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Abstract  
In medicine, vast amount of data is stored detailing the actions undertaken for each patient, 
data very rarely used by hospitals, mostly having statistical and informative purposes for 
doctors and hospital management. Such data could be successfully used to monitor a patient 
more accurately, both outside and inside the hospital. Although there exist internal 
monitoring processes, they can be expensive or limited to actions that are inherited from 
simple, public statistics, when in fact increased efficiency could be seen if using more 
complex data. In this paper, we use patient data to predict kidney failure, a work which may 
inspire others to look for and find patterns in medical health records. 
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1. Introduction 

The human body is a miracle of nature. It consists of the skeleton, muscles and organs. But what 
happens when an organ doesn't work? Specifically, when the kidneys no longer function properly? 
Nowadays, modern medicine found a solution to replace its function to help people stay alive because 
kidneys have the critical mission of cleansing human blood. This method is dialysis which, as 
specified above, has the role of taking over the mission of the kidneys.  

Its role is to eliminate toxins from the blood and it works as follows: the patient's blood passes 
through a filter that contains a fluid used in dialysis to stop toxins and at the exit the blood is cleansed. 
The motivation behind choosing this topic is the fundamental idea of helping other people and this 
came to light when a doctor from Iasi proposed to help the medical community through an application 
or study in helping people on dialysis, a topic of increased interest in the last years [1]. This way, 
doctors can help patients better and increase their rate to survive.  

This application should help a doctor to make better decisions about the patient's health in the 
context of dialysis. Through the patient's analyzes, it will be possible to generate graphs to keep the 
doctor up to date with a patient’s health condition. This will be possible with the help of a neural 
network that is trained with data about dialysis patients, method already studied in the literature [2]. 

In this paper we will present the application and explain its applicability in society and in future 
projects. We will also follow the exposition of the technologies used in its creation and possible 
development ideas in the future but also the description of the stages and difficulties encountered until 
reaching a final form of the application. By describing the application, we will follow the detailing of 
its functionalities, the technologies used in the open-source environment and the programming 
language used, namely Python [3]. 

The application works on the premise of creating a neural network that is trained and classifies 
dialysis patients. After if there is a data set of a single patient who presents his long term analyzes can 
be made an accuracy of his evolution. In the future, the application can incorporate also graphic 
support and various statistics for the doctor, as suggested in [4]. 
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2. State of the art 

Dialysis removes residues and fluids from the body that the kidneys are unable to eliminate. 
Dialysis also has the role of maintaining the body's balance, correcting the levels of various toxic 
substances in the blood. Without dialysis, all patients with complete renal impairment would die from 
the accumulation of toxins in the bloodstream [5]. 

After consulting [6] we concluded that a neural network would be the most appropriate solution. 
This paper presents the behavior of a neural network, a decision tree, and a logistic regression on a 
sample of 193 patients undergoing hemodialysis (HD) in Hasheminejad Kidney. Center (HKC) of 
Tehran, which is one of Iran’s largest renal hospitals. This study is similar to mine difference being 
that they only explain how these algorithms would work using a software framework developed with 
Tanagra tool which is used for data mining related work. Instead, we built a neural network using 
tensorflow. It was good because this article is on exactly the same topic as ours, the difference being 
made by the approach and the data set [7]. 

The work in [8] addresses the problem from the perspective that vitamin D is the main cause and 
that people with this deficiency should be identified, prioritizing their monitoring. The authors 
propose three methods, namely multivariate logistic regression, neural networks and decision trees. 
As in our dataset, they included issues that would influence decision making such as whether or not 
the patient is a smoker. Their results on a data set of approximately 900 people indicate that the 
multivariate logistic regression and neural network have similarly good results to the decision tree. 

In the work [9], the authors approach a topic similar to ours, on a different data set, more evenly 
distributed. Among the characteristics chosen for the neural network, many of them are similar with 
the ones we use, which makes us lean towards the idea of some obligatory factors that must be 
considered when it comes to dialysis, indicating that some criteria need to be used with a greater 
weight than other factors. 

3. Architecture 

The available data set is an .xls file containing the data of 4114 dialysis patients, structured in 240 
columns. A sample of the initial data can be seen in Figure 1. 

Figure 1: Data snippet 
 
In the first phase, we took these data and processed them in the form of a pandas type dataset. 

After we tried to create a simple neural network to test the behavior of the data in practice. While 
running we noticed that some columns contain incomplete data. As an initial solution the missing data 
were populated with the value 0 but the next problem was the calendar data which indicates when 
certain types of analyzes were done so we removed them from the data frame. The only problem 
remains the fact that we did not know which is the output column so we tried to apply the K-means 
algorithm which, after discussions with a specialist, we had come to the conclusion of placing people 
in four risk groups.  

We applied K-means and each person was assigned a risk group from zero to three. After this 
grouping we saved it in the data set in a column called "target". Following the passage of this data set 
with the "target" column as output through the neural network, an accuracy of 43% was obtained. The 
results do not look so good so we resumed discussions with an expert in the field who suggested 
cleaning the data, namely from the 240 columns many of them were apparently used to compensate 
for the missing data that we had filled in with zero at a previous step. The overall architecture can be 
seen in Figure 2. 



 
Figure 2: Data conversion process 

 
After removing duplicate columns, we used the per column average of the values to fill in the 

missing data. After passing through the neural network, the results increased to 73%, but a closer look 
revealed that these results varied between 14% and 73%, the reason for this being represented by the 
vast number of different parameters. Following other discussions with the medical experts, we 
decided to use the “all_cause_death” column as output, and removed all calendar data, except the start 
and end date of dialysis, which we combined into a single column in which we keep evidence of the 
number of days the patient undergo dialysis, as suggested in [10]. This column contains values of zero 
(alive) or one (dead). The results were approximately the same because the number of surviving 
patients is much higher than the number of the dead ones, the data being highly unbalanced.  

Figure 3: Final architecture 
 

We have chosen a method to group the numeric columns in 4 groups, more precisely the numeric 
columns that do not have values only between zero and three, managing by this to reduce each 



numeric class number of possible combinations and to obtain 84% accuracy. Finally, after changing 
the loss function from categorical cross-entropy to binary cross-entropy, which is better suited for our 
output, we obtained the final result of 94% accuracy in testing. 

The final form of the application works as follows (Figure 3). At first it receives an .csv file at the 
input which is opened with pandas and automatically converted into a pandas data frame. After that, 
also with the help of the pandas, the columns with the missing data are filled in with the average per 
column. Next is the division of the data frame into train data, test and evaluation after these new 
branches of the initial data frame are converted into tensorflow data frame. The next step is to create 
the feature layer that serves as input for the neural network. At this step we have three types of 
features, namely embed, numeric and bucket sized features. Embed is used for columns consisting of 
strings while numeric is for columns consisting of numbers and bucket sized for certain numeric 
columns that have been optimized in terms of their input. The network model consists of the first 
layer which is the input layer and contains all the features followed by two dense layers with relu 
activation. Than an output layer with sigmoid activation because the output is binary. The model is 
compiled with the loss function of binary cross-entropy and adam optimization with the function lr = 
1e - 3 this comes automatically from the tensorflow package.  

 
Figure 4: Neural Network architecture 
 
Finally, the model (Figure 4) is fitted and then the test data are executed. In the end, graphs are 

generated for the analysis of the results and also a method available at the end to test with a patient his 
medical evolution based on many analyzes created manually. 

4. Data description 

The initial data set was an XLS file with 4,114 patients and their analyzes along with the dialysis 
period and whether the person died or not. There are 240 columns of which for the columns “hb”, 
“ektv”, “calcium”, “phos”, “tgo”, “albumin”, “crp” have rows whose data are missing or are 
incomplete so for these columns initially there are another 20 identical columns in which an average 
of the values is applied to fill in these missing values but we considered it necessary to eliminate these 
duplicated columns and to complete the incomplete or missing data with the average per column, thus 
reaching the remaining 100 columns. Then there were columns that indicated when the respective 
medical analysis was done so we eliminated those and finally we joined the start and end date of 
dialysis in a single column that keeps track of the number of days on dialysis. Thus, the final data set 
will be 4114 patients with 83 features in an .csv file. From the beginning the data were anonymous, 
patients being represented by an id column that was finally removed because it does not help 
anything.  



The data respects the principles of GDPR (general data protection regulation), there are also 
columns that represent the id of the hospital which in the end were deleted as well. Figure 5 shows 
several data distribution reports to present an overview of the data used. After consultation with a 
healthcare professional, all remaining features are essential in classifying patients. In the initial data 
set the features can be divided into five categories, namely demographic, clinical, laboratory data, 
laboratory data to compensate for missing values and situational. And in the final data set only three 
categories remain, namely demographic, clinical, laboratory data. Demographic traits are traits that 
represent aspects of one's appearance. These include traits such as the patient's weight or age. 
Following are clinical features that are in principle those related to the patient's condition such as 
whether he suffers from certain comorbidities or has certain addictions such as smoking. Laboratory 
data and laboratory data to compensate for missing values are the values of patient analyzes. Here we 
have features from the spectrum of several types of tests from blood to dialysis, some examples would 
be the level of fat-mass, the number of white blood cells, calcium or albumin levels. This is where 
most of the features are included, with the largest share in the decision-making factor. Finally, 
situational traits are related to identification data such as the patient's ID or date of birth, which in the 
final data are no longer taken into account and do not present a factor for making a decision. 

 

Figure 5: Statistic data 
 

5. Modules 

The application is divided into several modules to clean the data and prepare the neural network to 
be executed successfully. It does not have a graphical interface being only taken to the test stage. 
Below we describe the modules and how they work to understand why we chose this division. 

Data frame reader module: The first module is to read the data frames according to the required 
situation such as the file format. For this we use the pandas library which provides functions for 
reading xls files or csv files. This module, in addition to reading the file and converting to a panda 
dataframe, also deals with filling in the missing data with the media on the column. This is also done 
with pandas. 

Conversions module: This module deals with the conversion of data, columns or data frames into 
new data types. There are three functions in this module. The first function is to convert an array of 
strings of a pandas data frame into one of numbers of a pandas data frame. This function receives as 
input the data frame, the string list, the column name and the last index. This function can be used for 
any column that contains strings but for our data it had to be used only for the "renal_diagnosis_icd" 
column. Also, this function is used only to be able to do k-means clustering because in this method we 
use only numpy data (only accept numbers). At output we have a copy of the data frame with changes 
done. The next function is a simple one that receives a pandas data frame and converts it into a numpy 



object. And this function is used only for k-means that act as input for it. The final function is the 
most important in the module, it receives a pandas data frame and converts it to tensorflow data set. 
This function also removes the output column from the data frame because it is not relevant for 
tensorflow data frame to contain this column. The output of this function return a tensorflow data 
frame that will represent the input for the neural network. 

Miscellaneous module: This module contains three functions the first is to extract all the elements 
of a column from the data frame. It receives as input the data frame and the column name and at the 
output we have a list with all the elements of the column. This function is used only for the 
"renal_diagnosis_icd" column. The next function is to create a list that contains a number of equal 
intervals used to optimize the neural network. This function receives the elements of a numeric 
column and the number of intervals, calculates the length of an interval and saves in a list the 
beginning of each interval. The last function receives the date frame as input and returns a list of all 
the column names that will later be used to divide the columns into feature types. 

K-means module: There is a dedicated module for k-means that contains the whole process of 
performing a clustering with this method. It contains two functions the first of which calculates the 
silhouette score which is used to decide the number of clusters, it uses the sklearn library to calculate 
this score. It receives as input the data frame and the number of iterations (clusters) and executes k-
means for each number of clusters and for each score it is checked if it is higher than the maximum 
found. If it is higher it becomes the new maximum and the iteration number becomes the number of 
clusters. The other function is actually the k-means clustering used with the help of sklearn. In the end 
its also plot a graph with all its points and centroid. 

K-means executor module: This module handles the whole process of calling all the functions 
needed to read, convert and execute the cluster. 

Neural network module: The neural network module contains the whole process of creating the 
features (from tensorflow data frame) and the model that will be executed in the execution module. 
With the help of the tensorflow library, a division is made into features that will be used as the first 
layer of the neural network. Three types of features are used, the first being embed feature with the 
only column of this type being "re-nal_diagnosis_icd". Then numeric features that are divided into 
simple and bucketsized features. Here we use the interval division method described above to create 
these buckets. Simple numeric features are those that contain integer data in the range of zero - three. 
This condition was chosen ad hoc after manual data analysis. The rest of the data is of the bucket 
features type. After these they are used as the first layer of the neural network followed by two dense 
layers and a dense layer used as output. The compilation is done with the Adam optimizer using the 
binary cross-entropy loss function. It also contains a function for creating the neural network model 
that will receive these features created above. And at the end of the module is a test function used to 
test the system with a new patient with multiple analyzes. 

Execution module: The execution module contains the whole process of executing the neural 
network and graph creation. Here the train, test and evaluated data are converted from pandas data 
frame to tensorflow data frame using the conversion module. Also here is the training of the neural 
network, its evaluation and testing. Here the statistical functions from the statistics module are called, 
but also here the execution of the testing of a new patient is called. 

Statistics module: This module deals with any means of creating graphs or displaying statistics. It 
contains functions for example the creation of statistics on the test data following the evaluation of the 
system or the evolution of the patient over time or the confusion matrix. 

File manipulation module: This module deals with manipulating the data to bring it into an ad-hoc 
final form of our choice. It contains functions for converting a file from xls to csv or creating copies 
of a file with the addition of a new column or even converting columns that contain time periods into 
numbers or merging two time columns into a numeric column. This functions were used in the early 
stages of the project when we used centroid cluster clustering as output. At the end of the project it is 
no longer used because the "all_cause_death" column is used as output. 

 
 
 



6. Results 

The factors considered for evaluating the results consisted in a number of metrics: loss, 
performance classification, accuracy, precision, recall, AUC and F-score. After training the neural 
network and validating it with the validation data, the results obtained can be interpreted from Figure 
6.  

Figure 6: MAE graph and MSE graph 
 
The first image shows the evolution of mean absolute error (MAE) which helps us to get an 

overview of how the error rate evolves with each epoch. If the line becomes constant it means that the 
neural network is no longer learning. The MAE score after 20 epochs is 0.074. 

The other image shows the evolution of mean squared error (MSE) which evaluates the quality of 
predictions. The closer it is to zero, the better the quality. It is observed that the value after 20 epochs 
is close to zero. The result value is 0.067. After training we tested the system with test data (20% of 
the total set date). Accuracy is a metric for measuring how often the neural network correctly 
classifies an input from the given set date.  

 
Table 1  
Metrics 

Metric Values 
Accuracy 0.929 
Precision 0.870 
Recall 0.641 
AUC 0.843 
MAE 0.068 
MSE 0.077 
F-score 0.738 

 
As can be seen in Table 1, the accuracy obtained is 92.9%, which indicates a fairly good score. 

The precision and recall are calculated as follows: precision is the total of true positives (TP) divided 
by the sum of true positives and false positives (FP) and the recall is the total of true positives divided 
to the sum of the total of true positives and false negatives (FN). Precision shows us the probability 
that a patient is classified correctly with one of the two values while the recall indicates the 
probability that a patient is cataloged with a certain tag. After testing the neural network, the precision 
obtained was 87% and a recall of 64%.  

F-score its weighted harmonic mean helps us to have an overview of the accuracy of the test data. 
Its value is between zero and one. The closer it is to one we can say that the system does a better job if 
new data comes at the input. The F-score obtained after the test was 0.738 which indicates that the 
system is doing quite well if would receive new data as input. 

 



ROC or receiver operating characteristic curve is a graph that shows the performance of the 
classifier in the ratio true positive rate (TPR) versus the false positive rate (FPR) [11]. 

Above we talked about ROC to lay a foundation in explaining the AUC. AUC (area under the 
ROC Curve) as the name implies refers to the area under the graph which tells us how well the neural 
network distinguishes between the classes of a classifier, in our case it shows how well it 
distinguishes between living or dead patients. The AUC value is between zero and one and the closer 
it is to one the better the system makes the differences. The AUC after testing was 0.843. 

Confusion matrix helps to understand how classified data is distributed so that it is understood how 
well the system handles. Out of the total number of 4114 patients, 823 are test patients. Following the 
evaluation, 682 were classified as true negatives, 82 true positives, 13 false positives, 46 false 
negatives.   

As can be seen, the data are quite unbalanced because many patients are classified as alive or true 
negatives in our case. In the first instance this was a problem but in the end after we applied methods 
to stop this by balancing the values of the features we managed to ignore this and therefore the 
program makes few mistakes. After testing the system, we decided to check his behavior for a new 
patient with multiple tests and to perform an evolution of his disease. Figure 7 shows the evolution of 
the patient's disease depending on the number of days since he is on dialysis, thus demonstrating how 
the patient's risk of dying over time can be interpreted. 

Figure 7: Patient evolution in time 
 
Figure 8 shows the distribution of patients according to the time spent on dialysis in relation to 

their near death. This figure indicates how the neural network classifies patients according to time so 
one can see the results of this approach. 

Figure 8: Results in comparison to evidence days 
 
Comparing our results to the ones discussed in the state of the art sections, we can infer, for 

example, that in [6] the aim of the paper is to compare several data mining techniques to predict 
whether a person would survive kidney dialysis. Because we only approached the neural network 
method, we cand only compare with their neural network method. First of all, it should be noted that 
their data set is small, balanced and has only eight parameters taken into account. They also used the 
Tanagra tool which provides a suite of tools for the mining date. Like us, they used the accuracy to 
determine the performance, their score being 93.852% compared to the one we obtained, namely 



92.9%, but compared to them we did not average all the runs (the accuracy varies between 91% and 
96%) this variation is due to the fact that our data is more balanced than their data.  

The paper [9] addresses neural networks and logistic regression, the comparison metric chosen for 
comparison is AUC. We will also refer only to the results obtained on the neural network. They used 
Neuroshell 2 version 3.0 to make the network, on a data set of 3629 dialysis patients and got an AUC 
of 0.7602 compared to our neural network which got an AUC of 0.8437. Our opinion is that this result 
reflects the optimizations made for bucket sized features. 

7. Conclusions and further work 

Above we discussed the problem addressed and the solution we chose, namely a way to predict the 
evolution of a patient on dialysis based on his probability of dying. We presented the architecture of 
the neural network built using python and tensorflow and the results obtained by it. Our conclusion is 
that this issue has been addressed in the past and we agree with the opinion of other authors who have 
concluded that neural networks have the best results [12].  

The difference brought by this paper is the data set tested and the results obtained. We could say 
that we have improved the results obtained by them. we believe that computer science should have a 
greater impact on such areas that work with human life, not to replace decision-making but to be 
introduced as an assistant for it thus increasing the speed of response and consideration of opinions 
which at the moment may have escaped for example a doctor.  

Also, what we have done can be seen as a starting point for the modernization of medical 
infrastructures in Romania, it can help to develop applications for the benefit of doctors, thus helping 
the community and saving more lives. It should be added in conclusion that this application was made 
in python with tensorflow and not with an online application that provides tools to make this possible 

The application is purely demonstrative, for the future we will try to create a graphical interface 
and a database in which to store future patients so that it can be used in hospitals. Not to replace 
doctors but to help them make a decision taking into account the choices made by the program. Thus, 
the program can show a doctor the evolution of the patient and he can act as such. The program can 
also interpret for the doctor the data provided so as to help him even more, highlighting the features 
that have changed in the patient and where to work with him, the benefits provided as a 
recommendation because in the end something subjective must to make the decision to solve the 
problem is not an objective machine [13]. Also, if this application is to be further developed in the 
future, it can motivate people to try new methods and improve the system, thus increasing the chance 
of success and to be able to be introduced in hospitals to help save human lives. 
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