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Abstract 
Before the introduction of fully autonomous vehicles with all their benefits and positive impact 

on quality of life (e.g., increased mobility options, reduced carbon footprint, road safety), 

researchers propose an era of conditionally automated vehicles where the driver must take over 

(resume control of the automated vehicle) in critical situations. In terms of human-computer 

interaction (HCI) during the take-over process, the driver's physiological signals seem 

promising as they could be read and understood by the vehicle. In this paper, we quantify the 

physiological responses to take-over requests (TOR), i.e., we determine their amplitudes, 

delays, and durations. We measured and examined drivers' heart rate, pupil diameter, 

horizontal gaze dispersion, blink rate, skin conductance response, and skin temperature. Values 

before the TOR were compared with values after the TOR, averaged over different time 

intervals. In addition, the duration until the first noticeable change in each physiological 

response (delay) and the duration until the signals stabilized to their normal values (duration) 

were measured. The results showed that the relatively greatest effect of TOR was observed in 

skin conductance (from -62% to 142%). The fastest response (on average) to TOR was 

observed in pupil diameter (2.24 s ± 2.48 s), followed by skin conductance and heart rate. 

Manual or automatic artifact correction has not yet been performed and should be included in 

further analysis. 
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1. Introduction

Increasing automation in vehicular technology is about to increase the overall quality of life (QoL). 

With the introduction of autonomous vehicles, elderly people and children will be able to make their 

daily trips without a supervisor [1]. From an environmental perspective, shared autonomous vehicles 

(not personally owned) would not only consume fewer resources, but also require fewer parking spaces 

– since they are in use most of the time – and could contribute to less congestion [2], [3]. Not to mention

the potential increase in road safety [4].

Current technology is almost ready to adopt the third level of automation technology as defined by 

SAE (Society of Automotive Engineers): conditionally automated driving [5]. Such vehicles can drive 

autonomously in certain predefined environments (e.g., highway), but require driver intervention within 

a certain time if something goes wrong (sensor malfunction, sudden change in driving conditions, etc.). 

The crucial problem of human-computer interaction (HCI) SAE level 3 vehicles is how to design a 

take-over request (TOR) to communicate with the driver to take over the vehicle when it cannot 

continue driving in autonomous mode [6]. Even more, how could the vehicle know if the driver is aware 

of his or her important task? 

In addition to vehicle-related data, such as speed, acceleration, time to collision, or lateral 

displacements, physiological data seem to have potential in research, although there is still little 

consensus on their potential use cases [7]. They are commonly used in similar HCI research areas, 
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mostly to measure people’s emotional arousal, cognitive load, sleepiness, or stress [8]–[10]. The 

physiological responses could be used as a “driver’s output user interface” to detect responses, profile, 

or even make real-time adjustments to HCI. However, if a researcher wants to use the physiological 

data, he or she should first know their typical values and characteristics.  

1.1. Related work 

The longest used and most studied physiological measure is heart rate. The time differences between 

successive heartbeats vary (oscillate) in response to respiratory activity (breathing). This phenomenon 

is referred to as heart rate variability [8]. Carsten et al. showed that the average heart rate is higher 

during semi-automated or manual driving than during autonomous driving [11]. However, Stephenson 

et al. found no significant difference in the heart rate of drivers before and after a take-over [12]. 

Pupil diameter is one of the most common physiological measurements in research. According to 

Mathot, the pupil responds to three types of stimuli: it constricts in response to brightness, it constricts 

in response to near fixations, and it dilates in response to increased mental effort [13]. In driving 

environment, it could be used to measure the drivers’ cognitive load [14], [15]. However, the 

measurements could be difficult because the illumination changes drastically when the gaze is directed 

toward or away from the screen. Zhou et al. did not find any changes in pupil diameter related to 

situational awareness [15]. 

Electrodermal activity (skin conductance) consists of a slowly varying tonic activity called skin 

conductance level (SCL) and a rapidly varying phasic activity called skin conductance response (SCR) 

[16]. When a person feels stressed or experiences cognitive load, their glands begin to sweat, resulting 

in SCR. Therefore, SCRs in the few seconds after a stimulus (e.g., a TOR) are attributed to that stimulus 

[17]. Li et al. showed that counting the number of SCRs above the threshold or summing the amplitudes 

of SCRs (depending on the time window) are the suggested arousal metrics in automated driving 

systems, as they increase significantly with higher cognitive load [18]. 

Drivers stress can be monitored by measuring skin temperature [19]. Yamakoshi et al. showed that 

the peripheral skin temperature gradually dropped when driving under stressed [20]. They also 

suggested that the difference between body and peripheral skin temperature could be used as an 

indicator of drivers’ stress. Jang et al. on the other hand did not find any change in skin temperature 

while monitoring reaction of drivers in virtual environments [21]. 

1.2. Research questions 

Due to many contradictory findings presented and all the opened questions regarding the normal and 

expected values of physiological responses, we first need to quantify the physiological responses during 

a take-over to be able to reliably use the data for HCI purposes. Some papers with limited analysis of 

physiological responses, specific to take-over procedure, have recently been published [22], but they 

do not report on measured general values of physiological responses, rather just on the differences, 

caused by predefined circumstances. We determined the typical values and changes for physiological 

responses during different periods of a TO. Additionally, we determined the delay and stabilization 

time (effect duration) for each physiological measure. These are the pre-results of an ongoing analysis. 

Summarized into single statements, our research questions were: 

1. How much are different physiological signals affected by the TO? 

2. How long after a TOR can a physiological response be expected and for how long? 

The rest of the paper is structured as follows: Section 2 presents the methodology, i.e., the data 

collection and processing. Section 3 presents the results of analysis, i.e., the typical values and timing 

of physiological signals during TO. Section 4 provides a brief discussion of the results and a conclusion. 

2. Methodology 

We conducted an exploratory user study in a driving simulator where 30 participants (15 female) 

drove a conditionally autonomous vehicle, which issued three take-over requests during each driving 



session. The study was conducted in accordance with the Code of ethics of the University of Ljubljana 

and with the Declaration of Helsinki. An informed consent was obtained from every participant. 

The participants’ task was to drive the conditionally autonomous vehicle as he or she would in a 

normal life. Therefore, when the vehicle had been in autonomous mode, the drivers could perform any 

other task by their preference. Some choose to read a magazine, some played games on a smartphone, 

and the others just looked around the place. However, if the vehicle had requested a take-over, the driver 

had to intervene and drove manually until the desired automation level became available again. 

2.1. The driving environment 

The used NervtechTM driving simulator [23] consists of three curved TV screens and a 4-DOF motion 

platform with a driver’s seat, pedals, steering wheel, dashboard display, and a gearbox. The simulation 

software was AVSimulation’s SCANeR studio 1.7 [24]. 

The driving scenario featured a 13 km long city road (see Figure 1), the speed limit was 50 km/h 

unless otherwise specified by the traffic signs. Some surrounding traffic and pedestrians were included 

in the scenario to make it more realistic. A take-over request was issued by the vehicle with an auditory 

alert sound (4 kHz beep), and a visual alert icon on the screen, featuring a head-up display (HUD). 

During the drive, the vehicle issued three take-over requests: one was considered urgent as a pedestrian 

ran in front of the vehicle to cross the road, one was issued due to road infrastructure no longer 

supporting the autonomous mode, and one due to poor driving conditions (the absence of lane marks). 

 

 
Figure 1. The driver's view during a take-over request.  The scenario featured a city road with some 
surrounding traffic. 

2.2. Measured physiological responses 

Drivers’ physiological responses were measured with two devices: 

• Tobii Pro Glasses 2 [25], a wearable eye tracker, 

a. measuring pupil diameter (PD) in mm, 

b. measuring gaze direction, 

c. sampling frequency: 50 Hz. 

• Empatica E4 [26], a medically certified wristband, 

a. measuring blood volume pulse (BVP) with photoplethysmography (PPG) sensor, 

sampling frequency: 64 Hz, 

b. calculating inter-beat interval (IBI) in seconds from BVP, with automatic removal 

of corrupted samples due to excessive motion, 



c. measuring electro-dermal activity (EDA) in µS, sampling frequency: 4 Hz, 

d. measuring skin temperature in °C, sampling frequency: 4 Hz. 

2.3. The protocol 

A user session began with a short explanation of its purpose and procedure. The participants were 

then invited to sign an informed consent form and fill in a demographic questionnaire. Following the 

paperwork, measurement devices were attached (worn) and the driver was seated in the simulator. 

The driving part started with a short test drive, so that the participants became familiar with the 

simulator and its features. They were able to try autonomous driving, manual driving and different 

possibilities of taking over (i.e., by steering the wheel, pressing the brake, or pressing a sophisticated 

button). A following measuring period lasted for about 20 minutes. The drivers were instructed to act 

as they would in normal life, driving a conditionally automated vehicle, i.e., take-over when requested. 

After the measurement, the drivers were asked about their experience and invited to participate in 

the upcoming user studies. 

2.4. Signal processing 

The processing and plotting were performed in python 3.9.12. 

2.4.1. Pre-processing 

A heart rate signal was extracted from the IBI using equation (1) and averaged over 10 s, as proposed 

by the E4 device manufacturer [27] to exclude the HRV phenomenon due to breathing. It should be 

noted that the E4’s proprietary algorithm automatically removes corrupt samples due to excessive 

motion and therefore there were sometimes not enough samples to perform the analysis. We excluded 

the trials that contained less than three samples per 10 s time window. 

𝐻𝑅 = 60 / 𝐼𝐵𝐼 (1) 
As the raw pupil diameter data was noisy and therefore unreliable, we applied a moving average 

filter with a window width of one second (50 samples). We assumed that all portions of the screens 

were equally illuminated and therefore pupil diameter was not affected by looking at different points. 

Additionally, we determined eye blinks by searching the eye-position data for consequently missing 

samples. As research shows that blinks last from 60 to 700 ms, we tagged every sample that followed 

a consequent miss of data greater than 60 ms, as proposed by Al-Gawwam and Benaissa [28]. 

Raw electrodermal activity data was decomposed into tonic skin conductance, phasic skin 

conductance, and sparse driver of phasic component using the methods of convex optimization – the 

cvxEDA algorithm by Greco et al. [29]. 

The raw temperature data included an exponential increase due to the driver adapting to the driving 

simulator environment. We therefore first applied a curve fitting algorithm from scipy library [30] to 

fit a 3rd level polynomial function and subtracted it from the original data. Due to sensors’ quantization 

noise, the data had to be low-pass-filtered (moving average over 10 seconds). 

2.4.2. Comparing pre- vs. post-TOR values 

The drivers’ physiological responses preceding a TOR were absolutely and relatively compared to 

responses after the TOR. The time window for pre-TOR responses was 60 seconds. Post-TOR responses 

were calculated over many empirically determined time windows (2 s, 5 s, 10 s, 15 s, 20 s, 30 s, 60 s). 

The calculated (and compared) parameters included in the analysis were: 

• average heart rate (HR), 

• average pupil diameter (PD), 

• horizontal gaze dispersion (HGD) – standard deviation of horizontal gaze coordinate, relative 

to the width of one simulator screen, 



• blink rate (BR) – the number of blinks per the duration of time window, 

• skin conductance response (SCR) – the sum of amplitudes of skin conductance responses, 

measured in µS/s, 

• average skin temperature (TEMP). 

2.4.3. Determining the delay and duration of a response 

Regarding the timing of physiological responses, we determined the delay and duration of responses, 

following a TOR. The delay was measured from the moment of a TOR until the first noticeable change 

in physiological parameters, i.e., when the parameter exceeded the threshold – its pre-TOR mean ± one 

standard deviation [31]. Similarly, the duration of response was measured from the moment of a TOR 

until the stabilization of the parameter, i.e., when the parameter again reaches its overall mean ± one 

quarter of a standard deviation. For representation, see. 

The parameters, included in the analysis were: 

• heart rate, 

• pupil diameter, 

• phasic skin conductance, 

• skin temperature. 

 
Figure 2. Determining the delay and duration of a physiological response. The figure shows pupil 
diameter as an example, the take-over request (TOR) is issued at 0 s and is marked with red vertical 
line. The orange horizontal lines represent the pre-TOR mean ± one standard deviation. The 
responses’ delay is 0.9 s (orange vertical line) and lasts until 10.8 s (green vertical line). 

3. Results 

Table 1 describes the changes in pre- vs. post-TOR responses for different time windows. 

 

Table 1 



Comparing pre- vs. post-TOR values 

Parameter 
Pre-
TOR 

Post-TOR difference (Mean ± SD) 

2 s 5 s 10 s 15 s 20 s 30 s 60 s 

HR 
[bpm] 

72.69 
±9.93 

-0.90 
± 4.79 

-1.68 
± 2.66 

-1.43 
± 2.83 

-1.37 
± 3.15 

-0.26 
± 2.90 

0.48 
± 3.36 

-0.82 
± 4.24 

-1.3% 
± 6.2% 

-2.2% 
± 3.2% 

-1.8% 
± 3.5% 

-1.7% 
± 3.8% 

-0.3% 
± 4.0% 

0.8% 
± 4.6% 

-0.8% 
± 5.4% 

PD 
[mm] 

3.780 
±0.70 

0.073 
± 0.502 

0.165 
± 0.422 

0.147 
± 0.416 

0.141 
± 0.340 

0.178 
± 0.315 

0.155 
± 0.267 

0.063 
± 0.249 

2.1% 
± 13.4% 

4.7% 
± 11.4% 

4.4% 
± 10.6% 

4.4% 
± 8.2% 

5.4% 
± 7.6% 

4.6% 
± 6.6% 

2.1% 
± 6.1% 

HGD 
[%] 

0.31 
±0.16 

-0.163 
± 0.199 

-0.151 
± 0.176 

-0.144 
± 0.177 

-0.133 
± 0.162 

-0.097 
± 0.166 

-0.066 
± 0.165 

-0.087 
± 0.155 

-43.5% 
± 59.1% 

-35.9% 
± 53.2% 

-30.3% 
± 67.6% 

-25.7% 
± 66.7% 

-0.3% 
± 127% 

7.2% 
± 112% 

-4.2% 
± 80.4% 

BR 
[Hz] 

0.48 
±0.50 

0.046 
± 0.648 

0.024 
± 0.472 

-0.008 
± 0.383 

-0.062 
± 0.323 

-0.078 
± 0.288 

-0.081 
± 0.254 

-0.102 
± 0.268 

19.5% 
± 195% 

32.7% 
± 309% 

16.2% 
± 247% 

12.0% 
± 223% 

1.4% 
± 170% 

-2.4% 
± 141% 

-4.6% 
± 104% 

SCR 
[µS/s] 

1.93 
±3.13 

-2.46 
± 3.68 

-1.10 
± 3.15 

-0.50 
± 3.21 

0.72 
± 5.02 

0.76 
± 4.63 

0.45 
± 4.38 

-0.59 
± 2.97 

-61.8% 
± 72% 

-28.8% 
± 69% 

9.5% 
± 168% 

88.7% 
± 261% 

142.0% 
± 342% 

103.3% 
± 277% 

85.5% 
± 580% 

TEMP 
[°C] 

32.73 
±1.99 

0.003 
±0.068 

0.003 
±0.070 

0.004 
±0.074 

0.004 
±0.077 

0.004 
±0.078 

0.004 
±0.076 

0.002 
±0.075 

 

Table 2  presents the measured delays and durations of physiological responses to take-over requests. 

 

Table 2 
Timing of physiological responses to take-over requests 

Signal 
Delay [s] Duration [s] 

Mean ± SD Min Max Mean ± SD Min Max 

Heart rate 16.20 ± 8.27 2.66 28.08 51.57 ±14.05 29.35 78.22 

Pupil diameter 2.24 ± 2.48 0.17 13.29 9.35 ±10.83 0.17 56.99 

Phasic skin conductance 7.74 ± 5.62 1.02 22.78 21.83 ±14.07 2.90 49.05 

Skin temperature 7.87 ±7.07 0.62 30.55 25.31 ±17.05 2.62 58.98 

4. Discussion and Conclusion 

The results in Table 1 demonstrate that with respect to pre-TOR interval, the heart rate (HR) first 

declines for about 2 % (3–5 s after TOR) and then increases again about 20–30 s after the TOR. We 

speculate that the decline is an early response, while the later increase in HR is probably the delayed 

result of manual driving, as Carsten et al. [11] suggested. From Table 2 we can expect that the 

mentioned increase starts about 16 s after the TOR and neutralizes again about a minute later. 

The pupil diameter seems to increase after the TOR for 2–5% on average. The first increase is 

detected quite soon after the TOR (2.24 s ± 2.48 s) and lasts for about 10 s. Following Mathot’s [13] 

suggestion, the TOR probably increased drivers’ cognitive load and therefore the pupil diameter. We 

observe that horizontal gaze dispersion (HGD) in the first few intervals after the TOR declines rapidly. 

We believe this is due to increased focus on a single point while taking over the vehicle. In the 30 s 

post-TOR interval, the HGD increased again, probably due to driver extensively scanning the driving 



environment, thus increasing situational awareness. In a normal, healthy subject, blinks occur about 17 

times a min, which is once every 3.5 s [32]. Therefore, the 2 s and 5 s post-TOR intervals may be 

irrelevant and provide noise as no blinks could happen at the time. Regardless, it seems that blinks 

happen more often immediately after the TOR and get more rear after some time. 

The amplitude sum of skin conductance responses (SCRs) seems to get lower immediately following 

the TOR for about 50% and then exceeds the pre-TOR value for more than 100% after 20–30 s. We can 

observe from Table 2 that this increase starts on average about 7 s after the TOR and lasts for 14 more 

seconds on average. The noticed SCR could reliably correspond to the TOR, as suggested by Dawson 

et al. [17]. 

The skin temperature is the most unreliable of all the measured data, as the deviations are very high, 

relative to the absolute values. For now, we could not reliably state whether and how much did the skin 

temperature increase or decrease after the TOR. This is in contrast with Yamakoshi et al. [20], who 

state that skin temperature declines under stress, as we believe that the TOR induces stress to the driver. 

Overall, the relatively largest impact of TOR was observed with skin conductance (sum of 

amplitudes of SCRs), followed by HGD, BR, PD and HR. The (on average) fastest response to TOR 

was observed with pupil diameter, followed by SCR and HR. 

It should be discussed as a limitation, that no manual artifact correction was performed on data so 

far. E.g., no sharp edges are naturally possible in raw electrodermal activity data and are possibly caused 

by electrode displacement or movement. In the future, automatic identification, and correction of 

artifacts, such as proposed by Taylor et al. [33], could be performed. Also, the data was currently only 

analyzed with respect to the take-over request (TOR). It would make sense to also include the 

information about the actual take-over in the analysis of timing and shape of physiological responses. 
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