
Towards Cost-based Optimizations of Twig
Content-based Queries

Michal Krátký and Radim Bača

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

michal.kratky@vsb.cz

Towards Cost-based Optimizations of Twig
Content-based Queries

Michal Krátký, Radim Bača

Department of Computer Science, Technical University of Ostrava
Czech Republic

{michal.kratky,radim.baca}@vsb.cz

Extended Abstract

In recent years, many approaches to indexing XML data have appeared. These
approaches attempt to process XML queries efficiently and sufficient query plans
are built for this purpose. Some effort has been expended in the optimization of
XML query processing [20].

There are not many works that take cost-based query optimizations into
account. In work [20], we find some cost-based considerations, however, they
work only with one type of structural join and one type of underlying index.
There are works depicted two types of query processing as well [10, 17]. The first
type applies an element-based index, the second type applies a navigation in a
persistent DOM-like structure. In our work, we propose usage of two path-based
indices that provide significant potential for a query optimization based on a
cost-based join selection.

We can identify some classes of approaches for efficient processing of XML
queries. The first class includes approaches based on shredding [18] (storing an
XML document in many relations, where each element name has its own rela-
tion). These approaches work well only on specific documents with a defined
XML schema. The second class of approaches [15, 21, 1] provides an element-
based decomposition of an XML document. These methods usually work with a
labeling scheme and they differ mainly in various join algorithms.

We identify two main types of join algorithms. The first join type works with
sorted node sets merged by a type of holistic join [3, 4]. This kind of structural
join is optimal when a small number of nodes is rejected during the structural
join. In this case, nodes are retrieved in a very efficient way with a small number
of I/O. In our article, this kind of join operation is called a merge join. Another
type of join algorithm is based on context nodes [9], where each location step is
processed using context nodes from the previous step. We say that this approach
utilizes a previously processed location step and uses the nodes for an efficient
search of nodes in the next step. If there is a large number of rejected nodes in
the join operation, this kind of join is efficient. In our article, this kind of join
operation is called a progressive join.

There are approaches that decompose XML documents according to the node
path, as opposed to the node name. Handling the paths during a query processing

V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 71–73, ISBN 978-80-248-1746-0.



72 Michal Krátký and Radim Bača

provides some advantages. If the a/b/c//e/f/g simple-path query is considered,
then the query is evaluated by five structural joins. The evaluation may be very
inefficient compared to path-based approaches [16, 19, 6, 14, 13, 11] and summa-
rizing approaches [8, 7], even when an additional optimization of structural joins
is used [4, 3, 12]. The path-based approaches perform these queries by finding
matched labelled paths – a relatively simple task – and then finding relevant
nodes with a single index search [16]. Since there is a significantly lower number
of labelled paths than nodes in an XML document, the search can be performed
very quickly. Supposing there is a set of matched labelled paths, we finish the
simple-path query process by finding nodes corresponding to those labelled paths
in an inverted list. In work [5], we find a comparison of different decomposition
approaches and a labelled-path approach (Prefix-Path streaming in this case)
has good experimental results.

In the case of path-based approaches, we can observe the same issue as in
the case of element-based approaches. When we join two path results, we can
perform it with two different types of joins. One join is based on an inverted
index and the second one utilizes the previous query path result.

Chen et al. in [6] compares two path-based approaches to processing twig
queries. Whereas the first index, ROOTPATHS index, is able to process twig
queries only with the merge join, the second index, DATAPATHS index, is able
to process a query path by utilizing previous query path results. Consequently,
DATAPATHS index applies a progressive join algorithm. These indices can out-
perform each other depending on the query. However, there is no general pro-
posal that can help to decide that the index should be used to achieve the best
query evaluation performance. In works [13, 14], we have introduced an index to
provide these join operations.

In work [2], we introduce a simple, cost-based, optimization technique for a
join selection during a query evaluation. This technique joins the advantages of
a simple path query processing based on inverted lists and usage of previous
results for a twig query processing. We show that the knowledge of the result
size can help to choose a good query evaluation strategy. We utilize advantages
of existing, state-of-the-art, path-based approaches, such as [16, 19, 6], to achieve
an optimal query performance.

References

1. S. Al-Khalifa, H. V. Jagadish, and N. Koudas. Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. In Proceedings of International Conference
on Data Engineering, ICDE 2002. IEEE Computer Society, 2002.

2. R. Bača and M. Krátký. A Cost-based Join Selection for XML Twig Content-
based Queries. In Proceedings of the Third International Workshop on Database
Technologies for Handling XML Information on the Web, DataX 2008, EDBT,
Nantes, France. Accepted, to appear in ACM DL, 2008.

3. N. Bruno, D. Srivastava, and N. Koudas. Holistic Twig Joins: Optimal XML
Pattern Matching. In Proceedings of the ACM International Conference on Man-
agement of Data, SIGMOD 2002, pages 310–321. ACM Press, 2002.



Towards Cost-based Optimizations of Twig Content-based Queries 73

4. S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S. Candan.
Twig2Stack: Bottom-up Processing of Generalized-tree-pattern Queries Over XML
documents. In Proceedings of International Conference on Very Large Databases,
VLDB 2006, pages 283–294. VLDB Endowment, 2006.

5. T. Chen, J. Lu, and T. Ling. On Boosting Holism in XML Twig Pattern Match-
ing Using Structural Indexing Techniques. Proceedings of the ACM International
Conference on Management of Data, SIGMOD 2005, pages 455–466, 2005.

6. Z. Chen, G. Korn, F. Koudas, N. Shanmugasundaram, and J. Srivastava. Index
Structures for Matching XML Twigs Using Relational Query Processors. In Pro-
ceedings of ICDE 2005, pages 1273–1273. IEEE Computer Society, 2005.

7. C.-W. Chung, J.-K. Min, and K. Shim. APEX: an Adaptive Path Index for XML
Data. In Proceedings of the ACM International Conference on Management of
Data, SIGMOD 2002, pages 121–132, New York, NY, USA, 2002. ACM Press.

8. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast
Index for Semistructured Data. In Proceedings of the 27th International Conference
on Very Large Databases, VLDB 2001, pages 341–350, 2001.

9. T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS
to Watch Its (Axis) Steps. In Proceedings of the 29th, International Conference on
Very Large Databases, VLDB 2003, pages 524–535. VLDB Endowment, 2003.

10. A. Halverson and et al. Mixed Mode XML Query Processing. In Proceedings of
VLDB 2003, pages 225–236. VLDB Endowment, 2003.

11. W. H. Hanyu Li, Mong Li Lee. A Path-Based Labeling Scheme for Efficient Struc-
tural Join. In Proceedings of XSym 2005, pages 34 – 48. Springer–Verlag, 2005.

12. H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic twig joins on indexed XML docu-
ments. Proceedings of VLDB 2003, pages 273–284, 2003.

13. M. Krátký, R. Bača, and V. Snášel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Proceedings of DEXA 2007,
volume LNCS 4653/2007. Springer–Verlag, 2007.

14. M. Krátký, J. Pokorný, and V. Snášel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Current Trends in Database
Technology, EDBT 2004, volume LNCS 3268/2004. Springer–Verlag, 2004.

15. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-
sions. In Proceedings of VLDB 2001, 2001.

16. T. S. M. Yoshikawa, T.Amagasa and S. Uemura. XRel: a Path-based Approach
to Storage and Retrieval of XML Documents Using Relational Databases. ACM
Trans. Inter. Tech., 1(1):110–141, 2001.

17. N. May, M. Brantner, A. Böhm, C.-C. Kanne, and G. Moerkotte. Index vs. Nav-
igation in XPath Evaluation. In Proceedings of Database and XML Technologies,
XSym 2006, volume LNCS 4156/2006, pages 16–30. Springer–Verlag, 2006.

18. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. DeWitt, and J. Naughton.
Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties. In Proceedings of the 25th International Conference on Very Large Databases,
VLDB 1999. Edinburgh, Scotland, UK, pages 302–314. Morgan Kaufmann, 1999.

19. S. S.Prakas and S.Madria. SUCXENT: An Efficient Path-Based Approach to
Store and Query XML Documents. In Proceedings of DEXA 2004, volume LNCS
3180/2004, pages 285–295. Springer-Verlag, 2004.

20. Y. Wu, J. M. Patel, and H. Jagadish. Structural Join Order Selection for XML
Query Optimization. In Proceedings of ICDE 2003. IEEE CS, 2003.

21. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Supporting
Containment Queries in Relational Database Management Systems. In Proceedings
of ACM SIGMOD 2001, pages 425–436, New York, USA, 2001. ACM Press.


