
Conceptual Model Based Normalization of XML
Views?

Martin Nečaský

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

martin.necasky@mff.cuni.cz

Conceptual Model Based Normalization of XML
Views?

Martin Necasky

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University

martin.necasky@mff.cuni.cz, http://www.necasky.net

Abstract. As the popularity of XML as a format for data representation
grows the need for storing XML data in an effective way grows as well.
Recent research has provide us with effective solutions based on storing
XML data into relational databases and with new technologies based on
storing XML data in the native form. However, design of XML databases
has not been studied sufficiently yet. In this paper, we suppose a set of
XML schemes that describe XML representation of our data in several
types of XML documents. We show that we can not usually store the
data directly in this representation because it can contain redundancies.
To design an optimal database schema we therefore need to locate these
redundancies and eliminate them. We describe two types of redundancies
in XML data in this paper and show how to utilize a conceptual schema
of the XML schemes to locate such redundancies. We also show how to
normalize the XML schemes to eliminate these redundancies.

Keywords: conceptual modeling, XML schema, normalization

1 Introduction

XML has become a popular format for data representation. Mainly it is be-
cause it is a variable format that is easy-to-use for a broad range of developers.
Enterprises usually utilize several applications supporting different users for per-
forming different business processes. Even though these applications share the
same data (about customers, products, etc.), each of them requires the processed
data to be represented in different forms suitable for the purposes of the appli-
cation. XML proved itself as a suitable format for such various representations.
For example, a sales reporting application for product managers represents cus-
tomer’s data in another type of XML documents than a web service for receiving
and processing purchase orders from customers.

We need to store the data shared by the applications into a database and
provide each application with the data represented in the required type or types
? This research was supported by the National programme of research (Information

society project 1ET100300419) and by Grant Agency of Charles University (GAUK),
grant number 204-10/257190

V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 13–24, ISBN 978-80-248-1746-0.



14 Martin Nečaský
2

of XML documents. We therefore comprehend these types of XML documents as
XML views on the data stored in the database. These XML views are described
by XML schemes. Given a set of such XML schemes the problem is how to
design an optimal schema of the shared database. Even though we can use a
native XML database to store the data in an XML representation, we can not
usually store it directly as represented by the XML views. It is because the
XML views can contain redundancies which means that the same data can be
duplicated. Such a duplication means not only inefficient storage space usage
but also problems when manipulating the data. We therefore need to identify
these redundancies and eliminate them. For example, we can have an XML
schema of an XML view for purchase orders where data about one product can
be repeated in different purchase orders. This is a redundancy that should be
eliminated. After the identification and elimination of all redundancies we get
a set of normalized XML schemes. The situation is demonstrated in Figure 1.
The idea is same as in the case of designing a relational database schema where
we eliminate redundancies by modifying our schemes to meet so called normal
forms such as 2NF, 3NF, or 4NF. This process is called normalization.

Fig. 1. Architecture

We can use the normalized XML schemes to design a schema of the database
where we store the data shared by the applications. If our database is a native
XML database (NXDB) we can directly use these normalized XML schemes as
a NXDB schema. If our database is an object-relational database (ORDB) or
a combination of ORDB and NXDB the normalized XML schemes are a good
starting point to design the internal database schema. For example, we can map
the normalized XML schemes into an ORDB schema. We can also combine both
approaches and map structured parts of normalized XML schemes into an ORDB
schema and use their unstructured parts or parts with a complex hierarchical
structure as a schema of a NXDB. This situation is demonstrated in Figure 1.

In these cases, the database provides us the data in the form of XML docu-
ments with the structure given by the normalized XML schemes. However, we
need to deliver the data to our applications in the form of the XML views. There-



Conceptual Model Based Normalization of XML Views 15
3

fore, we moreover need a set of XQuery queries that transform the data between
the normalized XML schemes representation and XML views. These queries can
be derived automatically during the normalization process.

In this paper, we study normalization of a set of XML schemes as demon-
strated in Figure 1. The other parts of the architecture displayed in the figure
are out of the scope of this paper. Methods for mapping between XML and
object-relational representations were studied for example in [5]. Derivation of
the XQuery queries to reconstruct XML views is the subject of our further re-
search. To normalize XML schemes we can apply the normal forms for relational
data. Even though these normal forms should be considered when normaliz-
ing XML schemes we do not discuss them in this paper. We are interested in
redundancies caused by hierarchical structure of XML schemes.

Related work. Several types of redundancies caused by hierarchical struc-
ture of XML schemes were also studied by other authors such as [1], [4]. Their
results are based on functional dependencies in XML documents. In [3], authors
show how to normalize XML schemes modeled in a richer model for XML data
called ORA-SS. ORA-SS model is more a conceptual model then a logical XML
model allowing to specify several integrity constraints for XML data. Authors
show how to normalize XML schemes modeled as ORA-SS schemes using car-
dinality constraints. The advantage of this approach is that it is easier for the
designer to specify cardinality constraints then discover functional dependencies
in the hierarchical structure of the XML schema.

These approaches lead to good results when normalizing one XML schema.
However, we need to normalize a set of XML schemes that can moreover rep-
resent the same data in different hierarchical structures. Discovering functional
dependencies in such a set of XML schemes can be hard for the designer because
he can be required to specify the same functional dependencies repeatedly for
different XML schemes representing the same concept. Moreover, a concept rep-
resented in more different XML schemes also leads to redundancies as we show
later in this paper. Such redundancies can not be identified and eliminated on the
base of functional dependencies. Similar problems occur when we model XML
schemes as ORA-SS schemes because each XML schema is modeled separately.

Contributions. In this paper we show how to normalize a set of XML
schemes modeled at the conceptual level using a conceptual model for XML data
called XSEM [6]. The advantage of this model is that the designer designs an
overall non-hierarchical conceptual schema of the domain and derives the XML
schemes of the required XML views from this overall conceptual schema. This al-
lows to identify concepts that are represented in different XML views. Moreover,
the designer is not required to specify functional dependencies or cardinality con-
straints repeatedly for different XML schemes. Instead, normalization is based
on cardinality constraints specified in the overall conceptual schema where each
cardinality constraint is specified only once.

Our approach can be applied in the systems where a large number of different
XML views occurs and one or more databases to store the data in an effective
way exits. In real systems, it is usually not required to fully normalize data



16 Martin Nečaský
4

[2]. Following this requirement, it is not necessary to apply our approach to
normalize the XML data fully to achieve better performance when reconstructing
the views. The design of the normalized database schema is strongly influenced
by the expected usage of data.

The paper is organized as follows. Section 1 is an introduction to the paper.
In Section 2 we describe the XSEM model briefly. In Section 3 we describe two
types of redundancies in XML data and we show how to eliminate them using
the information from a conceptual schema. We conclude in Section 4.

2 XSEM Model

XSEM divides the conceptual modeling process to two levels. At the first level,
we design an overall non-hierarchical conceptual schema of our domain using
a part of XSEM called XSEM-ER. At the second level, we design hierarchical
schemes as views on the XSEM-ER schema using a part of XSEM called XSEM-
H. Each XSEM-H view schema describes an XML schema at the conceptual
level. We briefly describe both parts of XSEM in this section. For a full and
formal description of XSEM see [6].

2.1 XSEM-ER

XSEM-ER builds on an extension of the classical E-R model called HERM [8].
It allows to model real-world objects and relationships between them with entity
types and relationship types and provides designers with extending constructs
for modeling special XML features like irregular structure, ordering, and mixed
content. In XSEM-ER, it is not important how the modeled data is organized in
hierarchical XML documents. We show an example XSEM-ER schema modeling
a small part of a business domain in Figure 2.

Fig. 2. XSEM-ER Schema for Business Company

The basic modeling constructs are strong and weak entity type, and rela-
tionship type. These constructs are known from the classical E-R model. Figure



Conceptual Model Based Normalization of XML Views 17
5

2 shows strong entity types such as Customer and relationship types such as
Produce with participants Product and Producer. It also shows weak entity
types such as Order with determinants Customer, Shop, and Product.

There are two types of extending constructs. Data node types are used for
modeling unstructured text parts of the data that can be mixed with structured
parts. They are similar to attributes of entity or relationship types. However,
they are not encapsulated directly in entity or relationship types but only as-
signed to them and grouped with another concepts in the schema. Data node
types are displayed as ellipses. Figure 2 shows a data node type description. It
models descriptions of products. We need to model that a description of a prod-
uct can be mixed with references to other products and to producers. Therefore,
we do not model description as an attribute of the entity type Product but as a
data node type.

Cluster types are used for grouping different entity, relationship, and data
node types. They are used to model irregular or mixed content at the conceptual
level. We display cluster types as circles with inner +. There are component and
connection cluster types. We use component cluster types for creating groups of
two or more entity types. Such a group can then be assigned as a participant to
a relationship type or determinant to a weak entity type. For example, there is a
component cluster type composed of Producer and Product. This cluster type
is assigned as a participant to a relationship type Ref . It models that references
from products to other products and also producers.

Connection cluster types are used for creating groups of two or more concepts
having the same entity type as a common participant or determinant. If there is a
data node type in this group it models structured data mixed with unstructured
data. For example, there is a connection cluster type composed of the data node
type description and the relationship type Ref . It models that a description of
a product is mixed with references to other products and producers.

An XSEM-ER schema does not specify how the data is organized in hierarchi-
cal XML documents. There is one or more possible hierarchical representations
of each component of the schema. For example, we can represent instances of
the weak entity type Order in the hierarchy where we have a list of orders and
for each order we have the respective customer who made the order, ordered
product, and shop where the order was made. We can also require another rep-
resentation described as follows. We want a list of shops. For each shop we want
a list of products ordered in the shop. For each such product we want a list of
orders of the product made in the shop. Finally, for each such order we want the
customer who made the order.

We need to describe such a hierarchical structure in a more formal way. For
this we propose so called hierarchical projections. As an example, we show the
following six hierarchical projections. The projections (H1), (H2), and (H3)
describe the former hierarchical representation of Order. The projections (H4),
(H5), and (H6) describe the other.

Order[Order → Customer] (H1) Order[Shop → Product] (H4)

Order[Order → Product] (H2) OrderShop[Product → Order] (H5)

Order[Order → Shop] (H3) OrderShop,Product[Order → Customer] (H6)



18 Martin Nečaský
6

Formally, a hierarchical projection h of an entity or relationship type T is
an expression TE1,...,Ek

[P → Q] where E1, . . . , Ek, P, Q are determinants or
participants, respectively, of T . It specifies a hierarchy where P (called parent)
is superior to Q (called child). The sequence E1, . . . , Ek is called context and
specifies the context in which the projection is considered. For example, (H6)
specifies a hierarchy where Order is superior to Customer in the context of Shop
and Product.

We also extend the notion of cardinality constraints for hierarchical projec-
tions. For the hierarchical projection h of T , we can specify a cardinality con-
straint for the parent or child, i.e. card(h, P ) = (m,n) or card(h,Q) = (m,n),
respectively. It means that for instances of the components from the context of
h an instance of P (or Q, respectively) can appear in T with m up to n dif-
ferent instances of Q (or P , respectively). For example, a cardinality constraint
card(H6, Customer) = (0, ∗) specifies that for a given shop and product a cus-
tomer can make an arbitrary number of orders of the product in the shop. A
cardinality constraint card(H6, Customer) = (0, 1) specifies that for a given
shop and product a customer can make zero or one order of the product in the
shop but not more.

2.2 XSEM-H

An XSEM-H schema models one type of XML documents. It is a view on a part
of the XSEM-ER schema and specifies how the data described by this part of
the XSEM-ER schema is represented in the modeled type of XML documents.
It does not describe any further semantics of the data. We can derive several
XSEM-H view schemes from the same part of the XSEM-ER schema. Therefore,
they are not derived automatically but by the designer according to the required
structure of the XML documents. Figure 3 shows three XSEM-H view schemes.
For example, CatalogueV iew describes the structure of XML documents with
catalogue data.

An XSEM-H view schema is a set of trees with labeled oriented edges. Nodes
in the view schema represent entity types, relationship types, and data node
types. For clearness, we denote the nodes by UT,n where T is the type rep-
resented by the node and n is the counter for the nodes in the view schema
representing T . For example, OrderV iew contains a node UOrder representing
the weak entity type Order from the XSEM-ER schema. Edges in XSEM-H view
schemes represent hierarchical projections of the types represented by the nodes.
For example, the edge going from UOrder to UCustomer in OrderV iew represents
the hierarchical projection H1, i.e. Order[Order → Customer]. Nodes can have
assigned labels displayed above the nodes. These labels are names of elements
that are used to represent the nodes in the modeled type of XML documents. For
example, UOrder in OrderV iew has assigned a label order. It means that orders
are represented in the modeled type of XML documents by elements order.

There are also several types of auxiliary nodes in XSEM-H view schemes.
There are cluster nodes representing cluster types from the XSEM-ER schema.



Conceptual Model Based Normalization of XML Views 19
7

Fig. 3. XSEM-H view schemes for business company

They are displayed in the same way, i.e. as circles with an inner ’+’ symbol.
Further there are so called containers that represent XML elements that group
two or more different concepts but not have any equivalent at the conceptual level
in the XSEM-ER schema. A container is displayed as a narrow rectangle with
its name in the rectangle. For example, Figure 3 shows a container description
assigned to the node UProduct,1. For a more detailed description of modeling
constructs of XSEM-H, we refer to [6].

Each XSEM-H view schema models an XML schema at the conceptual level.
This XML schema can be derived from the XSEM-H view schema automatically
represented in a selected XML schema language. The derivation is straightfor-
ward. However, we do not discuss it in this paper because of the lack of the
space.

3 Normalization

A set of XSEM-H view schemes can lead to redundancies when we represent
our data in the respective types of XML documents. Normalization means to
transform this set of XSEM-H view schemes to another set of XSEM-H view
schemes that describe the same data but do not lead to redundancies. In this
section, we show two types of redundancies and how to normalize XSEM view
schemes that lead to such redundancies. Our goal is to modify the structure
of the XSEM-H view schemes as little as possible during the normalization.
We call the normalized XSEM-H view schemes XSEM-H repository schemes to
distinguish them from the original ones.
Local redundancies. The first type of redundancies is caused by hierarchical pro-
jections with the maximal cardinality of their child greater then 1. In such case,



20 Martin Nečaský
8

an instance of the child can be assigned to more different instances of the parent
and therefore repeated in the respective hierarchical structure. Assume for exam-
ple SalesV iew in Figure 3. There is an edge going from URegion,1 to UShop that
represents a hierarchical projection SInReg[Region → Shop]. The cardinality of
Shop in the projection is (1, 1). Therefore, an instance of Shop is assigned to one
and only one instance of Region and is therefore not repeated in the respective
hierarchical structure. On the other hand, the edge going from UShop to UProduct

represents a hierarchical projection Order[Shop → Product] and the cardinality
of Product in this projection is (0, ∗). It means that an instance of Product can
be repeated in zero or more instances of Shop.

On the base of this observation we define the first type of redundancies called
local redundancies.

Definition 1. Let U be a non-root node in an XSEM-H view schema. Let U
represent a type P . Let e be an edge going to U and representing a hierarchical
projection TT1,...,Tk−1 [Tk → P ]. Let the maximal cardinality of P in the hierar-
chical projection be greater than 1. If U represents one or more attributes of T
or there is an edge going from U and representing a hierarchical projection with
an empty context then we say that U leads to local redundancies.

Assume that a node U , that represents a type P , leads to local redundancies.
To eliminate these redundancies we normalize U by dividing it to two parts.
The first part is called context-independent part of U and is composed of the at-
tributes represented by U and edges going from U and representing hierarchical
projections with an empty context. The second part is called context-dependent
part of U and is composed of the edges going from U and representing hierar-
chical projections with a non-empty context. If an instance p of P is repeated at
the location specified by U its content corresponding to the context-independent
part of U is repeated as well. The content of p corresponding to the context-
dependent part of U is different for each representation of p because it depends
on the context. The normalization of U means to move its context-independent
part to another node V that represents P as well but does not lead to local
redundancies. The instance p of P is repeated at the location specified by V
only once and its content corresponding to the context-independent part of U is
therefore repeated only once as well. If such a node V does not exist we create a
new XSEM-H repository schema and create V as its root node. The created node
does not lead local redundancies because it is a root node. We call V storage
node for P .

To reconstruct the original view we must be able to join U with its context-
independent part moved to the storage node V . Joins are usually performed
using keys and foreign keys. However, we did not show how to model keys in
XSEM-ER schemes in this paper. We discussed this problem in [7]. The proposed
keys can be used for modeling general XML keys that can be rather complex.
This type of general keys is not however suitable for our purposes in this paper.
Instead, we use a much simpler mechanism of artificial keys. We add an artificial
key attribute oid to V and foreign key oid to U referencing oid in V . When
reconstructing the original U , we join the normalized U with V using this pair.



Conceptual Model Based Normalization of XML Views 21
9

Fig. 4. XSEM-H repository schemes without nodes leading to local redundancies

Figure 3 shows nodes that lead to local redundancies in a bold line. Fig-
ure 4 shows the result of their elimination. For example, the node UProduct,1

in CatalogueV iew leads to local redundancies. It is because the edge going to
the node represents a hierarchical projection Classify[Category → Product]
and the maximal cardinality of Product in this projection is ∗. Normalization
of the node means to move its context-independent content to the storage node
for Product. However, all nodes in the XSEM-H view schemes that represent
Product lead to local redundancies and the storage node for Product must be cre-
ated. We therefore create a new XSEM-H repository schema ProductRepository
with a root node UProduct,1 representing Product. This node is a new stor-
age node for Product. We move to this node all the attributes represented by
UProduct,1 in CatalogueV iew and all the edges representing hierarchical projec-
tions without a context, including clusters of edges and containers that contain
these edges. Moreover, we add an artificial key attribute oid to UProduct,1 in
ProductRepository and foreign key attribute oid to UProduct,1 in Catalogue−
Repository. The result of the normalization is that we store Product instances
according to UProduct,1 in ProductRepository. At the location specified by
UProduct,1 in CatalogueRepository we do not repeat whole Product instances
but only their values of the artificial foreign key oid. To reconstruct the original
view we use this foreign key.

The other nodes representing Product in the XSEM-H view schemes lead
to local redundancies as well and are therefore normalized in the same way.
We move the context-independent contents of these nodes to the previously
created storage node UProduct,1 in ProductRepository. For the node UProduct

in OrderV iew we move all its attributes. For the node UProduct in SalesV iew



22 Martin Nečaský
10

we move all its attributes and the edge going to UProducer,2. The edge going to
UOrder is in the context-dependent part of UProduct and is therefore not moved.

Assume further UShop in OrderV iew that also leads to local redundancies.
To normalize it we do not need to create a storage node for Shop as in the
previous case with Product. There is the node UShop in SalesV iew that does
not lead to local redundancies and each Shop instance is represented at this
location. We can therefore use it as the storage node for Shop and we move here
the context-independent content of UShop in OrderV iew.
Structural redundancies. The second type of redundancies in XSEM-H view
schemes we discuss in this paper is caused by representing an entity or rela-
tionship type P at two or more different locations in XSEM-H view schemes.
In such a case an instance of P can be repeated at two different locations in
the respective XML representations. Assume for example the weak entity type
Order. It is represented in SalesV iew and CustomerV iew as well. After the
elimination of local redundancies we still have Order represented in two XSEM-
H repository schemes SalesRepository and CustomerRepository. It means that
we represent an instance of Order twice in the respective XML representations.
Once according to the former repository and once according to the other. We
call this type of redundancy structural redundancy.

Definition 2. We say that an entity or relationship type leads to a structural
redundancies if it is represented at two or more different locations in XSEM-H
view schemes.

Assume that an entity or relationship type P leads to structural redundan-
cies. To eliminate these redundancies we select one of its representations as
primary and the others as secondary. We will use the primary representation
for representing instances of P and the secondary representations will be re-
constructed by XQuery queries. The selection of the primary representation is
made by the designer. He can decide on the base of the usage of the represen-
tations. The most used representation should be selected as the primary one.
The reader could argue that some more explicit guidelines to select the primary
representation should be given. These guidelines could be based on statistics of
the usage of the original views combined with the price of the reconstruction of
the secondary representations. However, these guidelines overcome the scope of
this paper.

Figure 4 shows XSEM-H repository schemes where nodes leading to local
redundancies were normalized. However, there are several nodes that lead to
structural redundancies and we need to normalize them. Figure 5 shows the
resulting set of XSEM-H repository schemes after their normalization. Firstly,
the relationship type SInRegion is represented in ShopRepository twice. The
former representation is composed of the nodes URegion,1 and UShop and the edge
connecting them. The other representation is composed of UShop and URegion,2

and the edge connecting them. It means that SInRegion leads to structural
redundancies. In other words each SInRegion instance is represented in two
different locations. To eliminate this structural redundancies we must select one



Conceptual Model Based Normalization of XML Views 23
11

Fig. 5. XSEM-H repository schemes without nodes leading to local nor structural
redundancies

of the representation as primary. We select the former representation as primary
because it will be used more frequently then the other and its reconstruction
would be therefore more expensive. The other representation is secondary and
therefore not included in the resulting repository.

Another structural redundancy is the weak entity type Order. It is repre-
sented once in OrderRepository and once in SalesRepository. In both repos-
itories the representation is composed of nodes UOrder, UCustomer, UShop, and
UProduct. We select the representation in OrderRepository as primary. The other
representation is not included in the resulting repository. The removed secondary
representations of SInRegion and Order are not represented in the normalized
XSEM-H repository schemes and must be therefore reconstructed from them
by XQuery queries. These queries can be derived automatically. However, such
derivation is out of the scope of this paper.

4 Conclusion

In this paper we showed how to model a set of XML schemes at the conceptual
level using a conceptual model for XML data called XSEM. This model allows
to model data at two levels. At the first level, an overall conceptual schema of
the data is designed using a part of XSEM called XSEM-ER. At the second
level, a conceptual schema modeling a given XML schema is derived from the
XSEM-ER schema using a part of XSEM called XSEM-H. We further showed
how to normalize a given set of XML schemes modeled by XSEM-H schemes. We
described two types of redundancies caused by hierarchical structure of the XML



24 Martin Nečaský
12

schemes, namely local and structural redundancies and showed how to eliminate
these redundancies by normalization of the XSEM-H schemes. We also showed
that these normalized XML schemes can be used to design a database schema
suitable to store our data without redundancies.

References

1. Arenas, M., Libkin, L.: A Normal Form for XML Documents, in ACM Transactions
on Database Systems (TODS), 29 (2004), pp. 195-232.

2. Balmin, A., Papakonstantinou, Y.: Storing and Querying XML Data Using Denor-
malized Relational Databases, in The VLDB Journal, 14(1), pp. 30-49, 2005.

3. Dobbie, G., Xiaoying, W., Ling, T.W., Lee, M.L.: ORA-SS: An Object-Relationship-
Attribute Model for Semi-Structured Data. TR21/00, Department of Computer
Science, National University of Singapore. December 2000.

4. Lee, M. L., Ling, T. W., Low, W. L.: Designing Functional Dependencies for XML,
in Proceedings of the 8th Conference on Extending Database Technology (EDBT),
Prague, March 2002, pp. 124-141.

5. Mlynkova, I., Pokorny, J.: XML in the World of (Object-)Relational Database Sys-
tems. in Proceedings of the 13th International Conference on Information Systems
Development, Vilnius, Lithuania. Springer Science+Business Media, Inc., 2005. pp.
63-76,

6. Necasky, M.: XSEM - A Conceptual Model for XML. in Proceedings of the 4th Asia-
Pacific Conference on Conceptual Modelling (APCCM2007), Ballarat, Australia.
CRPIT 67. 2007. pp. 37-48.

7. Necasky, M., Pokorny, J. Extending E-R for Modelling XML Keys. in Proceedings
of the 2nd International Conference on Digital Information Management. IEEE
Computer Society. Lyon, France, 2007, pp. 236-241.

8. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer Verlag, Berlin, Germany. 2000.




