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Abstract. In this paper we deal with a particular type of database
systems – native XML database systems. For this category of systems
we discuss potential application of the taDOM locking protocol imple-
mented in a functional update language – XML-λ. By combination of
these theoretical approaches we obtain a solution for querying and up-
dating XML data that can be implemented in a native XML database
system with transaction support. We present an LL(1) translation gram-
mar for transformation of queries written in a functional language into
sequence of Document Object Model API calls.

1 Motivation

Currently, our research group works on development of a native XML database
system that uses XQuery and should also use the XML-λ query language. There-
fore we are interested in properties and interconnections between these two ar-
tifacts. XQuery represents de-facto industrial standard in querying and XML-λ
is a proposal of our group based on simply typed λ-calculus.

In this paper we submit a proposal for transformation of XML-λ statements
into a list of DOM operations with ensured transaction isolation through the
DOM-based locking protocol – taDOM. We plan to use this solution for extend-
ing our native XML database system in the future.

2 Introduction

The crucial property of modern database management systems (DBMS) [11] is
concurrent user access. In this work we discuss it in context of a specific type of
database systems – native XML database systems. Such systems are primarily
used for storing XML data in their original form instead of mapping its structures
into e.g. objects or relations.

We outline an existing locking protocol that was developed for XML data –
taDOM [14] – and use it for a particular functional query and update language –
XML-λ [19, 20]. It is a proposal of a functional framework for querying and
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manipulating XML data. It is established on type system theory and utilizes
simply typed λ-calculus as a base for specification of a query language. This
project is currently in phase of development and in future we plan to include
an XML-λ module into native XML database systems we currently work on –
CellStore [25] and ExDB [1].

The approach we present in this paper is as follows: we transform basic update
operations into standard DOM [24] operations that are supported by taDOM
and so we can introduce transactional behavior into the language. Formally, we
use an LL(1) translation grammar for converting XML-λ expressions to DOM
API method calls.

The main contribution of this paper lies in combining the taDOM locking pro-
tocol and XML-λ query/update language. We offer a proposal how to interface
referenced locking protocol and low-level update operations in given language
using DOM operations. This work continues in the topic that we have opened
in [17]. In this text we clarify more the update facility of the framework and
design a translation grammar that provides the solution for transformation of
XML-λ update statements into DOM operations.

The rest of the paper is structured as follows: Section 3 gives a short overview
about concurrency and related issues in database systems, Section 4 then outlines
the idea of the taDOM locking protocols family. Basic concept of XML-λ with
its key update features is briefly introduced in Section 5. The main part of
this work that describes our proposal for mapping of DOM operations to the
query language is presented in Section 6. In Section 7 we gather a list of certain
related papers available. Finally, we conclude with ideas for our future research
in Section 8.

3 Concurrency in Native XML DBMS

Common requirement for a database management system is the concurrency
control. There are four well-known properties for a transactional system known
as ACID [11]. Transaction is generally a unit of work in a database. ACID
properties are independent on a database (logical) model (i.e. it must be kept in
all transactional database systems).

Isolation of transactions in a database system is usually ensured by a locking
protocol. Direct application of a locking protocol used in relational databases
does not provide high concurrency [15, 22] (i.e. transactions are waiting longer
than it is necessary).

We show a huge difference between locking protocols for RDBMS and native
XML database system on a small example. Let us have two lock modes: Shared
mode and Exclusive mode. The granularity of exclusive lock in RDBMS is typ-
ically the row (or record) [6]. In a native XML database we have much more
possibilities whether to lock a node or a whole subtree. Hence, we have more
choices what to lock and for how long time. These protocols working on XML
data extend the basic locking protocol. The basic protocol provides only two
types of lock modes, but taDOM3+ has twenty lock modes. More lock modes
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imply more complexity in a protocol algorithm. Also to prove whether the pro-
tocol is correct is a harder problem.

We suppose only well-formed transactions and serializable plan of update
operations [6]. All protocols quoted in this paper satisfy these requirements. We
call locking protocols for native XML databases simply XML-locking protocols

in this paper. The most of these XML-locking protocols are based on the basic
relational locking protocols. Hence, XML-locking protocols inherit most of the
features, e.g. two-phase locking to ensure serializability.

To design a good locking protocol which minimizes the number of suspended
transactions is a challenge because it is much more complex than in RDBMS.
It requires new lock modes for individual elements and also for the axes in an
XML document [22]. The locking mechanism depends on the query language
used, concretely on the atomic operations of the query language and also on the
context of these operations.

4 Locking Protocols

Actual research in the area of locking protocols is concentrated rather to DOM
model and its methods of approaching individual parts of an XML document.
Probably the most advanced research in this topic is carried out at the University
of Kaiserslautern in Germany [16, 14, 15]. The researchers are working on XTC
(XML Transaction Coordinator) Project [3] – a system which implements several
different algorithms of transactional processing on XML data.

XTC project uses extended DOM model (it is called taDOM) as a basis for
transactional processing.

4.1 taDOM Family of Locking Protocols

The first version of the protocol was denominated as taDOM2. Its improved
version is then called taDOM2+. Both of these protocols work with DOM Level 2
operations (about 20 methods, see [23]). Next generation of taDOM locking
protocols are taDOM3 and taDOM3+. As expected, these protocols correspond
to DOM Level 3 model. The XTC project also provides detailed use cases for
these protocols (36 use cases) which completely describe locking scenarios for
each operation.

Each of taDOM locking protocols is specified by:

– Compatibility matrix
– Conversion matrix
– Use cases for DOM operations

The compatibility matrix is used when the transaction t1 is requesting for
lock l1 on a node n and there is a lock l2 of the transaction t2. The locking
algorithm finds the row l1 and column l2 in the compatibility matrix and makes
a decision whether to lock (+) or not (-). Table 1 describes Compatibility Matrix
for edge locks (ER - edge read, EU - edge update and EX - edge exclusive).



28 Pavel Strnad and Pavel Loupal

- ER EU EX

ER + + - -

EU + + - -

EX + - - -

Table 1. The Compatibility Matrix of the Edge Locks

getNode(nodeID) returns Node

Scenario 0-1 for taDOM3+ Lock Requests:

Node Lock PSE NSE FCE LCE

CN NR - - - -

Table 2. Lock Scenario for DOM Operation getNode(nodeID)

The conversion matrix is used when the transaction t1 is requesting for lock l1

on a node n and there is a lock l2 of the same transaction t1. Locking algorithm
finds the row l1 and column l2 in the conversion matrix and converts the lock
mode of the node. Hence, each transaction has at the most one lock on each
node.

Use cases describe semantics of the locking protocol with regard to DOM ope-
rations. Table 2 contains description of the DOM operation getNode(nodeID).
When getNode(nodeID) operation is called then the locking mechanism has
to put the lock of type NodeRead (NR) on the context node(CN). PSE, NSE,
FCE, LCE are abbreviations for previous sibling edge, next sibling edge, first
child edge, last child edge. The getNode(nodeID) operation does not put locks
on these virtual edges (-).

We consider only taDOM3+ in the next sections of this paper. This proto-
col is up-to-date nowadays, because it reflects today’s needs and was formally
checked1. The taDOM3+ locking protocol has also really low overhead (mini-
mizes access to the storage) [14].

taDOM3+ protocol provides level 2.99 of isolation [4, 15]. It means that phan-
tom reads2 are not covered. Therefore it is necessary to do a small extension to
these protocols by adding navigation edges to avoid existence of phantom reads.
We need to define an additional mechanism – edge locks. To apply edge locks the
authors had to extend the XML document model and added new edges between
nodes – virtual edges. The compatibility matrix of these locks is discussed in
more details in [15].

taDOM Model Structure The tree-like structure in taDOM is enriched by
two new node types: attributeRoot and string [14]. This representational en-

1 Valenta and Siirtola [21] made a formal proof of the protocol correctness. They
verified the taDOM locking protocol using model-checking.

2 Phantom read happens when new rows added by a transaction are visible from
another transaction
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hancement does not influence user operations and their semantics on the XML
document, but is solely exploited by the lock manager to achieve certain kinds of
optimization when an XML document is modified in a cooperative fashion [15].

– attributeRoot separates various attribute nodes from their element node. In-
stead of locking all attribute nodes separately they are locked all together
by placing the lock to attributeRoot – concurrency of attribute processing
is not allowed.

– A string node is attached to the respective text node and only contains the
value of this node. It does not allow to block a transaction which only navi-
gates across the node, although a concurrent transaction may have modified
the text (content) and may still hold an exclusive lock on it.

Lock Modes The taDOM3+ protocol provides a set of lock modes for the
nodes as well as for the edges. Edge locks are used to cover phantom reads in an
XML document in order to allow desired level of concurrency. The lock modes
together with their mutual relationships (expressed as compatibility matrices)
provide concurrency and also preserve the expected ACID properties (especially
the level of isolation).

5 Updating XML

There are various theoretical proposals, experimental implementations and de-
facto standards for XML update languages. As of the publication of the XML 1.0
standard [8] the efforts had been focused on querying such structured data.
Approaches for updating have gained more attention in past few years.

Existing papers dealing with updating XML are mostly related to XQuery [7].
The need for introducing updates into XQuery is also considered as one of the
most important topics in the further development of the language [10]. As a
result, new specification of the XQuery Update Facility [9] was proposed.

In this paper we deal with our approach for querying and updating XML
data – XML-λ [19, 20]. It is a framework for manipulating XML based on a type
system and simply typed λ-calculus. It is a cornerstone of our long-term research
that was invented not only for definition of an update language for XML but
also for a broader exploitation, for example heterogeneous data integration or
description of denotational and operational semantics of various languages. In-
deed, in this paper we focus on using it as a query and update language for XML.

In following paragraphs we expect that reader is familiar with basic con-
cept of the XML-λ Framework. Nevertheless, we repeat its basic concept for
convenience.

5.1 Updates in General

Query execution has in general the following structure: (1) Declaration of vari-
ables, (2) Evaluation of variables and tree traversal and (3) Output construction.
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For read-only systems and even parallel user access it is perfectly sufficient but
for systems with update support it is necessary to use a different approach.

Usually, for particular update operations (in the world of native XML database
systems) a structure called ”pending update list” is utilized. This structure con-
tains ordered list of fundamental modification operations to be carried out at
the end of each transaction. Hence, the execution of an update operation (insert,
delete, replace) then follows these two steps: (1) node locking and (2) appending
an appropriate update operation to the list.

At the end of each transaction the pending update list is processed and all
nodes locked by the transaction are unlocked at its end (both in case of commit
or abort). This approach is applied both in XQuery and XML-λ3. In following
sections we cover our solution based on XML-λ in detail.

5.2 XML-λ Framework Basics

XML-λ is a functional framework for manipulating XML. The original pro-
posal [19, 20] defines its formal base and shows its usage primarily as a query
language for XML but there is a consecutive work that introduces updates into
the language available in [17].

In XML-λ there are three important components related to its type system:
element types, element objects and elements. We can imagine these components
as the data dictionary in relational database systems. Note also Figure 1 for
relationships between basic terms of W3C standards and the XML-λ Framework.

Element types are derived from a particular DTD and in our scenario they
cannot be changed – we do not allow any schema changes but only data modi-
fications. For each element defined in the DTD there exists exactly one element
type in the set of all available element types (called TE).

Consequently, we denote E as a set of abstract elements. Set members are of
element types.

Element objects are basically functions of type either E → String or E →
(E× . . .×E). Application of these functions to an abstract element allows access
to element’s content. Elements are, informally, values of element objects, i.e. of
functions. For each t ∈ TE there exists a corresponding t-object.

For convenience, we add a ”nullary function” (also known as 0-ary function)
into our model. This function returns a set of all abstract elements of a given
element type from an XML document.

Finally, we can say that in XML-λ the instance of an XML document is
represented by a set E and set of respective t-objects.

Example. Let us consider an example DTD and a fragment of an XML in-
stance shown in Figure 2. For given schema we derive element types as fol-
lows: BIB : BOOK∗, BOOK : (TITLE, AUTHOR+, PRICE), AUTHOR :
(LAST, FIRST ), LAST : String, FIRST : String, TITLE : String, PRICE :

3 Note that both XQuery and XML-λ are functional languages.
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Fig. 1. The Relationship Between W3C and XML-λ Models

String.

Then, we define functional types – designated as t-objects: BIB : E → 2E ,
BOOK : E → (E × 2E ×E), AUTHOR : E → (E ×E), TITLE : E → String,
LAST : E → String, FIRST : E → String, PRICE : E → String.

<!ELEMENT bib (book* )> | <bib>

<!ELEMENT book (title, author+, | <book>

price )> | <title>TCP/IP Illustrated</title>

<!ELEMENT author (last, first )> | <author>

<!ELEMENT title (#PCDATA )> | <last>Stevens</last>

<!ELEMENT last (#PCDATA )> | <first>W.</first>

<!ELEMENT first (#PCDATA )> | </author>

<!ELEMENT price (#PCDATA )> | <price>65.95</price>

| </book>

| ...

Fig. 2. Example DTD and Fragment of a Valid XML Instance

Having look at the Figure 2 we can see that there are 7 abstract elements
(members of E′ ⊂ E). Now, for instance, the price-object is defined exactly for
one abstract element (the one obtained from <price>65.95</price> element)
and for this abstract element it returns value ”65.95”.

Let us consider a query that returns all books with price higher than 100.
This query is written in XML-λ as:

xmldata("bib.xml")

lambda b ( /book(b) and b/price > 100))
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Here, we do not depict the query evaluation process in detail but it is de-
scribed sufficiently in [19, 20].

5.3 Fundamentals of Updates

By introspecting the basics of the framework outlined in Section 5.2 – especially
the idea of element objects we can see that by updating an XML document we
modify actual domains of element objects (i.e. partial functions defined on E)
and their ranges.

6 Locking Protocol Mappings

This section describes our solution for translation of XML-λ statements into
DOM API calls through a top-down parser directed by an attributed LL(1)
translation grammar.

For easier specification of transformation between XML-λ primitives and
DOM operations we define new operation �:

f+(v) = {f1(v), f2(v), f3(v), . . .}

f+(v) � g() =
∞⋃

u=1

{g(fu(v))}

This operation is defined on sets. We can say that the g() function is applied
on each element of a set.

6.1 A Pinch of Translation Theory

We solve the problem of mapping by translation from one language to another.
The straightforward approach is based on construction of an attributed trans-
lation grammar [5]. Then all queries written in XML-λ can be translated into a
sequence of DOM operations.

Here we refer shortly to definition related to translation grammars – note
that we use an attributed translation grammar, i.e. a context-free grammar aug-
mented with attributes, output symbols and semantic rules.

The attributed translation grammar is 4-tuple APG =< PG, A, V, F >,
where PG is a basic translation grammar PG =< N, Σ, D, R, S >. N is set of
non-terminal symbols, Σ is set of terminals, D is set of output symbols, R is a
set of grammar rules A => α, where A ∈ N , α ∈ (N ∪ Σ ∪ D)∗ and S is the
start symbol.

Remaining symbols are related to APG and have the following meaning

A is a finite set of attributes. It is divided into two disjoint sets for
synthesized (denoted S) and inherited (denoted I) attributes.

V is a mapping that assigns a set of attributes to each non-terminal symbol X ∈ N
F is a finite set of semantic rules

The example stated in the following section is based on this formalism.
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6.2 XML-λ to DOM Translation Grammar

We use the standard formal translation directed by an LL(1) parser where the
formal translation is described by translation grammar as follows:

N = {S, R0, R1, T }
Σ = {/, sL, var}
D = { s©, t©, c© }
R = { S → / R0|varR1,

R0 → sL s© T R1,
R1 → / c© sL T R1|ε,
T → t© }

Note that terminal symbols are output tokens from a lexical analyzer.
We proposed necessary attributes for translation A = {name, string}, where
I(T ) = {name}, I( t©) = {name}, S(sL) = {string}. Attributes are used for
storing tag names in the process of translation.

Syntax and semantics of the translation grammar is described in Table 3.

Syntax Semantics

S → / R0|varR1

R0 → sL s© T R1 T.name := sL.string

R1 → / c© sL T R1|ε T.name := sL.string

T → t© t©.name := T.name

Table 3. Syntax and Semantics Table

After translation the output symbols are rewritten in following way:

s© → doc � getDocumentElement() � getChildNodes()+

t© → � getTagName( t©.name)
c© → � getChildNodes()

Following example shows how we can transform XML-λ queries to DOM
operations. These operations implicitly use taDOM3+ locking protocol synchro-
nization primitives.

6.3 XML-λ Query Evaluation Example

Let us have a look at an example of a delete operation in the XML-λ language.
Following statement deletes all books specified by given title:
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xmldata("bib.xml")

delete( lambda b ( /book(b) and

b/title = "TCP/IP Unleashed"))

We translate the inner expression of the statement

(/book(b) and b/title = "TCP/IP Unleashed")

The translation is based on a top-down method using expansion operation ⇒.
Expansion rule depends on the top terminal of the processed input string. Then
we can use a standard LL(1) parser. Translation then starts as follows:

S ⇒ / R0

R0⇒ / sL s© T R1

T
⇒ / sL s© t© R1

R1⇒ / sL s© t©

By this derivation we have translated the first part of the expression – /book(b).
Then, we continue with the second part:

S ⇒ var R1

R1⇒ var/ c© sLTR1

T
⇒ var/ c© sL t© R1

R1⇒ var/ c© sL t©

We get the translated string by omitting input symbols. We suppose that
the semantic rules were applied during translation. In the input symbol var we
saved the first part of the translation. The second part is concatenated with the
first part through the variable b. The output of the translation is the following
sequence of output symbols: s© t© c© t©.

We can rewrite these output symbols to taDOM operations and then we get:

doc � getDocumentElement() � getChildNodes()+ � getTagName( t©.name)
� getChildNodes() � getTagName( t©.name)

The main part of the update statement is the path expression. Now we have
to select nodes which satisfy condition – title = ”TCP/IP Unleashed”. The
string comparison operation is not a DOM operation, so for purpose of this paper
is omitted here.

The translation grammar described above can be directly used to ensure
isolation of transactions in the XML-λ language.

7 Related Work

First, considering query and update languages, there are many papers and pro-
posals. The most important specifications in the context of this work are the
XML Query Language 1.0 Specification [7] and a Working Draft of the XQuery
Update Facility [9]. They form de-facto standard in the world of XML.

Another branch of papers is focused on a specific database system and de-
scribes usually a complete solution seen from a wider perspective. It is quite
a common practice that database groups at technical universities and similar
institutes develop their own database systems. In the area of XML we can men-
tion eXist [2] or Natix [12]. Finally, we should also mention CellStore [25] – a
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database system being developed at our department. Authors of these systems
usually describe in detail the transformation of XQuery statements into their
algebras.

Issues related to transactions and systems that support transactional behav-
ior are covered as description of transaction protocols [6, 13, 14] or transactional
benchmarking [18].

8 Conclusions and Future Work

We have shown an approach for introducing fundamental transactional opera-
tions into a functional query and update language for XML. Through the use
of the taDOM protocol and the XML-λ Framework we have obtained a the-
oretical solution for native XML database systems that allows querying and
updating XML data in a safe manner. We accomplish this by introducing an
LL(1) attributed translation grammar for transformation of XML-λ statements
into sequence of DOM API calls. This forms a solid base for our ongoing re-
search – studying of mutual semantic transformations of queries written in one
query language into another, e.g. conversion of XQuery queries into XML-λ and
vice-versa.

Considering the fact that we have presented here only first sketch of the
solution there is still a lot of clarification and experimental work ahead. In the
near future we plan to design and implement a prototype of the XML-λ query
engine into the CellStore database system. After that there are many open topics
related to correctness and benchmarking of the prototype.
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