝑢𝑟𝑐𝑒

⨀︀
�̄� ,

and the image mask 𝑀 as pre-condition (1 for miss-
ing regions and 0 for background), where

⨀︀
denotes

the Hadamard product. Then, the generator pre-
dicts the edge image 𝐸𝑝𝑟𝑒𝑑 by filling the edges in
the masked regions.

𝐸𝑝𝑟𝑒𝑑 = 𝐺𝑒𝑑𝑔𝑒(𝐼𝑔𝑟𝑎𝑦, �̃�𝑠𝑜𝑢𝑟𝑐𝑒,𝑀).

The image generators take a missing RGBD im-
age 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐼𝑠𝑜𝑢𝑟𝑐𝑒

⨀︀
�̄� and a composed edge

image 𝐸𝑐𝑜𝑚𝑝, which is generated by compositing the
ground-truth edges in the background region with
the edges generated in the missing regions. That is,
𝐸𝑐𝑜𝑚𝑝 = 𝐸𝑠𝑜𝑢𝑟𝑐𝑒

⨀︀
�̄� + 𝐸𝑝𝑟𝑒𝑑

⨀︀
𝑀 . Finally, the

image generator outputs a RGBD image 𝐼𝑝𝑟𝑒𝑑 with
the same resolution as the input image and with
missing regions inpainted as follows.

𝐼𝑝𝑟𝑒𝑑 = 𝐺𝑖𝑚𝑎𝑔𝑒(𝐼𝑠𝑜𝑢𝑟𝑐𝑒, 𝐸𝑐𝑜𝑚𝑝).

3.3.2. Loss Function

Reconstruction loss 𝐿𝑟𝑒𝑐 achieves the consistency
between the overall structure of the missing re-
gion and the context. We introduce L1-smooth
loss 𝐿1_𝑠𝑚𝑜𝑜𝑡ℎ because it corrects the zero-point
non-smooth problem of L1 loss and is more robust
against outliers than L2 loss. Also, adversarial Loss
𝐿𝑎𝑑𝑣 increases the flexibility.

In addition, we incorporate perceptual loss 𝐿𝑝𝑒𝑟𝑐

and style loss 𝐿𝑠𝑡𝑦𝑙𝑒 with reference to [25]. These
two losses are computed only for the three channels
for RGB represented with a subsript 𝑟𝑔𝑏.

𝐿𝑝𝑒𝑟𝑐 = 1
𝐶𝑖𝐻𝑖𝑊𝑖

|𝜑𝑖(𝐼𝑠𝑜𝑢𝑟𝑐𝑒_𝑟𝑔𝑏) − 𝜑𝑖(𝐼𝑝𝑟𝑒𝑑_𝑟𝑔𝑏)|

𝐿𝑠𝑡𝑦𝑙𝑒 = ‖𝐺𝜑𝑖(𝐼𝑠𝑜𝑢𝑟𝑐𝑒_𝑟𝑔𝑏) −𝐺𝜑𝑖(𝐼𝑝𝑟𝑒𝑑_𝑟𝑔𝑏)‖2

where 𝜑𝑖 is the activation map of the 𝑖-th activation
layer of the network 𝜑 with the 𝐶𝑗 ×𝐻𝑗 ×𝑊𝑗 feature
map. In this equation, 𝜑 is the learned VGG-19 net-
work and 𝜑𝑖 corresponds to the activation maps from
layers 𝑟𝑒𝑙𝑢1_1, 𝑟𝑒𝑙𝑢2_1 , 𝑟𝑒𝑙𝑢3_1, 𝑟𝑒𝑙𝑢4_1and
𝑟𝑒𝑙𝑢5_1 of the VGG-19 network. The Gram ma-
trix 𝐺𝜑𝑖 is a 𝐶𝑖 × 𝐶𝑖 matrix 𝐺𝜑𝑖 = 𝜓𝜑𝑇 /𝐶𝑖𝐻𝑖𝑊𝑖.
𝜓 is the matrix that resizes the 𝜑𝑖 matrix into
𝐶𝑖 ×𝐻𝑖 ×𝑊𝑖.

3.4. Relighting
Relighting is based on a conventional rendering
pipeline on the 3D model recovered from the depth
image. The world coordinates of the pixel points are
computed directly. We use the most basic Laplace
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Figure 2: RGBD image inpainting network.

smoothing algorithm to smooth the model. The
lightmap is baked directly on Unity3D and used for
rendering.

3.4.1. Mesh Model Construction

We use the basic conversion from a depth image
to a 3D mesh model. In other words, the world
coordinates of the pixel points are computed di-
rectly from a depth image. Since the input is a
single 𝑊 × 𝐻 image only, camera parameters are
not available. Therefore, we set a virtual viewing
angle 𝛼 and calculates the virtual focal distance
𝑓 by 𝑓 = 𝑊

2 𝑐𝑜𝑡
𝛼
2 . In practice, because of this ba-

sic construction method, there is no change in the
model UVs and the model UV mapping, which is
useful for our relighting in the next step.

We use the Laplace smoothing algorithm. The al-
gorithm directly shifts the vertex positions without
destroying the UVs of the model. The triangle mesh
is centered at a vertex 𝑃 and its adjacent vertices
𝑃1....𝑃𝑛−1 and all of its edges. More formally, the
smoothing operation for each vertex 𝑃 is as follows.

𝑈(𝑃 ) = 1
𝑛

𝑛∑︁
𝑖=1

𝐴𝑑𝑗𝑖(𝑃 ),

where 𝑛 is the number of vertices adjacent to a
vertex 𝑃 , 𝐴𝑑𝑗𝑖(𝑃 ) is the 𝑖-th adjacent vertex, and
𝑈(𝑃 ) is the new position of the vertex 𝑃 .

3.4.2. Light Map Generation

The implementation of relighting in the proposed
method is mainly based on the generation of
lightmaps. When the lighting of the model is
changed, the lightmap of the corresponding lighting
is generated and displayed. We bake a lightmap
directly on Unity3D.

Enlighten simplifies the rendering equation by
the following iterative formula

𝐵𝑖 = 𝐿𝑖 + 𝜌𝑖

𝑛∑︁
𝑗=1

𝐹𝑖𝑗𝐿𝑗

where 𝐵𝑖 is the final light at a point 𝑖, 𝐿𝑖 is the
light at the point 𝑖 itself, the bounce coefficient of
the light between the two clusters is determined by
𝐹𝑖𝑗 , and 𝐿𝑗 is the light at a point 𝑗, and 𝜌𝑖 denotes
the material property. This is why Enlighten can
support changing the light source while leaving the
scene objects unchanged.

3.4.3. Optional Processing

Light from strong sources, such as outdoor sunlight,
produces distinct cast shadows. If the cast shadows
in the original image are left as are, it may look
strange due to inconsistencies with the cast shad-
ows after relighting. Therefore, it is necessary to
remove the shadows from the input image. We com-
bine the Triple-cooperative Video Shadow Detec-
tion (ViSha [26]) and Stacked Generative Adversar-
ial Networks (STCGAN [27]) for shadow detection
and removal.

Although the sky in an image should be at infin-
ity, the shape of the sky may be reconstructed by
depth estimation. Such sky shapes cause negative
effects when relighting. Therefore, removing the sky
is an additional necessary process in outdoor scenes.
To remove the sky, we first apply Pyramid Scene
Parsing Network [28] to the RGB image to perform
semantic segmentation. Next, pixels labeled as sky
are removed and relighting is performed withoug the
influence of the sky. After that, the sky area is com-
posited with either the original sky or, if necessary,
a virtual sky generated by computer graphics.

Albedo maps primarily reflect the texture and
color of the model and are often referred to as diffuse



reflectance maps. The albedo maps defines the color
of the diffuse light. Albedo maps are estimated to
effectively remove the effect of light from the original
image. For the estimation of albedo and original
illumination, we use InverseRenderNet [29].

4. Evaluation
To demonstrate the effectiveness, we first evaluate
the performance of our RGBD inpainting network.
Next, we show the results of the proposed method
that combines image inpainting and relighting, us-
ing indoor and outdoor scenes constructed with
computer graphics. Finally, we investigate the im-
pact of optional processing: shadow removal, sky
removal, and albedo estimation.

4.1. Training for RGBD Image Inpainting
We used the Microsoft Common Objects in Con-
text (COCO) dataset to train the network on the
irregular mask dataset provided by Liu et al. [30].
Especially we used the 2015 release COCO dataset,
which contains a total of 165,482 training images,
81,208 validation images, and 81,434 test images.
Since the dataset does not contain depth images,
we estimated depth images from RGB images by
MegaDepth [23] to obtain RGBD images and used
them as the ground truth. For the mask dataset,
24,866 random datasets from the test dataset were
used for training.

Some of the results are shown in Fig. 3. The
results for the first and second row images are qual-
itatively good, while the edges are slightly blurred
when compared to the ground truth. On the other
hand, for the image in the third row, there is a
relatively large missing region around the boundary
where the two persons overlap, resulting in gener-
ating an unnatural texture. Based on these results,
the trained network can produce good results in
relatively simple cases where the background of the
target to be removed is on the same object. How-
ever, the performance became worse in scenes where
multiple objects overlap in the background of the
target.

4.2. Inpainting and Relighting in Indoor
Scenes

Figure 4 shows the comparison of the RGBD-
inpainted result image with the ground truth image
for an indoor scene. For the inpainting part, the
lamp on the right of the image was deleted in the
scene. By comparing the RGB images of Fig. 4(a)

�source_��m �source_� ��4 ���m�_��m ���m�_�

Figure 3: Results of RGBD image inpainting.
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Figure 4: Result of RGBD image inpainting.

and Fig. 4(c), we can clearly see that the lamp
was removed and the area was successfully filled
with the bookshelf and wall texture in the back. In
the depth map, we can also see that the lamp was
successfully removed. Note that the depth differs
significantly between the resulting image and the
ground truth even outside of the target region be-
cause the depth in the input image was estimated
using MegaDepth and that in the ground truth was
created by computer graphics.

For the inpainted result, we added a yellow point
light source at the location of another lamp on the
left side of the image. We can see in the resulting
image (Fig. 5(b)) that the shadow of the fireplace
is projected onto the wall on the right, and the
lighting of the black sofa changes on the left of the
image. Comparing the result with the ground truth
(Fig. 5(c)), we can see that the shadow does not show
the shape of the object well. This result is because
the shadow projection depends on the estimated
depth, but the accuracy of depth estimation from
a single image is not very high. However, the cast
shadow is adequately represented to the extent that
the added light source position can be seen from
the image.
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Figure 5: Result of relighting.

4.3. Inpainting and Relighting In Outdoor
Scenes

Figure 6 compares the RGBD-inpainted result im-
age with the ground truth image for an outdoor
scene. For the inpainting part, the street lights
along the roadside were deleted in the outdoor scene.
Here, we also marked some shadows as target re-
gions for inpainting. The result should be compared
with the ground truth as shown in Fig. 6. By com-
paring the RGB images of Fig. 6(a) and Fig. 6(c),
we can clearly see that the street light was removed,
and the area was successfully filled with the red
building texture in the back. The depth map was
also naturally inpainted to match the building wall
shape.

For relighting, we removed the sky area by the
sky mask and added a virtual sky to represent am-
bient light in Fig. 7. The impact of sky removal
is discussed in the next section. Because sunlight
can be seen as the only light source during the day
in outdoor scenes, relighting is done primarily to
redirect sunlight. In Fig. 7(a), by the shadow of the
red building on the right, we can see that the sun
is shining from almost directly above. The first row
of Fig. 7(c) shows the result when the position of
the sun was moved to the back of the red building.
We can see that the shadow of the red building has
become longer. The cast shadow covers the whole
road in front of the red building. The second row
of Fig. 7(c) shows the image in which the scene is
illuminated by dark ambient light and city lights
such as street lamps and vending machines in the
evening and at night. The sky is the virtual one
created by computer graphics. This way, various
light source settings can convert a scene from day
to evening or night.

Finally, we explain the addition of point lights.
When adding a light source, the light source is not
added directly to the image but to the generated
model. For example, if we want to illuminate a
street light, we find the position of the street light
in the model and insert a point light source at that
position. The characteristics and position of the

light source can be defined freely.
As noted in the indoor scene, the estimated

depths and their ground truth are different. Thus,
the positions of the additional light sources will
be completely different from their positions in the
ground truth scene. In the outdoor scene, as shown
in Fig. 8, the positions are also different. Therefore,
we added the light sources in different positions
between the estimated scenes and the ground truth
but used the same parameters for the corresponding
light sources.

4.4. Advantages of Optional Processing
Several optional processes can improve the quality
of the lighting results. This section investigates the
impact of removing cast shadows and sky from the
original image and estimating albedo and illumina-
tion.

4.4.1. Shadow Removal

First, we discuss the performance of shadow removal.
Experiments show that STCGAN [27] performs rel-
atively well in removing shadows but has significant
problems in shadow detection. On the other hand,
ViSha [26] is superior to the STCGAN method for
detecting a wide range of dark areas of an image
as shadows. Therefore, we used ViSha for shadow
detection and STCGAN for removal.

The removal results are shown in Fig. 9. From the
figure, we can see that cast shadows are successfully
removed from the photographed image. The results
show that the shadow removal algorithm could ef-
fectively remove shadows automatically. However,
the algorithm has some limitations. For example,
the shadow removal algorithm used in this study,
which combines ViSha and STCGAN, requires the
image to be resized to a 256 x 256 image before
feeding it into the network for calculation. As a
result, the final output image has a lower resolution
than the original image. Another problem is that
the overall color of the image is slightly altered as
cast shadows are removed.

4.4.2. Sky Removal

Figure 10 shows the results of sky detection by
PSPNet [28]. We can confirm that the sky areas are
successfully detected from the results. Using one of
the results, we examined the effect of sky removal
on relighting. Figure 11 compares results relit with
and without sky removal. Without sky removal, the
depth estimation generated shapes in the sky as
well, resulting in casting shadows in various places,



(a) Input (b) Masked (c) Inpainted (d) GT

Figure 6: Comparison of inpainting results and their ground truth in outdoor scene.

(a) Input (b) Sky mask (c) Relit (d) GT

Figure 7: Comparison of relighting results and their ground truth in outdoor scene.

(a) On the estimated model (b) On the GT model

Figure 8: Comparison of relighting with addtional lights
on the estimated model and the ground truth model

as shown in Fig. 11(b). On the other hand, the
unnatural shadow does not appear as in (b) when
the shadow is removed. It should be noted that a
virtual sky is needed instead of the real sky in the
image.

4.4.3. Albedo Map Estimation

Estimating the albedo map on the image after re-
moving shadows is also effective in keeping the
texture and color of the same material relatively
constant, as shown in Fig. 12. Figure 13 shows a
comparison of the results of rendering the scene
using the estimated albedo or original image under
different light source conditions.

The results show that the relit image using the
estimated albedo map is blurred since the map has
lost some texture detail. On the other hand, better
results could be obtained by directly relighting the
original image. This result is because the estimated
albedo map is not accurate enough. For example,
as shown in Fig. 12, the right side of a building
is always darker than the front side. Although it
is expected that accurate albedo estimation would



(a) Origin images (b) Shadow removed

Figure 9: Shadow removal using ViSha and STCGAN.

(a) Origin images (b) Sky masks

Figure 10: Results of sky detection by PSPNet.

(a) Origin images (b) Relit w/ sky (c) Relit w/o sky

Figure 11: Relighting results with origin sky and without
origin sky.

positively impact relighting, we confirmed that cur-
rent albedo estimation is often inadequate for this
task.

 Origin images  Albedo maps Illumination

(a) With original shadow

 Shadow removal  Albedo maps Illumination

(b) With shadow removal

Figure 12: Results of albedo maps estimation.

(a) Origin images (b) Relit w/ albedo (c) W/o albedo

Figure 13: Comparison of relit results with albedo maps.

5. Limitations
In this work, image relighting is mainly based on
a simple rendering pipeline process. Compared to
neural rendering, it has a high degree of control,
such that the lighting effects can be largely con-
trolled by knowing the scene geometry. However,
such conventional rendering requires a great deal of
prior intelligence to guide the computation of real-
istic lighting. For example, conditions such as the
smoothness of the material are not considered in this
study. Instead, neural rendering focuses on generat-
ing and processing shadow maps to achieve lighting
effects, which significantly reduces the amount of
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Figure 14: Failure cases of our image inpainting network.

prior information input.
Furthermore, since the estimated depth map is

directly converted to a model in this study, the
computation of shadows is inaccurate. For example,
shadows of the same thickness as the object are not
generated. However, this can be solved by using a
neural network for shadow map generation due to
its nature [31].

For inpainting, the network still has limitations.
In some results, complex textured areas cannot be
inpainted well. Also, the network cannot inpaint
well when large areas are lost as shown in Fig. 14.

6. Conclusion
We proposed a method to relight the scene in an
image while removing unwanted objects. The input
RGB image and the mask image created by the user
are the input to our system. First, the depth image
is generated by using a neural network. Next, the
RGBD is masked with the mask image and is in-
painted using our proposed neural network. A mesh
model is reconstructed from the inpainted depth im-
age for the relighting process. In some scenes, cast
shadow removal, sky region removal, and albedo
estimation are selectively performed to suppress the
effects of existing light sources. Through these pro-
cesses, various types of relighting can be achieved
from a single photograph while excluding the color
and shape of unwanted objects. Future work in-
cludes improving the performance of inpainting and
considering the use of neural network-based meth-
ods for relighting.
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