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Abstract 
Due to the progressive shift of responsibility from the driver to the vehicle itself in automated 

vehicle technologies, driver-centered innovations represent a key point for its advance. The so-

called Driver Monitoring Systems (DMS) are therefore increasingly gaining importance in this 

context. One of the main aims of DMS is to estimate the driver’s arousal levels in order to infer 

their cognitive state and capabilities. Even though the scientific literature is riddled with useful 

psychophysiological indices to estimate arousal levels [1], nowadays, arousal estimation is 

based on broad, mostly blink/gaze-related, indices. The reason is that actual implementation of 

reliable sensors in a feasible system able to collect, analyze, and interpret measurements in 

real-life conditions is still an open challenge. One of the alternatives to signal different 

cognitive states is facial skin temperature [2][3]. Infrared sensors that monitor heat loss have 

been shown useful to track facial skin temperature that indicate arousal modulations while 

driving [2][3]. Such intensive, laborious work to extract and analyze temperature changes in 

some facial landmarks is not reasonable in real-life applications [2]. Here, we present the 

preliminary results obtained with a new software able to track, in real-time, drivers’ facial-skin 

temperature changes.  
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1. Introduction

Due to the progressive shift of responsibility from the driver to the vehicle itself in automated vehicle 

technologies, driver-centered innovations represent a key point for its advance. The so-called Driver 

Monitoring Systems (DMS) are therefore increasingly gaining importance in this context. One of the 

main aims of DMS is to estimate the driver’s arousal levels in order to infer their cognitive state and 

capabilities. Even though the scientific literature is riddled with useful psychophysiological indices to 

estimate arousal levels [1], nowadays, arousal estimation is based on broad, mostly blink/gaze-related, 

indices. The reason is that actual implementation of reliable sensors in a feasible system able to collect, 

analyze, and interpret measurements in real-life conditions is still an open challenge. One of the 

alternatives to signal different cognitive states is facial skin temperature [2,3]. Infrared sensors that 

monitor heat loss have been shown useful to track facial skin temperature that indicate arousal 

modulations while driving. Such intensive, laborious work to extract and analyze temperature changes 

in some facial landmarks is not reasonable in real-life applications [2].  Face landmarks extraction using 

color images has become of common use [4] thanks to several libraries (e.g., Google's MediaPipe 
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library [5]). However, when applied to thermographic images, these libraries produce unsatisfactory 

results: the face is either not detected or the landmarks are not correctly aligned with the real face. 

Therefore, two main methods have been developed to perform landmark detection on thermographic 

images. The first method is to develop a dedicated system trained on annotated thermographic images 

[see 6]. This approach is still limited due to the lack of large thermographic databases. For example, 

Kopaczka and colleagues used a database containing 2,935 images [7]. A database of this kind would 

not be useful for our data. In the present study, the drivers had to wear transparent face masks due to 

the COVID19 pandemic. This made it harder to apply landmark detection on thermographic images 

where the mask was visible. Indeed, although the masks were transparent to visible light, they were not 

in the wavelength used to measure the temperature, therefore hiding part of the driver’s face. The second 

method uses an additional color camera to detect the facial landmarks and transfers them on the 

thermographic image (this process of aligning images from different sources is often referred to as 

“image registration”). In previous studies, authors detected the edges in both color and thermal images 

and match them to align the images [8, 9]. A simpler method is described in another work [10], based 

on an initial optical calibration between the two cameras. Goulart and colleagues used the same 

principle and add a post-processing step to enhance the transferred landmark position, based on a trained 

expert manual annotation [11]. Here, we present the preliminary results obtained with a system based 

on this second method, able to track drivers’ facial-skin temperature changes automatically after an 

initial calibration. It is a first step towards a fully automatic system, which could run in real-time in 

future vehicles. We present the principle of the system and analyze its performance. In a future work, 

we intend to show the usefulness of extracting the face temperature in an automated driving condition. 

2. Material and methods 
2.1. Instruments 

We used a sensorized driving simulator (Nervtech™ solution, see Figure 1) running a SCANeR 

studio software (AVSimulation, v.DT2.5). Participants’ facial skin temperature was constantly 

monitored with a thermographic camera (FLIR A325sc, with a resolution of 320 × 240, a NETD < 

50mK and an accuracy of ±2°C or ±2% of reading) synchronized with a color camera (infrared color 

camera, Intel® Realsense).  

 

 
Figure 1: The driving simulator employed in the study. Left, the simulator and its dome; right, the 
interior of the dome with the thermographic and color cameras on the top of the main screen. 

2.2. Face temperature extraction algorithm 

To extract participants’ facial-skin temperature at specific locations, we developed an algorithm 

(Figure 2) able to identify two facial landmarks (Points of Interest [POIs]), the tip of the nose and the 

forehead, as well as the background in a thermographic image. The solution was based on a dual camera 

setup (i.e., color camera and thermographic camera), with a spatial correspondence between the two. 

 



 
Figure 2: Architecture of the temperature extraction algorithm 
 

Specifically, the color camera output allows the extraction of the POIs using conventional facial 

landmarks extraction tools. Here, we used MediaPipe [5], the state-of-the-art landmark detection 

library. Once the POIs were detected, their positions were fitted into the thermographic camera output, 

using a geometric transformation [12]. The algorithm uses a 3 × 3 transformation matrix 

(𝑇𝑐𝑜𝑙𝑜𝑟→𝑡ℎ𝑒𝑟𝑚𝑎𝑙) to convert each POI position from the color camera spatial output to the thermographic 

spatial output. Each POI (landmark, 𝑙𝑖) is defined by its coordinates in the color camera space (𝑙𝑖
𝑐𝑜𝑙𝑜𝑟). 

As detailed below, the coordinates in the thermographic camera space (𝑙𝑖
𝑡ℎ𝑒𝑟𝑚𝑎𝑙) are obtained by 

multiplying 𝑙𝑖
𝑐𝑜𝑙𝑜𝑟 by the transformation matrix 𝑇𝑐𝑜𝑙𝑜𝑟→𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (1). This transformation matrix is the 

multiplication of three matrices (2). The first describes a translation with coordinates [𝑡𝑥,𝑡𝑦] (3), the 

second describes a rotation around the center of the screen with angle 𝜃 (4) and the third describes a 

scaling with parameters [𝑠𝑥,𝑠𝑦] (5). Once the positions of the landmarks in the thermographic image 

space were found, the POIs temperature values were read in the image. Finally, we multiplied the result 

by the skin emissivity (0.98) to obtain the skin temperature. 

𝑙𝑖
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑇𝑐𝑜𝑙𝑜𝑟→𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑙𝑖

𝑐𝑜𝑙𝑜𝑟
  (1) 

𝑇𝑅𝐺𝐵→𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑇𝑡𝑟𝑎𝑛𝑠 × 𝑇𝑟𝑜𝑡 × 𝑇𝑠𝑐𝑎𝑙𝑖𝑛𝑔   (2) 

𝑇𝑡𝑟𝑎𝑛𝑠 = [
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

]  (3) 

𝑇𝑟𝑜𝑡 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

]  (4) 

𝑇𝑠𝑐𝑎𝑙𝑖𝑛𝑔 = [
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

]  (5) 

2.3. Calibration 

The described system first needed to be calibrated to determine the parameters of the transformation 

matrix 𝑇𝑐𝑜𝑙𝑜𝑟→𝑡ℎ𝑒𝑟𝑚𝑎𝑙: 𝑡𝑥, 𝑡𝑦, 𝜃, 𝑠𝑥 and 𝑠𝑦. Filippini and colleagues used a similar set-up and performed 

the calibration using a custom checkerboard [10], a method we found to be less precise in our situation. 

We therefore developed a dedicated calibration software. It allows an operator to visualize 

simultaneously the color and the thermographic camera outputs, as shown in Figure 3. 

 

 
Figure 3: Calibration software interface. On the left, the color image with the landmarks detected 
thanks to MediaPipe [5]. On the right, the thermographic image with the corresponding landmarks 
that the operator has to translate, rotate, and scale to correspond to the driver’s face. 



 

On the color image, the operator can inspect the landmark detection performed by MediaPipe. A 

thermographic image shows if these landmarks are transferred correctly. If the result is not satisfying, 

additional translations, rotations and scaling of the landmarks “mask” can be done manually with the 

mouse. These transformations are recorded by the calibration software to compute the matrix 

𝑇𝑐𝑜𝑙𝑜𝑟→𝑡ℎ𝑒𝑟𝑚𝑎𝑙. The calibration software finally saves the conversion parameters in a dedicated file 

which is used by the extraction software to automatically detect the POIs on the thermographic output. 

In our experiment, we repeated the calibration procedure for each driver to compensate for slight 

differences in the positions of the cameras and head among different drivers. 

2.4. Experimental design 

To test our algorithm, we designed a 2 (traffic vs. low-traffic Traffic density) × 2 (automated 

[ADL4] vs. manual [MD] Driving modality) within-participants experiment. Thirty-five expert drivers 

(mean age = 41.61 years, standard deviation = 6.26 years) drove along two virtual scenarios (∼ 20 

minutes [min] each) with varying traffic density. In both scenarios, the participants performed 10 min 

in MD and 10 min in ADL4. The order of the traffic density and driving mode was randomly balanced 

across drivers. During ADL4, they were instructed to supervise the system. We expect the arousal level 

of the drivers to be modulated by these conditions, as the manual driving mode and the high traffic 

condition are more demanding than the autonomous one and the low traffic condition respectively.  

 

 
Figure 4: Experimental design. Each participant performed the tasks as it is illustrated above. The 
arrows indicate that traffic conditions and the driving mode were randomized across participants. 

2.5. Validation method 

 
Figure 5: Annotation software interface. Left side: the annotator selects the POI and the frames to 

be annotated. Right side: the annotator points at the location of the POI on the thermographic image 
(in this example, the forehead and the nose tip are already annotated). 

 

In order to validate the proposed algorithm, we selected randomly one of the two 20-min recordings 

(high or low traffic) for each driver. Then, we extracted one pair of color and thermographic images 

each 20 seconds. We obtained 65 images per driver and 2,340 in total. We then developed an annotation 

software to manually extract the temperature on these images. For each image, we pointed at two 

landmarks: the driver’s forehead and the driver’s nose tip. Four trained annotators performed the same 

procedure on the 2,340 images. Then, we computed on each image the mean of the four annotated 



positions of the nose tip and the forehead to establish the reference location of the nose tip and the 

forehead. Finally, we extracted the temperature at these locations to define the reference temperature. 

2.6. Statistical study on the obtained data 

After removing the drivers on who the algorithm performed worse (see section 3.1.2), we used the 

algorithm described in Section 2.2 to extract the face temperature of the remaining drivers (n = 28). In 

order to obtain more measurement points, the algorithm at this stage ran at a higher frequency compared 

to the validation phase: one each 2 sec instead of one each 20 sec. We were therefore able to remove 

extreme values (lower than 25°C and higher than 37°C) as well as the outliers by applying a moving 

median thresholding procedure. We finally took the mean of the remaining points on each of the four 

segments: High traffic – Manual driving, High traffic – Automated driving, Low traffic – Manual 

driving, Low traffic – Automated driving. This gave us four data points per driver that we later used in 

our statistical analysis. 

3. Results 
3.1. Validation of the algorithm 

We first analyzed the algorithm performance in terms of position error in the thermographic image, 

measured in pixels. We computed the position error between the algorithm’s output and the mean values 

provided by the four annotators (see 2.5). We also compared the position error of the mean position 

error of each annotator with respect to the overall mean value. Then, we analyzed the consequences of 

the algorithm position error in terms of temperature error, measured in degrees Celsius (°C). 

3.1.1. Position error 

In Figure 6, we present the errors’ distributions of the algorithm and the annotators. As a reference, 

in our setup the nose tip measures approximately 10 x 10 pixels. When pointing at the nose, the 

algorithm performed worse than the annotators with respect to the mean of the annotators. The two 

main causes for high mismatches were landmarks estimation errors of MediaPipe and spatial 

correspondence errors due to head movements (head turning or bending). Surprisingly, the algorithm 

outperformed slightly the annotators on the forehead with respect to the mean of the annotators. Our 

interpretation is that for a human, it could be hard to define a precise location on a large area with no 

points of reference such as the forehead. 

 
Figure 6: Position error (a 2D distance in pixels) distribution for the forehead and the nose. At the top, 
we compared the algorithm to the mean of the annotators. At the bottom, we compared each 
annotator to the mean of the annotators. 



3.1.2. Temperature error 

Figure 7 shows the errors of the final temperature values computed by the algorithm. On the 

forehead, the temperature gradient was low, so the temperature error resulting from the position error 

was small. On the nose, however, the temperature gradient was higher, so the temperature error was 

also much higher compared to the forehead. Interestingly, the temperatures computed at the positions 

annotated by one annotator are consistently smaller than the temperatures computed at the mean of the 

annotated positions. This is because the face temperature exhibits a local peak on the nose and one 

individual annotator is further from this peak than the mean position of the four annotators. 

 

 
Figure 7: Temperature error (in °C) distribution for the forehead and the nose. At the top, we 
compared the algorithm to the mean of the annotators. At the bottom, we compared each annotator 
to the mean of the annotators. 
 

Looking at Figure 8, we see that the mean absolute error of the nose temperature highly depends on the 

driver (it goes up to 1.6 °C for some drivers). For the statistical study, we excluded the 6 participants 

with an absolute error higher than 0.8 °C. 

 

 
Figure 8: Algorithm mean absolute temperature error, for each driver (in °C). 

4. Conclusion and future works 

The present work describes the first results obtained with an algorithm for tracking a driver’s facial 

skin temperature during driving interactions. The algorithm consistently and effectively tracked 

participants’ facial-skin temperature without interfering with their driving tasks. We have analyzed the 

position and temperature errors and for some drivers, tracking the nose tip temperature remains a 

challenge. Future systems should improve both the initial landmarks detection and the landmark 



transfer. The later could be achieved by measuring the distance between the cameras and the driver’s 

face like previous studies [10] or considering the face as a 3D shape. Also, a calibration-less process 

should be developed to be implemented in a real car. More analysis should be conducted before 

publishing the results of a statistical study based on this work. 
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