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Abstract  
Mathematical modelling of the COVID-19 epidemic is based on system dynamics and SIR 

models, which are not considered adequate. To overcome the shortcomings of modelling, a 

non-classical discipline, epidemic dynamics, is proposed. The epidemic should be viewed as 

an open, self-replicating dynamic system in epidemic dynamics. Epidemic dynamics models 

are based on a dynamic system model with an extended network of inverse relationship. This 

non-classical approach allows the tools of non-linear and non-equilibrium dynamics to be used 

and models of epidemic dynamics to be represented in the form of non-linear and non-

stationary differential equations. The solutions of the equations are special COVID-19 

distribution functions – functions of the flows and accumulation levels of the infected and the 

dead. The COVID-19 distribution functions show high accuracy in approximating the 

statistics, demonstrating the excellent adequacy of these functions in principle. The application 

of COVID-19 distribution functions makes it possible to quantitatively describe the basic 

concepts of an epidemic to carry out comparative parametric analysis of the distribution of 

diseases and predict the development of an epidemic.  
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1. Introduction 

Mathematical modelling of epidemic processes and the search for new drugs, vaccination and 

preventive measures contribute to disease control. In addition, quantitative model simulations can 

provide comparative analysis and predictions of temporal descriptions of key epidemic categories, such 

as the number of people who fall ill, recover, and die. Therefore, COVID-19 prevalence models are 

highly demanding to match statistical data and ensure that epidemic mechanisms and underlying 

conceptual descriptions are adequate. 

The SIR model, developed by A. Kermack and W. McKendrick in 1927-1933, is based on a scheme 

of epidemic transition of essential variables from one category to another: those susceptible (S) become 

infected (I), then recover (R). The SIR model is represented by a system of coupled first-order 

differential equations describing the basic concepts' time dependence. Models implementing the 

concept of epidemic transition have gained wide popularity and development, so the class of SIR models 
today also contains varieties: SIRS, SEIR, SIS, and MSEIR [1-5]. 

Experience with SIR models [1-5] has shown poor fit of baseline variable calculations to statistical 

data and poor accuracy in predicting epidemic processes. An analytical review [5] noted that such 
models perform poorly in heterogeneous populations, different routes of transmission and the presence 

of randomization factors.  In our opinion, the shortcomings of SIR class models lie in the concept of 

epidemic transition of basic concepts, which implies the search for new concepts. 

A retrospective analysis of approaches to epidemic modelling in [6] shows that a high level of 

complexity characterized the types of deterministic and stochastic epidemic models developed. In turn, 
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they have been poorly linked to the formulation and solution of practical epidemiological problems. 

Therefore, their use was inefficient. The author [6] reviewed a new methodology for mathematical 

modelling of epidemics – “EPIDDINAMICS”. This methodology is based on the method of scientific 

analogy in mapping the epidemic process with the process of "transfer" of matter in the equations of 

mathematical physics. During an epidemic, a complex self-sustaining process of "transferring" a 

population of a pathogen to a community of susceptible individuals is formed. The epidemic process in 

this concept is described by a system of non-linear partial derivative equations, very "similar" to the 

equations of hydrodynamics. However, analogies with hydrodynamics do not sufficiently reveal the 

content of the self-sustaining process of disease spread. 

The nature of the COVID-19 coronavirus distribution statistics shows that the epidemic's dynamics 

are highly like the logistic functions. Therefore, we note the application of logistic functions to 

approximate a piece of given statistical information. The articles [7-10] use logistic-type models to 

describe the spread of COVID-19. In [7], a mathematical model of the spread of the COVID-19 

coronavirus epidemic is considered using a simplified logistic model describing the increase in cases. 

The low accuracy of calculation results obtained in [7-8] can be attributed to the simplified 

representations of logistic models used for modelling.  
Articles [9, 10] discuss the concept of modelling the spread of COVID-19 based on constrained 

growth functions. In [9], the epidemic's wave structure, represented by a set of elementary epidemic 

flows shifted along the time axis, is considered. However, the content of the articles does not sufficiently 

reveal the mechanism of epidemic development, which reduces the accuracy of epidemic forecasts. 

This issue can be explained by the classical methods of mathematical investigation of epidemic 

processes. However, a fuller description of the epidemic development mechanism requires modern non-

classical methods for studying complex systems involving non-linear and non-equilibrium dynamics. 

The article aims to develop mathematical models for the COVID-19 epidemic based on the non-

classical approach using the methods and tools of non-linear and non-equilibrium dynamics. It allows 

for the presentation of epidemic dynamics models in the form of non-linear and non-stationary 

differential equations and dynamic models of system with an extended network of inverse relationship.  

2. Models of Epidemic Dynamics 

The reason for the shortcomings of epidemic modelling is the simplification and inadequacy of the 

mechanistic representations of system dynamics characteristic of classical mathematical modelling 

methodology. In classical modelling methodology, it is common to represent the object of study using 

the means of system dynamics [11-13] as epidemic dynamics. At the same time, an epidemic, a 

progressive spread of infectious disease among people capable of causing an emergency, should be seen 

as a complex systemic entity. 

2.1. Main approaches 

Epidemic dynamics is a scientific discipline in the study of disease transmission processes that views 

the epidemic as a complex open system, as a system dynamic viewed from a non-classical methodology. 

The core of epidemic dynamics is its model. Causality in large self-regulating systems reduces to 

the action of a self-regulation program as a goal that ensures the reproduction of the system [Stepin]. It 

enables the model of epidemic dynamics to be conceived of as a procedural reproduction system. A 

model of epidemic dynamics in a non-classical methodology should have these properties: 

• Openness means self-regulating systems are always open and exchange energy and substance 

with the external environment (metabolism), due to which the processes of local order and self-

organization occur;  

• Providing links with the environment through a network of linear and non-linear inverse 

relationship; 

• Conditions of equilibrium as a state of crisis; 

• Non-equilibrium functioning outside of the equilibrium conditions 

• Reproduction of the system through positive inverse relationship. 



The methods and tools of the theory of non-linear non-equilibrium dynamical systems are used to 

describe the epidemic dynamics model. The epidemic dynamics model is based on a dynamical system, 

a mathematical model of an object, process or phenomenon that neglects fluctuations and all other 

statistical phenomena. A dynamic system is a system with a state. In this approach, a dynamical system 

describes (in general) the dynamics of some process, namely, the process of a system moving from one 

state to another. An epidemic dynamics model consists of abstract elements representing some 

properties of the modelled system. The following elements are distinguished: integrator, adder, and 

inverse relationship chains, which link the variables – flows and quantities of accumulations. 

2.2. Variable patterns in epidemic dynamics 

Epidemics are the transmission of viruses from ill people to those who are healthy and susceptible to 

the disease. Statistics keep track of new cases – the number of people infected per day. An epidemic 

process is characterized by an increase in the total number of infected people, counted cumulatively at 

a specific date. Growth is limited by the number of people susceptible to the disease. The epidemic 

dynamics model derives from a dynamic system model [16], which uses a linear dynamic system [19] 

with inverse relationship. The main variables of the model: 

• 𝑥(𝑡) - an independent variable denoting the rate, flow of infected, those number of infected per 

unit time;  

• 𝑋(𝑡) - the dependent variable of the level of accumulation of infected (system state), denoting 

the total number of infected over some time. 

A phenomenological inverse relationship coefficient complements the dynamic system model 𝜑. 

Next model is an isolated design, usually used for linear systems 

𝑀 = 〈𝑥, 𝑋, 𝜑〉,  𝑋 = ∫ 𝑥𝑑𝑡 ,   𝑥 = 𝑋′. (1) 
To use this model for open systems, it is necessary to: increase the number of inverse relationships and 

relate them to the environment parameters. To extend the modelling capabilities of open systems, we 

use a deployed scheme in the form of multi-circuit inverse relationship. Such a detailed dynamic model 

of an open system provides a process description in abstract form and allows the construction of non-

linear differential equations. 

2.2.1. Deployment of a dynamic model 

The principle of dynamic model deployment is to decompose: the total flow of infected 𝑥 into partial 

variables and, similarly, the total phenomenological coefficient 𝜑 

𝑥 = ∑ 𝑥𝑖 ,  𝜑 = ∑ 𝜑𝑖  . (2) 
The complete flow of the infected as distributors of infection consists of elements. Following the 

decomposition principle (2), we distinguish two groups of elements based on facilitating the distribution 

of infection. Then the total flow of the infected equals the difference of the incumbent carriers minus 

the flow of loss of carriers 

𝑥 = 𝑥∓ − �̃�,  (3) 

where 𝑥∓ - streams of carriers who facilitate the distribution of the infection; �̃� - loss streams of carriers 

who counteract the distribution of the infection. 

2.2.2. The flow of carriers of infection 

The carrier flow (3) is also divided into two parts. One part relates to active spreaders and the other to 

inactive spreaders, those who have died. This approach makes it possible to distinguish between fatal 

cases and to consider the actual spreaders of infection. The flow of carriers is then equal to the difference 

of the flow of infected minus the flow of deceased 

𝑥∓ = 𝑥+ − 𝑥−,  (4) 



where 𝑥+ - is the flow of active carriers, reflecting new cases of infected persons in the process of 

spreading infection (inflow of infected persons); 𝑥− - the flow of lethal cases (outflow of infected 

persons).  

The flow of fatal cases is represented as a function of current infectious carriers 𝑥− = 𝑓(𝑥+). 

2.2.3. Flow patterns 

Flow models (4) describe the dependencies of the rate of infection on the number of people infected. 

𝑥𝑖 = 𝑓𝑖(𝑋),  (5) 
These dependencies reflect the main patterns of epidemic processes. We describe the relationship 

between flows and the environment using phenomenological coefficients. The relationship with the 

environment can be linear and non-linear. For linear relationships, the flow (5) is proportional to the 

number of infected with the inverse relationship coefficient 

𝑥𝑗 = 𝜑𝑗𝑋. (6) 

For non-linear relationships, the inverse coefficient is a function of the derivatives of the 

accumulation level variables 

𝑥𝑖 = 𝜑𝑖(𝑋)𝑋. (7) 

2.2.4. Patterns of carrier flows 

The pattern of processes here is that the flows of carriers (4) are proportional to the number of spreaders 

of infection. Carrier flow patterns reflect a monotonic increase in the number of infected. We restrict 

the group of linear (6) relationships to two types of inverse relationships, positive and negative 𝜑∓ =
= 𝜑+ − 𝜑− 

1. The growth of an epidemic is mainly determined by the inflow of infected persons, which is 

proportional to the number of people spreading the infection 

𝑥+(𝑡) = 𝜑+𝑋(𝑡), (8) 
where 𝜑+ is the positive inverse coefficient, a measure of the growth in the number of infected. 

It follows from equation (8) that the number of people infected, and consequently the infectious 

flow, grows exponentially without limit 𝑋(𝑡) = 𝑒𝜑+𝑡. This growth can be ensured if there is an 

unlimited number of susceptible individuals regarded as the source of the infection. However, in 

practice, the number of susceptible persons is limited, which poses the problem of a limited growth 

model. 

2. The flow of deaths, which reduces the growth of the epidemic, is proportional to the number of 

people infected 

𝑥−(𝑡) = 𝜑−𝑋(𝑡), (9) 
where 𝜑− is the growth rate of fatal cases. 

The growth rates in (8) and (9) are constant coefficients, so these carrier flow models are linear 

relationships. The flow of carriers (4) is then equal to the difference between the flow of infected and 

dead 

𝑥∓ = (𝜑+ − 𝜑−)𝑋(𝑡).  

2.2.5. Carrier loss flows 

Limit it to three types of loss and write an expression for the total flow 

�̃� = �̃�0 + �̃�1 + �̃�2.  (10) 
where �̃�𝑖 loss flows of certain types of carriers. 

The pattern of processes here is that loss flows are proportional to the number of spreaders, but this 

relationship is not linear (7), and the coefficients of proportionality depend on the number of spreaders 

�̃�𝑖(𝑡) = �̃�𝑖(𝑋)𝑋(𝑡). (11) 



The principle behind this non-linear relationship is that loss rates are proportional to the derivatives 

of the number of infectious spreaders (7), so growth rates are functions that depend on the 

phenomenological coefficients 

�̃�𝑖(𝑡) = 𝑎𝑖(𝑋𝑖)(𝑡).  (12) 

Then the total loss flow equation (10) with (11) and (12) will appear as 

�̃�(𝑡) = 𝑎0𝑋2(𝑡) + 𝑎1𝑋(𝑡)𝑋′ + 𝑎2𝑋(𝑡)𝑋′′. (13) 
Consider the features of the loss components in the total loss flow equation (13) that describe the 

dispersal of infectious agents in the environment. 

2.2.6. Zero-order loss flow models 

Zero-order loss stream is a function proportional to the number (zero-order derivative) of infectious 

spreaders, where the coefficient of proportionality depends on the number of spreaders �̃�0(𝑡) =

= 𝑎0𝑋(0)(𝑡) (12). The flow expression is then a non-linear relationship of the form 

�̃�0(𝑡) = 𝑎0𝑋2(𝑡).  (14) 
Zero-order flow models (14) solve the problem of limited epidemic growth, which results from the 

limited source of the infected population and consists of the fact that the growth of the infected 

population is limited to the number of persons �̂� susceptible to the epidemic. This value can be regarded 

as the source of infection in the environment. The introduction of a source limits the number of infected 

to 𝑋 ≤ �̂�. When the limit is reached 𝑋 = �̂�, the flow value falls by leaps and bounds to zero. Then the 

expression for the flow of loss takes the form of a discontinuous function 

�̃�0(𝑡) = {
�̃�0𝑋(𝑡), 𝑋(𝑡) ≤ �̂�;

0,             𝑋(𝑡) ≥ 𝑋.̂
  

(15) 

A gap in the expression for the loss flow is considered a catastrophe, leading to uncertainty in the 

spread of infection. Given that flow gaps are not observed in practice, it is necessary to introduce a 

source of infection into the model (14) to exclude a catastrophe (15). To do this, consider the infected 

source capacity �̅�0 = �̂�𝑇 and the source action time 𝑇. Considering that �̅�0 =
1

𝑎0
 we rewrite the 

expression for the flow (14) in the form of 

�̃�0(𝑡) =
𝑋2(𝑡)

�̂�𝑇
. 

(16) 

The expression for the loss flow (16) considers the source of the infected, is a continuous function 

of the number of infected and can be used to describe the limited growth of an epidemic. 

2.2.7. First-order loss flow models 

According to (12), the growth rate is a function proportional to the first-order derivative of the number 

of distributors �̃�1(𝑡) = 𝑎1𝑋(1)(𝑡). It follows that the flow expression is a non-linear relationship of the 

form 

�̃�1(𝑡) = 𝑎1𝑋(𝑡)𝑋(1)(𝑡).   (17) 
The proportionality factor 𝑎1 reflects the resistive properties of the environment, which inhibit the 

spread of the flow of the infected. 

2.2.8. Second-order loss flow models 

The second-order loss rate is a function proportional to the second-order derivative of the number of 

distributors �̃�2(𝑡) = 𝑎2𝑋(2)(𝑡), then the flow expression is a non-linear relationship of the form 

�̃�2(𝑡) = 𝑎2𝑋(𝑡)𝑋(2)(𝑡). (18) 
The proportional coefficient 𝑎2 can be considered as the elasticity of the environment and reflects 

the ability to generate oscillations during flow distribution. 



2.2.9. Differential equations of epidemic dynamics 

Given the expressions for the elements (8), (9) and (16)-(18), we write the differential equation for the 

total flow of infectious agents 

𝑥 = ((𝜑+ − 𝜑−) − (𝑎0𝑋(0) + 𝑎1𝑋(1) + 𝑎2𝑋(2)))𝑋.  (19) 

Given 𝑥(𝑡) = 𝑋(𝑡), let us rewrite differential equation (19) for the number of infected in the standard 

form 

𝑎2𝑋𝑋′′ + (1 + 𝑎1𝑋)𝑋′ +
𝑋2

�̂�𝑇
= (𝜑+ − 𝜑−)𝑋.  (20) 

Model (20) describes epidemic dynamics as a nonlinear, non-stationary differential equation. This 

model reflects epidemic dynamics as a process system reproduces stably due to interaction with the 

environment. Equation (20) has no analytical solutions, and numerical methods are used to solve it. 

Solutions to equation (20) give the epidemic episode functions: 

• The total infectiousness flow functions have a bell-shaped form; 

• The functions of the number of infected (infection rate) are S-shaped. 

The epidemic dynamics functions have two equilibrium states: 

• Initial equilibrium – unstable 𝑥(0) = 0, 𝑋(0) at 𝑡 = 0; 

• Final equilibrium – stable, 𝑥(𝑡) → 0, 𝑋(𝑡) → �̅� at 𝑡 → ∞. 

The epidemic dynamics functions vary over a range bounded by the equilibrium states, and then the 

epidemic processes in the range are non-equilibrium and irreversible. 

Equilibrium of the system means that the growth of infected individuals stops, and the derivatives 

tend towards zero. We obtain the equilibrium equation from the equation of epidemic dynamics (20) 

with zero derivatives 𝑋′′(𝑡) = 0, 𝑋′(𝑡) = 0 and 𝑋(𝑡) ≠ 0 

�̅�

�̂�𝑇
= 𝜑+ − 𝜑−. 

(21) 

The stable equilibrium equation is a parametric equation that relates the parameters of the COVID-

19 distribution functions. The epidemic threshold is described by the expression 

�̅� = (𝜑+ − 𝜑−)�̂�𝑇.  (22) 
In many practical cases, it is possible to restrict oneself to first-order epidemic dynamics models, 

which are derived from (20) at 𝑋′′(𝑡) = 0  

(1 + 𝑎1𝑋)𝑋′ +
𝑋2

�̂�𝑇
= (𝜑+ − 𝜑−)𝑋.  (23) 

In particular cases, equation (23) admits analytical solutions, but numerical finite-difference 

methods are generally used to solve it. The solution of finite difference equations constructed by (23) 

leads to discrete COVID-19 distribution functions. 

2.2.10. Discrete distribution functions 

In the discrete COVID-19 distribution functions, the relations of the variables are described by the 

discrete 𝑋𝑘+1 = 𝑋𝑘 + 𝑥𝑘+1, 𝑥𝑘+1 = 𝜑𝑘
+𝑋𝑘, where 𝜑𝑘

+ = (𝜑+ − 𝜑−) × 

×
1−

𝑋𝑘
�̅�

1+𝑎1𝑋𝑘
 is the equivalent variable for the growth rate of infected persons. Expressions for the discrete 

function of the infector flow and the number of people infected 

𝑥𝑘+1 = (𝜑+ − 𝜑−)
1−

𝑋𝑘
�̅�

1+𝑎1𝑋𝑘
𝑋𝑘 ;     𝑋𝑘+1 = (1 + (𝜑+ − 𝜑−)

1−
𝑋𝑘
�̅�

1+𝑎1𝑋𝑘
) 𝑋𝑘 ;  

�̅� = (𝜑+ − 𝜑−)�̂�𝑇. 

(24) 

The discrete COVID-19 distribution functions fit the statistics well, so they are used to model the 

epidemic. Similarly to (24), the discrete flow and number of deaths functions are 

𝑦𝑘+1 = (𝜑+ − 𝜑−)
1−

𝑌𝑘
�̅�

1+𝑎1𝑌𝑘
𝑌𝑘;     𝑌𝑘+1 = (1 + (𝜑+ − 𝜑−)

1−
𝑌𝑘
�̅�

1+𝑎1𝑌𝑘
) 𝑌𝑘;  

�̅� = (𝜑+ − 𝜑−)�̂�𝑇. 

(25) 



3. Approximation of Statistical Data Covid-19 Distribution 

Discrete COVID-19 distribution functions are used to analyse and predict epidemics. These functions 

are obtained by approximating statistical data. Two problems can be solved by approximating the 

statistics:  

• The total flow of infected people; 

• The function of the number of infected. 

Ukraine [16] is chosen as an example to show how the calculated values of COVID-19 distribution 

functions correspond to statistical data [16]. 

3.1. Approximations of Data on the Number of Infected 

Figure 1and Figure 2 show the correspondence between the calculated functions for the number of 

infected (24) and deaths (25) and the first wave statistics for April and May 2020. 
 

 
Figure 1: Correspondence of estimated numbers of COVID-19 infected with statistics for Ukraine for 
April and May 2020 

 

 
Figure 2: Correspondence between the estimated COVID-19 fatality rates and the statistical data for 
Ukraine for April and May 2020. 

 

Figure 1 and Figure 2 clearly show a reasonably good agreement between the calculated and actual 

data, where the MAPE does not exceed 3% and 7% respectively. 



3.2. Approximations of the Full Flow of Infected 

Approximation of the total flow of infected persons was performed using the example of the second 

wave of COVID-19 spread in the time interval from 1.04 to 10.09 2020 according to the statistical data 

given in [17, 18]. The approximating functions have the character of episodes (27), those of completed 

processes, and the total flow is the sum of episodes. Figure 3 shows the results of the decomposition of 

the complex flow into 4 episodes, those into 4 elementary f flows. 
 

 
Figure 3: Correlation of estimated COVID-19 infection flows with statistical data for Ukraine for the 
period April - October 2020 

The overall flow contains a sequence of four episodes with increasing peaks, resulting in an increase 

in the overall epidemic flow. 

In general, such methods of epidemic dynamics correspond to the methodology of agent-based 

modelling, which, compared with classical models, has greater descriptive power but requires a more 

detailed description of epidemic categories. Agent-based models use a dynamical system representation 

in which details of descriptions are provided by inverse relationships. 

The undoubted advantage of the method is the presentation of epidemiological dynamics models in 

an analytical form. This approach allows to study mathematical models and analyze the sensitivity of 

the result to changes in the parameters of differential equations. Also, the application of the proposed 

mathematical models to the modeling of epidemiological dynamics allows to take into account the 

nature of the studied processes of infection spread, in particular their wave nature. 

4. Conclusions 

Research on the history of epidemic modelling shows that the main reason for the shortcomings of 

mathematical modelling of epidemics (SIR, System Dynamics, “EPIDDINAMICS”) can be considered 

as the application of the classical methodology characteristic of simple isolated systems. Therefore, 

there is a problem associated with the transition of the modelling methodology from classical to non-
classical positions, within which the epidemic should be considered an open self-replicating dynamic 

system. This shift is associated with a new scientific approach to the study of disease transmission 

processes, where epidemics are viewed as system dynamics from a non-classical methodology. This 

scientific direction is called epidemic dynamics, the core of which is a reproducible procedural system. 

A model of epidemic dynamics in a non-classical methodology would be open and reflect an exchange 

of energy and matter with the external environment to enable reproduction in a nonequilibrium 

functioning mode. The methods and tools of the theory of non-linear nonequilibrium dynamical systems 

are used to describe the model of epidemic dynamics.  

The epidemic dynamics models are based on a dynamic system model with an extended feedback 

network. This non-classical approach allows epidemic dynamics models are represented as non-linear 

and non-stationary differential equations. Solutions to the equations - COVID-19 distribution functions 



– are used for mathematical modelling and investigation of epidemic processes. Importantly, these 

functions describe elementary complete epidemic processes - "epidemic episodes". The modelling 

process begins by approximating epidemic statistics with discrete functions describing two "epidemic 

episodes" types: flows and accumulations. Next, superpositions of unrelated epidemic episodes shifted 

in time and described complex processes.  

This approach is consistent with agent-based modelling methodology, which has greater descriptive 

power than classical models but requires a more detailed description of epidemic categories. The 

application of COVID-19 distribution functions shows high accuracy in approximating statistical data, 

demonstrating the excellent adequacy of these functions in principle. Applying COVID-19 distribution 

functions enables quantitative description and analysis of epidemic processes and reliable forecasting. 

Overall, applying COVID-19 distribution functions can help reduce the harm caused by a pandemic. 
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