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Abstract  
Neonatal mortality is an important public health problem that reflects the development of a 

country, as well as the quality of care provided to the newborn. This article presents the 

development and comparison of classical models and machine learning models for time series 

forecasting, applied to the forecast of monthly neonatal mortality rates in the metropolitan 

region of Paraiba River Valley and North Coast – São Paulo State - Brazil. The database used 

comprised the monthly rates from January 2000 to December 2020. The models compared 

were Seasonal Autoregressive Integrated Moving Average, random forest, support vector 

machine (SVM), light gradient boosting machine, categorical boosting (CatBoost), gradient 

boosting (GB), extreme gradient boosting, and multilayer perceptron. The best parameters and 

hyperparameters of the models tested were adjusted through an exhaustive computational 

search. The results showed that the CatBoost, SVM, and GB models presented the lowest 

values in the error metrics evaluated, and the SVM model presented better precision. The 

forecasts of the SVM model showed a behavior very close to the actual rates, which was 

confirmed by the application of the paired t-test. These results corroborate that time series 

forecasting models can significantly contribute as a decision support tool for public health 

problems. 
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1. Introduction 

Neonatal mortality is associated with the occurrence of newborn death in the first 28 days of life and 

is considered an important public health problem [1].  In this context, both the infant mortality rate and 

the neonatal mortality rate can be considered relevant indicators for evaluating the quality of care 

provided to newborns, public health, and the well-being of the population, as well as the country's 

development. 

Globally, from 1990 to 2015, infant mortality has been decreasing, which has been mainly reflected 

in post-neonatal mortality, but unfortunately, the number of neonatal deaths has not been showing the 

same reduction [2], (Figure 1). Corroborating this finding, according to the World Health Organization 

(WHO), from 1990 to 2019, neonatal deaths decreased from 5.0 to 2.4 million, but only in 2019, 47% 

of deaths in children under 5 years old occurred in the first 28 days of life [3]. Therefore, reducing the 

number of neonatal deaths still remains a major challenge [4]. 

The risk of death of the newborn is greatest during the first hours and days of life [4], with 

approximately 1 million newborns worldwide dying in the first 24 hours of life and about 75% of deaths 
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occurring during the first week of life [3]. In addition, it is important to emphasize that newborns are 

highly vulnerable, and those newborns with low birth weight, premature delivery, or with some health 

problems are even more vulnerable and have a higher risk of death in the neonatal period [1]. 

Reducing infant and neonatal mortality has become a global concern and has been reflected in the 

approach to the Millennium Development Goals (MDGs) and the Sustainable Development Goals 

(SDGs). Specifically, the MDGs sought to reduce infant mortality by 2015 [5], and Goal 3 of Health 

and Well-being of the SDGs aims to reduce neonatal mortality to at least 12 per 1,000 live births by 

2030 [6]. 

In the case of Brazil, from 1996 to 2020, infant mortality rates decreased, reaching in 2015 the 

established target of the MDGs in reducing infant mortality [7]. However, it appears that the reduction 

in the number of infant deaths was mainly due to the decrease in post-neonatal mortality (between 28 

and 365 days of life) [4,8], as shown in Figure 1. 

 

 

Figure 1: Infant and neonatal mortality rate in the world and infant, neonatal, and post-neonatal 
mortality rate in Brazil. 

 

To improve the conditions for decision-making in public health problems, it is possible to use 

technological advances and, with the historical data stored, it is possible to extract useful knowledge to 

predict future events [9-11]. Thus, current and past knowledge can be used to model and make future 

predictions that can help managers to face the serious problems already mentioned [11], making it 

possible to identify areas of uncertainty, such as quantitative mortality predictions [12].  

In this context, time series forecasting plays an important role and can be a useful tool for planning 

public health policies and improving the provision of health services and care [12-14].  

In this way, several algorithms can be applied to the development of time series models, which can 

capture complex patterns in the available data [9, 11, 14]. Some of the classic time series methods are 

the Autoregressive Integrated Moving Average (ARIMA), and the Seasonal Autoregressive Integrated 

Moving Average (SARIMA) also known as Seasonal ARIMA, among others [9, 11].  

On the other hand, in recent years there has been a growing interest in the application of Machine 

Learning (ML) in several areas of study [15], and the medical field has been no exception, and ML has 

been used as a decision support tool in several problems [16, 17]. In addition, ML techniques have been 

used for time series forecasting, which has resulted in the development of efficient models that often 

outperform classical models [9, 11]. 

It is important to highlight that in the literature there are still few works on health forecasts with time 

series [13]. Therefore, the general objective of this article was to present the development of forecasting 

models in time series, using classical statistical techniques, and ML techniques, using real data on 

neonatal mortality in the metropolitan region of Paraiba River Valley and North Coast – São Paulo State 

- Brazil. 



The article is organized as follows: Section 2 describes the materials and methods adopted; Section 

3 presents the results and their discussion, describing the main findings. Finally, Section 4 presents the 

conclusions, followed by the bibliographic references. 

2. Materials and Methods 

Figure 2 illustrates the methodological procedure in this time series forecast analysis, from 2000 to 

2020, of the neonatal mortality rate in the metropolitan region of Paraiba River Valley and North Coast 

– São Paulo State - Brazil. 
 

 

 
 

Figure 2: Steps of the methodological process. 
 

 

The methodological process of this work consisted of a sequence of 4 main steps, which are 

described below: 

 

 Step 1 - Data Collection: 

The database for this study was obtained from the Department of Informatics of the Unified 

Health System (DATASUS) [18], considering the records from January 2000 to December 2020 in 

the metropolitan region of Paraiba River Valley and North Coast – São Paulo State - Brazil. 

Specifically, neonatal death records were extracted from the Mortality Information System (SIM), 

and live birth records were obtained from the System of Information of Live Births (SINASC) [18]. 
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 Step 2 - Exploratory Analysis and Preprocessing: 

The collected data were analyzed using Descriptive Statistics techniques and missing data were 

identified. Monthly neonatal mortality rates were calculated by dividing the number of neonatal 

deaths by the number of live births per month, expressed per 1,000, as formulated in (1): 

𝑁𝑀𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑎𝑛𝑡 𝑑𝑒𝑎𝑡ℎ𝑠 𝑢𝑛𝑑𝑒𝑟 28 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑎𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑣𝑒 𝑏𝑖𝑟𝑡ℎ𝑠
× 1,000 (1) 

Then, the monthly time series was structured and graphs were built to better visualize the 

behavior of these data. In addition, the dataset was split in a 90:10 ratio for training and testing, 

considering rates from January 2000 to November 2018 for training and from December 2018 to 

December 2020 for testing. 

 

 Step 3 - Forecasting Models: 

A time series is a sequence of chronologically ordered random observations, denoted by 𝑦 =
{𝑦𝑡 , 𝑦𝑡+1, 𝑦𝑡+2, . . . , 𝑦𝑇}, where 𝑦𝑡 is an observation at instant 𝑡 satisfying 1 ≤ 𝑡 ≤ 𝑇, where 𝑇 the 

duration of the entire period considered. As can be seen in the available literature, classical statistical 

methods, as well as ML techniques, have been successfully used in time series forecasting [9, 11].  

In this work, the SARIMA, Random Forest (RF), Support Vector Machine (SVM), Light 

Gradient Boosting Machine (LGBM), Categorical Boosting (CatBoost), Gradient Boosting (GB), 

eXtreme Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP) models were tested, and 

their performances were compared in forecasting monthly neonatal mortality rates. The models were 

implemented with the Python v.3.9.7 programming language and in the Jupyter-notebook v.6.4.6 

development environment. 

The SARIMA model is an extension of the ARIMA model, being that the ARIMA(𝑝,𝑑,𝑞) model 

includes the statistical procedures of autoregression (AR) of order 𝑝, the integration (I) that indicates 

the number of differences 𝑑 necessary to guarantee the stationarity of the series, and the moving 

average (MA) of order 𝑞. In the case of the SARIMA(𝑝,𝑑,𝑞)(𝑃,𝐷,𝑄)s model, the letter ‘s’ subscript 

represents the seasonality period of the series, and 𝑃, 𝐷, and 𝑄 are respectively the autoregressive, 

differential, and moving average procedures of the seasonal part of the ARIMA process [9]. 

A time series is stationary when it satisfies the properties of the mean (𝐸(𝑦𝑡)=𝜇), variance 

(𝑣𝑎𝑟(𝑦𝑡)=𝐸(𝑦𝑡 − 𝜇)2=𝜎2) and autocovariance (𝛾𝑘=𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑡+𝑘)=𝐸[(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]) do not 

change over time. Many of the analyzed data are not stationary series and the common practice is to 

transform non-stationary data into stationary data through successive differences [9], being that 

generally, the first difference (𝛥𝑦𝑡=𝑦𝑡 − 𝑦𝑡−1) the first difference is enough to convert the series 

from non-stationary to stationary.  

The Augmented Dickey–Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 

test were used to verify stationarity in the monthly neonatal mortality rate data, adopting a 

significance level of 5%. The null hypothesis (𝜌 = 1) of the ADF test is the existence of a unit root, 

that is, the series is not stationary, and the null hypothesis (𝐻0: |𝜌| < 1) of the KPSS test is that there 

is no unit root, that is, the series is stationary [19,20]. 

Thus, the autoregressive (AR) process of order 𝑝 is given in (2): 

𝑦𝑡 = 𝜙0 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡  (2) 

where 𝜙𝑝 is the model parameters and 𝜀𝑡 is the random error also known as white noise.  

Equation (3) corresponds to the moving averages (MA) model of order 𝑞: 

𝑦𝑡 = 𝜃0 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯− 𝜃𝑞𝜀𝑡−𝑞 (3) 

where 𝜃𝑞 is the parameters of the MA model.  

The ARIMA model is based on the stationarity assumption, applying the combination of the AR 

model with the MA model in the differentiated series, as presented in (4): 

𝑦𝑡 = 𝜙0 + 𝜙1𝑦𝑡−1
𝑑 + 𝜙2𝑦𝑡−2

𝑑 + ⋯+ 𝜙𝑝𝑦𝑡−𝑝
𝑑 + 𝜃0 − 𝜃1𝜀𝑡−1

𝑑 − 𝜃2𝜀𝑡−2
𝑑 − ⋯− 𝜃𝑞𝜀𝑡−𝑞

𝑑  (4) 

where 𝑦𝑡
𝑑 is a differentiated time series of order 𝑑 [9,11,20].  

 



 

In the case of the SARIMA model, equation (5) is used: 

𝑦𝑡 = 𝜙0 + 𝜙1𝑦𝑡−1
𝑑 + 𝜙2𝑦𝑡−2

𝑑 + ⋯+ 𝜙𝑝𝑦𝑡−𝑝
𝑑 + 𝜃0 − 𝜃1𝜀𝑡−1

𝑑 − 𝜃2𝜀𝑡−2
𝑑 − ⋯− 𝜃𝑞𝜀𝑡−𝑞

𝑑 + 

𝛷0 + 𝛷1𝑦𝑡−1
𝐷 + 𝛷2𝑦𝑡−2

𝐷 + ⋯+ 𝛷𝑃𝑠𝑦𝑡−𝑃𝑠
𝐷 + 𝛩0 − 𝛩1𝜀𝑡−1

𝐷 − 𝛩2𝜀𝑡−2
𝐷 − ⋯− 𝛩𝑄𝑠𝜀𝑡−𝑄𝑠

𝐷  
(5) 

where 𝜙𝑝 and 𝜃𝑞 are the non-seasonal parameters of the AR and MA model, 𝛷𝑃𝑠 and 𝛩𝑄𝑠 are the 

seasonal parameters of the AR and MA model, respectively, 𝑠 is the seasonality period, 𝑑 is the non-

seasonal differentiation, and 𝐷 is the differentiation of the seasonal part of the model [11, 21].  

On the other hand, in the case of ML models, the original time series data from the training set 

were normalized using the MIN-MAX method. The MIN-MAX method transforms the data in the 

range [0 – 1] [10, 17, 22], as shown in (6): 

𝑦′𝑡 =
𝑦𝑡 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 (6) 

where 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 are, respectively, the minimum and maximum rates of the training dataset, 

and 𝑦′𝑡 is the normalized value of 𝑦𝑡 [17, 22].  

For the development of supervised ML models, all normalized observations of the training series 

(𝑆) were considered. Thus, the training dataset was formatted in a subsequence of observations 𝑆 =
{(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑖 , 𝑌𝑖)}, as presented in (7): 

𝑋𝑖 =

[
 
 
 
 

𝑦1,1 𝑦1,2 ⋯ 𝑦1,𝑑

𝑦2,2 𝑦2,3 ⋯ 𝑦2,𝑑+1

𝑦3,3 𝑦3,4 ⋯ 𝑦3,𝑑+2

⋮ ⋮ ⋯ ⋮
𝑦𝑖,𝑑+(𝑖−𝑑) 𝑦𝑖,𝑑+(𝑖−2) ⋯ 𝑦𝑖,𝑑+(𝑖−1)]

 
 
 
 

   ∧   𝑦𝑖 =

[
 
 
 
 
𝑦1,𝑑+1

𝑦2,𝑑+2

𝑦3,𝑑+3

⋮
𝑦𝑖,𝑑+𝑖 ]

 
 
 
 

 (7) 

where 𝑋𝑖 is the matrix of input attributes of the temporal pattern of dimension 𝑑, and 𝑦𝑖 is the vector 

of labels.  

Furthermore, 𝑑 is the size of the sliding window, that is, the number of previous mortality rates 

considered to predict 𝑦𝑑+1, which indicates the posterior value of 𝑦1,𝑑. In other words, ML models 

were trained with a finite sequence of 𝑋 × 𝑌 pairs, where 𝑑 mortality rates from previous months 

were used to forecast a future observation. 

Among the ML techniques that can be used to forecast time series are neural networks such as 

MLP, SVM and ensemble methods such as RF, GB, LGBM, CatBoost, and XGBoost.  

MLP is a neural network that has a layered structure (input layer, one or more hidden layers, and 

output layer), composed of neurons also known as perceptrons. From the MLP network architecture, 

it is possible to approximate continuous functions providing a non-linear mapping between inputs 

and outputs [9, 23]. The dimension of the input attributes is equal to the number of neurons in the 

input layer of the neural network, as well as the number of neurons in the output layer corresponds 

to the target variable [9].  Each neuron in the network has an activation function that will determine 

the perceptron output, in addition to each neuron receiving information from the neuron of the 

previous layer until the MLP prediction is generated [23]. 

SVM uses the input data to map it onto a high-dimensional non-linear hyperplane, also known as 

a feature space [24]. The construction of the SVM model is subject to linear constraints and the 

estimation of unknown parameters, such as the weight vector and the hyperplane bias [9]. The 

hyperplane estimation is performed using the training data and the Lagrange multiplier method to 

define the edges of the ideal separating hyperplane [24]. 

The ensemble methods were proposed to reduce the variation and improve the accuracy of the 

developed models [25]. A wide variety of ensemble methods have been proposed, such as the RF, 

GB, LGBM, CatBoost, and XGBoost methods. The construction of the models of the ensemble 

method are based on decision trees, but the training process for each model is different. The decision 

trees of the models and their variations based on gradient boosting are trained iteratively, unlike the 

RF models that train the decision trees in parallel [25]. 

 



 Step 4 - Performance Metrics: 

According to the literature, there is no single standard evaluation metric [22, 26], so, here, the 

model accuracies were evaluated and compared using various metrics, such as Mean Absolute Error 

(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) [22], Mean Absolute 

Percentage Error (MAPE), Symmetric Mean Absolute Error (SMAPE) [27], and Correlation 

Coefficient (r). The calculations of these metrics can be performed by (8)-(13): 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 − �̂�𝑡|

𝑛

𝑡=1

 (8) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑡 − �̂�𝑡)

2

𝑛

𝑡=1

 (9) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡 − �̂�𝑡)

2

𝑛

𝑡=1

 (10) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑡 − �̂�𝑡

𝑦𝑡
× 100|

𝑛

𝑡=1

 (11) 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑(

|𝑦𝑡 − �̂�𝑡|

(|𝑦𝑡| + |�̂�𝑡|) 2⁄
)

𝑛

𝑡=1

 (12) 

𝑟 =
𝑛(∑𝑦𝑡 �̂�𝑡) − (∑𝑦𝑡)(∑ �̂�𝑡)

√[𝑛 ∑𝑦𝑡
2 − (∑𝑦𝑡)

2][𝑛∑ �̂�𝑡
2 − (∑ �̂�𝑡)

2]

 
(13) 

where 𝑦𝑡 is the actual value of the mortality rate for the period 𝑡 = 1,2,3, . . . , 𝑛, �̄� is the average of 

𝑦, and �̂�𝑡 is the predicted value of observation 𝑡.  

The model with the best performance was selected by evaluating the lowest values in the MAE,  

MSE, RMSE,  MAPE, and  SMAPE metrics, in addition to the highest value in the correlation 

coefficient [22, 27, 26]. In addition, the predicted rates and the actual rates were compared using the 

paired t-test to verify significant differences between the values of each model (𝑡 − 𝑣𝑎𝑙𝑢𝑒 < 𝑡 −
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙), adopting a significance level of 5% (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05) [28]. 

3. Results and Discussion 

In this section, the main results of the descriptive analysis of the data are presented, besides the 

predictions of the neonatal mortality rate of the models tested. 

In the analyzed period from 2000 to 2020, the metropolitan region of Paraiba River Valley and North 

Coast – São Paulo State – Brazil had 697,903 live births and 6,631 neonatal deaths, with an average of 

2,769 live births and 26 deaths per month. Using descriptive statistics techniques, applied to monthly 

neonatal mortality rates, the minimum and maximum monthly rates were obtained, which were 3.71 

and 16.47, respectively. The mean monthly rate was 9.48, the standard deviation was equal to 2.54, the 

median was equal to 9.20, and the first and third quartiles were equal to 7.52 and 11.25 respectively. 

Figure 3 presents the annual (A) and monthly (B) boxplot of the collected data (2000-2020), in which 

the distribution and behavior of values over time can be observed. In the annual analysis, it was observed 

that neonatal mortality rates had a decreasing behavior, in addition to showing a slight increase in 2017 

and a variable behavior in the next three years. Likewise, in the monthly analysis, it was observed that 

June presented a decrease and less variation in mortality rates. 



 

Figure 3: (A) Annual and (B) monthly boxplot of the collected data, and (C) the original time series 
used for the models. 

 

Figure 3 (C) shows the time series line graph of the neonatal mortality rate for the 227 months 

considered for training the models, and it was possible to observe the presence of a decreasing trend 

and a possible variation of the mean, which may indicate the non-stationarity of the series.  

Furthermore, it is known that in the case of the classical SARIMA method, the stationarity of the 

time series is a prerequisite [9, 11]. The collected data were analyzed and evaluated for the possible 

presence of non-stationarity through the ADF and KPSS tests, and these results are presented in Table 

1. 

 

Table 1 
Verification of data stationarity using the Augmented Dickey–Fuller (ADF) test and the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test. 

Neonatal mortality rate ADFa p-value KPSSb p-value 

Original time series Test Statistic -2.021 0.277 2.271 0.010 

 CVc (1%) -3.461  0.739  

 CV (5%) -2.875  0.463  

 CV (10%) -2.574  0.347  

1st difference Test Statistic -7.692 <0.001 0.041 0.100 

 CV (1%) -3.461  0.739  

 CV (5%) -2.875  0.463  

 CV (10%) -2.573  0.347  

(a) ADF: Augmented Dickey–Fuller; (b) KPSS: Kwiatkowski–Phillips–Schmidt–Shin; (c) CV: critical value. 



 The results of the ADF and KPSS tests for the analysis of the existence of a unit root in the original 
time series confirmed that the data are non-stationary (Table 1), and therefore, a first-order difference 
was applied to the series to make it stationary. The stationarity of the differentiated series was 
confirmed by the ADF and KPSS tests at a significance level of 5%, revealing the rejection of the null 
hypothesis (𝐴𝐷𝐹𝑣𝑎𝑙𝑢𝑒 < 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑣𝑎𝑙𝑢𝑒 and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) in the ADF test and the acceptance 
of the null hypothesis (𝐾𝑃𝑆𝑆𝑣𝑎𝑙𝑢𝑒 < 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑣𝑎𝑙𝑢𝑒 and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05) in the KPSS test. 

The estimations of the best parameters of the SARIMA(𝑝,𝑑,𝑞)(𝑃,𝐷,𝑄)s model were performed by 

applying an exhaustive computational search. Furthermore, the models with the best combinations of 

parameters were selected using the AIC to select those with the best fit. Table 2 presents the best 

parameter configuration of the SARIMA model. 

 

Table 2 
SARIMA model adjusted for neonatal mortality rates per 1,000 live births. 

Model Parameters Std. error p-value 95% CIa AIC 

SARIMA(3,1,1)(1,1,1)12 𝜙1=0.097 0.081 0.233* [-0.062; 0.255] 944.543 

𝜙2=0.021 0.068 0.759* [-0.113; 0.155]  

𝜙3=0.084 0.080 0.298* [-0.074; 0.241]  

 𝜃1=-0.945 0.028 <0.001 [-1.005; -0.894]  

 𝛷1,12=0.956 0.067 <0.001 [0.825; 1.087]  

 𝛩1,12=-0.886 0.110 <0.001 [-1.102; -0.669]  

(a) CI: Confidence interval; * Not significant (p-value>0.05). 

 

Likewise, Table 3 presents the best settings for the hyperparameters of the tested ML models. The 

search for the best hyperparameters was performed using the grid search method, in which the 

parameters selected were those that maximized the performance of the model. 

 

Table 3 
Best hyperparameter settings of machine learning models 

Model Settings 

RF 
Window size: 25, n_estimators: 128, min_samples_leaf: 1, min_samples_split: 2, 
bootstrap: False, criterion: 'squared_error', max_depth: 5 

SVM 
Window size: 12, C: 2.3, cache_size: 200, degree: 3, epsilon: 0.095, gamma: 'scale', 
kernel: 'rbf', tol: 0.01 

LGBM 
Window size: 26, n_estimators: 50, num_leaves: 41, boosting_type: 'dart', 
colsample_bytree: 1, importance_type: 'gain',  learning_rate: 0.1, max_depth: -1, 
min_child_samples: 5, min_child_weight: 0.0001 

CatBoost Window size: 24, iterations: 100, learning_rate: 0.5, depth: 8, loss_function: 'RMSE' 

GB 
Window size: 25, n_estimators: 197, alpha: 0.9, criterion: 'friedman_mse', 
learning_rate: 0.09, loss: 'squared_error', max_depth: 3,  min_samples_leaf: 1, 
min_samples_split: 2, min_weight_fraction_leaf: 0.0, tol: 0.0001 

XGBoost 
Window size: 24, n_estimators: 35, base_score: 0.65, booster: 'gbtree', 
learning_rate: 0.300, max_delta_step: 0, reg_lambda: 2, n_jobs: 5, 
num_parallel_tree: 1, max_depth: 6, min_child_weight: 1 

MLP 
Window size: 12, hidden_layer_sizes: (50, 25), activation: 'relu', learning_rate: 
'constant', learning_rate_init: 0.00045, max_iter: 120, tol: 0.0001, alpha: 0.0013, 
batch_size: 201, epsilon: 1e-05 



 

The performance of classical and ML statistical models is shown in Figure 4. The metrics MAE, 

MSE, RMSE, MAPE, SMAPE, and r were calculated by evaluating the difference between the original 

rates and the rates predicted by the models, with the test dataset. 

 

 

Figure 4: Performance metrics of classical and machine learning statistical models. 
 

 

When comparing these models, the classic SARIMA (MAE = 1.362, MSE = 2.880, RMSE = 1.697, 

MAPE = 0.067, SMAPE = 0.189, r = 0.087) time series forecast model presented the highest values in 

the performance metrics, indicating low adequacy in the prediction of monthly neonatal mortality rates, 

as can be seen in Figure 4. However, when the performance of the SARIMA model was compared with 

the ML models, it became evident that the ML models tested had a better ability to predict monthly 

mortality rates. 

From the performance of the ML models tested, the CatBoost (MAE = 1.168, MSE = 2.216, RMSE 

= 1.488, MAPE = 0.058, SMAPE = 0.162, r = 0.499), SVM (MAE = 1.027, MSE = 1.804, RMSE = 

1.343, MAPE = 0.051, SMAPE = 0.143, r = 0.660), and GB (MAE = 1.088, MSE = 1.761, RMSE = 

1.327, MAPE = 0.054, SMAPE = 0.151, r = 0.629) techniques presented the best evaluation metrics, 

that is, they presented the lowest values in the error metrics and the highest values in the correlation 

coefficient.  

On the other hand, the LGBM (MAE = 1.232, MSE = 2.270, RMSE = 1.507, MAPE = 0.061, SMAPE 

= 0.171, r = 0.482), XGBoost (MAE = 1.266, MSE = 2.706, RMSE = 1.645, MAPE = 0.063, SMAPE = 

0.176, r = 0.275),  MLP (MAE = 1.289, MSE = 2.826, RMSE = 1.681, MAPE = 0.064, SMAPE = 0.179, 

r = 0.208), and RF (MAE = 1.310, MSE = 2.752, RMSE = 1.659, MAPE = 0.065, SMAPE = 0.179, r = 

0.383) models presented the worst values in the evaluated metrics, but even so, they were lower values 

when compared to the SARIMA model. 

Figure 5 illustrates the forecasts of monthly neonatal mortality rates, for the period from 

December/2018 to December/2020, based on the Catboost, SVM, and GB models, and the original 

rates. 



 

 

 

Figure 5: Original and predicted monthly neonatal mortality rates with the best machine learning 

models. 

 

Through a visual analysis in Figure 5, the SVM model showed better behavior in forecasting monthly 

rates, showing a high degree of proximity between the original data and the forecasted values. Likewise, 

when evaluating its performance through error metrics, the SVM model presented the lowest values in 

error rates and the highest value in r. To confirm this result, a paired t-test was performed to compare 

the performance of the SVM (mean = 7.359, standard deviation = 1.193), CatBoost (mean = 7.671, 

standard deviation = 0.886), and GB (mean = 7.495, standard deviation = 1.057), as shown in Table 4. 

Note that the mean and standard deviation of the real data analyzed were 7,274 and 1,748, respectively. 

 

Table 4 
Results of the paired t-test between the SVM, CatBoost, and GB models. 

Model t-value t-critical p-value Observation 

SVM 0.311 2.064 0.759 Accept 𝐻0 

CatBoost 1.353 2.064 0.189 Accept 𝐻0 

GB 0.824 2.064 0.418 Accept 𝐻0 

 
The results of the paired t-test showed that the mean of the real data and the mean of the selected 

models were very close values, so the null hypothesis was accepted for the three models. Furthermore, 

comparing the t-value and t-critical results of the SVM, CatBoost, and GB models (Table 4), it was 

observed that the t-value of the SVM (0.311) model is lower than that of the GB (0.824), and  CatBoost 

(1.353) models, indicating that the predictions with the SVM model is closer to the real values, unlike 

the other models. Thus, the prediction of events with time series related to neonatal deaths can 

significantly help managers in decision-making, such as resource management, strategic planning, 



development of public policies, improvement of care for newborns and mothers, etc., with the aim of 

mitigating risks and reducing the number of deaths [10, 12, 13]. 

4. Conclusion 

Neonatal mortality is an important public health problem because newborns have a higher risk of 

death in the first 28 days of life. Worldwide, the mortality rate has decreased considerably and this 

decrease in deaths occurred mainly in the post-neonatal period. In Brazil, the same behavior has been 

observed when evaluating infant and neonatal mortality rates. 

In this sense, the prediction of future events can significantly help in the reduction of deaths, as well 

as in the development of public policies to mitigate risks with preventive care for newborns and improve 

the assistance received.  

In this work, classical models and ML models were compared to predict monthly neonatal mortality 

rates in the metropolitan region of Paraiba River Valley and North Coast – São Paulo State - Brazil, for 

the period from January 2000 to December 2020. The classical statistical model evaluated in this work 

was SARIMA, in addition to the supervised models of RF, SVM, LGBM, CatBoost, GB, XGBoost, and 

MLP. 

The SARIMA model presented the highest values in the error metrics evaluated, compared to the 

ML models. The SVM model presented better precision, demonstrating that it was possible to capture 

the complex patterns of the data for the prediction of monthly neonatal mortality rates. The results were 

reinforced by the paired t-test, confirming that the SVM model predicted the mortality rates with a 

behavior very close to the actual rates. 

Among the limitations of this work is the use of data provided by DATASUS, in addition to the 

comparison of ML models only with the SARIMA method. In future work, we intend to compare other 

classical time series models, as well as develop models for predicting mortality rates for the 

municipalities in the analyzed region. 

Finally, it is important to highlight that prediction models are not a solution for neonatal mortality; 

however, they can significantly contribute to the approach of preventive measures for newborn care.  

5. Acknowledgments 

This work was supported by the Coordination for the Improvement of Higher Education Personnel 

[grant number CAPES - 001]; and partially by National Council for Scientific and Technological 

Development [grant numbers CNPq – 304197/2021-1; CNPq 303090/2021-9]. 

6. References 

[1] L. Hug, M. Alexander, D. You, L. Alkema. "National, regional, and global levels and trends in 

neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic 

analysis", Lancet Glob Health 7(6): e710–e720, 2019 . doi: 10.1016/S2214-109X(19)30163-9 

[2] World Health Organisation. "Global Nutrition Targets 2025: Low birth weight policy brief", 2014.  

URL: https://apps.who.int/iris/bitstream/handle/10665/149020/WHO_NMH_NHD_14.5_ 

eng.pdf?ua=1 

[3] World Health Organisation. "Newborns - improving survival and well-being", 2020. URL: 

https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality 

[4] J.E. Lawn, H. Blencowe, S. Oza, D. You, A.C. Lee, P. Waiswa, et al. "Every Newborn: progress, 

priorities, and potential beyond survival",  The lancet 384(9938): 189-205, 2014. doi: 

10.1016/S0140-6736(14)60496-7 

[5] United Nations. "The Millennium Development Goals Report 2015", 2016. URL: 

https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%

201).pdf 

[6] United Nations. "Transforming our world: the 2030 Agenda for Sustainable Development", 2015. 

URL: https://www.un.org/ga/search/view_doc.asp?symbol=A/%20RES/70/1&Lang=E 



[7] C.D.S.R. Marinho,  T.B.M. Flor, J.M.F. Pinheiro, M.Â.F. Ferreira. "Millennium Development 

Goals: the impact of healthcare interventions and changes in socioeconomic factors and sanitation 

on under-five mortality in Brazil", Cadernos de Saúde Pública 36(10):e00191219, 2020. doi: 

10.1590/0102-311X00191219 

[8] M.D.C. Leal, C.L. Szwarcwald, P.V.B. Almeida, E.M.L. Aquino, M.L. Barreto, et al. 

"Reproductive, maternal, neonatal and child health in the 30 years since the creation of the Unified 

Health System (SUS)", Ciência & Saúde Coletiva 23: 1915-1928, 2018. [Article in Portuguese, 

English] doi: 10.1590/1413-81232018236.03942018 

[9] A.R.S. Parmezan, V.M. Souza, G.E. Batista, "Evaluation of statistical and machine learning 

models for time series prediction: Identifying the state-of-the-art and the best conditions for the 

use of each model", Information sciences 484: 302-337, 2019. doi: 10.1016/j.ins.2019.01.076 

[10] N. Shakhovska, I. Darmoriz, Y. Vyklyuk, Y. Kryvenchuk,  P. Pukach, "Visualization of the 

Epidemics Forecasting Results". The 4th International Conference on Informatics and Data-Driven 

Medicine (IDDM 2021), 3038(2021): 283-292. 

[11] F. Petropoulos, D. Apiletti, V. Assimakopoulos, M.Z. Babai, D.K. Barrow, S.B. Taieb, et al.  

"Forecasting: theory and practice", International Journal of Forecasting 38(3): 705-871, 2022). doi: 

10.1016/j.ijforecast.2021.11.001 

[12] K.J. Foreman, N. Marquez, A. Dolgert, K. Fukutaki, N. Fullman, M. McGaughey, et al. 

"Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 

causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories", 

Lancet 392(10159):2052-2090, 2018. doi: 10.1016/S0140-6736(18)31694-5 

[13] I.N. Soyiri, D.D Reidpath. "An overview of health forecasting", Environ Health Prev Med 18(1):1-

9, 2013. doi: 10.1007/s12199-012-0294-6 

[14] A.B.S. Silva, A.C.M. Araújo, P.G. Frias, M.B.R Vilela, C.V.B. "Auto-Regressive Integrated 

Moving Average Model (ARIMA): conceptual and methodological aspects and applicability in 

infant mortality", Rev Bras Saúde Mater Infant 21(2):657-666, 2021. doi: 10.1590/1806-

93042021000200016 

[15] E.Y.A. Rodríguez, E.C.A. Rodríguez, A.F Silva, P.M.R. Rizol, R.C. Miranda, F.A.S. Marins (in 

press). "Analysis of Machine Learning integration into SupplyChain Management", Int J Logist 

Syst Manag, 2021. 

[16] D.S. Char, N.H. Shah, D. Magnus. "Implementing Machine Learning in Health Care - Addressing 

Ethical Challenges", New England Journal of Medicine 378(11): 981-983, 2018. 

doi:10.1056/NEJMp1714229.  

[17] E. Rodríguez, E. Rodríguez, L. Nascimento, A. Silva, F. Marins, "Machine learning techniques to 

predict overweight or obesity". The 4th International Conference on Informatics and Data-Driven 

Medicine (IDDM 2021), 3038(2021): 190-204. 

[18] Information Technology Department of the Brazilian Unified Health System. "Ministry of Health: 

Health Information", 2022. [in Portuguese] URL: https://datasus.saude.gov.br/  

[19] D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, Y.Shin. "Testing the null hypothesis of stationarity 

against the alternative of a unit root: How sure are we that economic time series have a unit root?", 

Journal of Econometrics 54(1-3):159-178, 1992. doi: 10.1016/0304-4076(92)90104-Y 

[20] W.A. Fuller, Introduction to Statistical Time Series, 1996. Canada: John Wiley & Sons, Inc. 

[21] M. Cools, E. Moons, G. Wets, "Investigating the variability in daily traffic counts through use of 

ARIMAX and SARIMAX models: assessing the effect of holidays on two site locations", I. 

Transportation research record 2136(1):57-66, 2009. 

[22] E.Y.A. Rodríguez, A.A.R. Gamboa, E.C.A. Rodríguez, A.F. da Silva, P.M.S.R. Rizol, F.A.S. 

Marins. "Comparison of adaptive neuro-fuzzy inference system (ANFIS) and machine learning 

algorithms for electricity production forecasting",  IEEE Latin America Transactions 20(10):2288–

2294, 2022.  

[23] M. Tim, K. Ekrem, T. Burak, M. Leandro, P. Fayola. "Sharing Data and Models in Software 

Engineering", 2014. 

[24] R. Collobert, S. Bengio. "SVMTorch: Support vector machines for large-scale regression 

problems", Journal of machine learning research, 1(Feb), 143-160, 2001. 



[25] A. Galicia, R. Talavera-Llames, A. Troncoso, I. Koprinska, F. Martínez-Álvarez. "Multi-step 

forecasting for big data time series based on ensemble learning", Knowledge-Based Systems, 

163:830-841, 2019. 

[26] R.G. Makade, S. Chakrabarti, B. Jamil. "Real-time estimation and prediction of the mortality 

caused due to COVID-19 using particle swarm optimization and finding the most influential 

parameter", Infectious Disease Modelling 5:772-782, 2022. doi: 10.1016/j.idm.2020.09.003 

[27] S.X. Lv, L. Peng, H. Hu, L. Wang. "Effective Machine Learning Model Combination based on 

Selective Ensemble Strategy for Time Series Forecasting", Information Sciences 612:994-1023, 

2022. 

[28] D. C. Montgomery and G. C. Runger, "Applied Statistics and Probability for Engineers". John 

Wiley and Sons, 6th ed., 2013. 

 


