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Abstract  
In recent years, the popularity of deep neural networks used for various problem-solving 

tasks has increased dramatically. The main tasks include image classification and 

synthesis using convolutional and generative-adversarial neural networks. These types of 

networks need large amounts of training data to achieve the required accuracy and 

performance. In addition, these networks have a long training time. The authors of the 

paper analyzed and compared the gradient-based neural network learning algorithms. 

The biomedical image classification with the use of a convolutional neural network of a 

given architecture was carried out. A comparison of learning algorithms (SGD, Adadelta, 

RMSProp, Adam, Adamax, Adagrad, and Nadam) was made according to the following 

parameters: training time, training loss, training accuracy, test loss, and test accuracy. 

For the experiments, the authors used the Python programming language, the Keras 

machine learning library, and the Google Colaboratory development environment, which 

provides free use of the Nvidia Tesla K80 graphics processor. For the experiments 

tracking and logging the authors used the Weights & Biases service. 
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1. Introduction 
 

Neural networks are powerful tools used for solving a wide range of problems. A typical deep 

neural network consists of an input layer, several hidden layers, and an output layer. Any neural 

network optimizes a certain objective function depending on the type of problem. In recent years, the 

problems of image classification and synthesis with the use of convolutional and generative-

adversarial neural networks have become relevant.  

The use of neural networks to solve a specific problem involves solving the following tasks: 

- selection of a training dataset; 

- dataset preprocessing and augmentation if needed; 

- selection of neural network architecture or designing it from scratch; 

- selection of a learning algorithm; 

- further architecture optimization and tuning. 

Training a neural network means optimizing the parameters to achieve the minimum error value. 

Optimization of neural network parameters can be performed by various algorithms, which are called 

learning algorithms. 

The purpose of this work is to compare neural network learning algorithms to classify biomedical 

images using a convolutional neural network. 

 

 

 



2. Literature review 
 

Learning algorithms are divided into first-order or second-order algorithms and evolutionary 

algorithms. First-order algorithms are based on the calculation of the first derivative of the error 

function. Therefore, these algorithms are also called gradient algorithms. Second-order algorithms use 

the second derivative to select the direction of error minimization. Evolutionary algorithms are built 

on the basis of genetic algorithms. 

In [1], the author analyzed the known gradient learning methods and provided their visualization. 

The authors of article [2] compared three evolutionary algorithms using a hybrid neural network 

in forecasting downstream river flow based on areal precipitation. 

In the article [3], the authors compared several gradient optimization methods for a simple 

convolutional neural network. The Nadam algorithm showed the best results. 

In the article [4], the author described the implementation of neural networks in the FPGA 

environment. This implementation allows for speeding up the learning processes of neural networks 

due to the use of parallel processing. As a learning algorithm, the author used a simple gradient 

descent. 

In the research study [5], the author substantiated the relevance of improving neural network 

training methods for object classification and segmentation problems. The author developed a method 

that reduces the training time of neural networks based on nonlinear dynamics. The improved method 

is based on the gradient descent method with delayed feedback. 

In these publications, researchers mostly paid attention to the analysis of existing algorithms. 

Only some of the authors compared learning algorithms.  

Therefore, the limitations of these publications are that they only partially address the problem of 

learning algorithms comparison. Most of the publications are just about learning algorithms review 

when solving a bigger problem.   

The main goal of any learning algorithm is to minimize the learning error and optimize the 

network parameters. Modern classifiers [6, 7] require large amounts of training data to achieve high 

accuracy. In the work [8], the authors described the process of biomedical image classification and 

synthesis using convolutional and generative-adversarial neural networks. The process of training 

these networks is time-consuming. The training time can be reduced with an adequate selection of the 

learning algorithm. 

Therefore, the actual task is the comparison of learning algorithms for biomedical image 

classification. 

 

3. Analysis of learning algorithms 
 

Modern algorithms for learning neural networks are based on error backpropagation and the 

gradient descent method. These algorithms are called gradient or first-order algorithms. 

An important parameter of algorithms is the learning rate. This parameter controls how far to 

move in the direction opposite to the gradient of the function in one step. If the learning rate is low, 

the training time of the neural network can increase significantly. If the learning rate is high, the 

neural network may not reach the minimum error value [9]. Formally, it can be presented as follows: 

 

 
 

where θ refers to neural network parameters, 

ɑ is a learning rate, 

 is a gradient of the optimization function (loss). 

 

The disadvantage of gradient descent is that the network parameters can be updated only after 

passing the full training dataset. 

Among other gradient learning algorithms, stochastic gradient descent and mini-batch gradient 

descent are distinguished. 



Stochastic gradient descent (SGD) differs from the usual one in that the network parameters are 

updated after each training iteration [10]. Therefore, when using this learning algorithm, the 

parameters of the neural network are updated much more often. 

Mini-batch gradient descent uses data packets to update parameters [11]. The training dataset is 

divided into packets of the same size. Then each of the packets is sent to the network input, the 

gradient is calculated and the parameters are updated. Equation (1) can be represented in the 

following way: 

 

 
 

where  is a package of training examples. 

 

Let us analyze the variations of gradient descent methods. 

 

Adagrad. The essence of this algorithm is that the learning rate adapts according to the network 

parameters [12]. The algorithm sets a lower learning rate for parameters that are associated with 

frequent features in the dataset. Then the equation with iterations will have the following form: 

 

 
 

where  is a diagonal matrix, where each of the diagonal elements is the sum of the squares of the 

gradients with respect to the parameters θ at all previous iterations, including t, 

 is a parameter with a small value that prevents division by 0 (usually ), 

 is a gradient of the optimization function, . 

 

The advantage of this algorithm is that a researcher does not need to set the learning rate manually. 

The authors use the default value for the learning rate, which is 1.0 [12]. 

The disadvantage of the algorithm is an accumulation of gradients from previous iterations. This 

leads to a decrease in the learning rate and a minor update of the network parameters. 

 

Adadelta. This algorithm is an improved version of the previous algorithm. The Adadelta 

algorithm reduces the size of the matrix of accumulated gradients to a particular fixed value [13]. 

 

 

 

 
 

where RMS is a root mean square value, 

 is a gradient of the optimization function, . 

 

The advantage of this algorithm is in no need for setting the initial value of the learning speed. 

 

RMSProp. This algorithm is similar to the Adadelta algorithm. It was developed by Geoffrey 

Hinton [14]. The equations that describe the operation of the algorithm are as follows: 

 

 

 
 

RMSprop was developed at around the same time as Adadelta. These algorithms solve the problem 

of monotonically decreasing learning rates in the Adagrad algorithm. 

 



Adam та Adamax. Unlike the two previous algorithms, in addition to the squares of the previous  

 gradients, the Adam algorithm also stores the previous gradients : 

 

 

 
 

where   are estimates of the mean and variance of the gradients, respectively [15]. 

 

The rule for updating parameters in this algorithm is as follows: 

 

 
where , . 

 

The authors suggest the following values for the parameters:  

The Adamax is a variant of the Adam algorithm. 

 

Nadam. Nadam is a combination of RMSProp and Momentum algorithms. The first algorithm 

accumulates the squares of the gradient values, and the second algorithm accumulates the values of 

the previous gradients. 

 

4. Dataset and augmentation 
 

     A training set of cytological images with a size of 64x64 pixels was used for the experiments. The 

initial dataset contains about 100 images. Therefore, the dataset was expanded to approximately 800 

images using affine distortions. The Python programming language and the Rudi library [14] were 

used to expand the training data set. 

    Cytological images form a subset of biomedical images. Cytological images are images of cells of 

the organism. Examples of cytological images are shown in Figure 1. 

 

 
Figure 1. Cytological images 

  

Cytological image processing and analysis are reflected in works [16-18]. 

 

 

5. CNN architecture design 
 

To compare the gradient descent-based training methods, a convolutional neural network model 

was built. As an input, the network accepts color cytological images with a size of 64x64 pixels and 

outputs a class label. The sequence of layers is given in Table 1. 

 

 

 

 



Table 1 
Model summary 

Layer Output shape Layer param 

Input 64x64x3  
Conv 32x32x64 kernel size = 5 

Batch Norm 
Leaky Relu 

Conv 
Batch Norm 
Leaky Relu 
Max Pool 
Dropout 

Conv 
Batch Norm 
Leaky Relu 

Conv 
Batch Norm 
Leaky Relu 

Dropout 
Flatten 
Dense 

Softmax 

32x32x64 
32x32x64 

16x16x128 
16x16x128 
16x16x128 

8x8x128 
8x8x128 
4x4x256 
4x4x256 
4x4x256 
2x2x512 
2x2x512 
2x2x512 
2x2x512 

2048 
4 
4 

 
slope = 0.2 

kernel size = 5 
 

slope = 0.2 
 

rate = 0.5 
kernel size = 3 

 
slope = 0.2 

kernel size = 3 
 

slope = 0.2 
rate = 0.5 

 

 

As can be seen from Table 1, the network consists of several repeating blocks. Each block consists 

of a sequence of convolution layers, batch normalization, an activation layer, and a dropout layer. 

Each convolutional layer reduces by half the input volume. 

The model is compiled using the categorical cross-entropy loss function. The number of learning 

epochs is 30. 

The dataset is divided into learning and testing in the ratio of 80% to 20%. The batch size is set to 

64. 

The Tensorflow 2 library and the Python programming language were used to build the model and 

conduct experiments. The experiments were conducted in the Google Colaboratory environment on 

an Nvidia Tesla K80 graphics processor. 

 

6. Experiments 
 

The results of the optimization of neural network parameters based on gradient descent are shown 

in Table 2. 

 
Table 2 
Optimizers 

Name Learning rate 

Adam 0.001 
SGD 

RMSprop 
0.01 

0.001 
Nadam 

Adadelta 
Adagrad 
Adamax 

0.001 
0.001 
0.001 
0.001 

 



All optimizer parameters are set to the default values specified in the Tensorflow library. The 

comparison of learning algorithms was made on the basis of the network training time, the value of 

the loss function, and the classification accuracy on the test dataset. The results of the experiments are 

shown in Table 3 and in the figures  below. 

 
Table 3 
Experimental results 

Name Training time 
(m) 

Loss Test loss Accuracy Test accuracy 

Adam 4.10 0.05 0.77 0.9797 0.7625 
SGD 

RMSprop 
2.50 
3.39 

0.07 
0.08 

1.29 
0.45 

0.9731 
0.9719 

0.7462 
0.895 

Nadam 
Adadelta 
Adagrad 
Adamax 

3.55 
4.35 
3.49 
4.45 

0.04 
0.64 
0.13 
0.06 

2.79 
0.45 
0.12 
0.30 

0.9822 
0.7319 
0.9491 
0.9775 

0.66 
0.8425 
0.9488 
0.9162 

 

 
Figure 2: Model with Adam optimizer 

 

Figure 2 shows the error graphs and accuracy graphs on the training and test datasets for the Adam 

optimizer. The accuracy curves on the training and test datasets show that the network is being 

retrained. This happens because there is a significant difference in accuracy between the training and 

test datasets. Accuracy on the training dataset was ~98%, and accuracy on the test dataset was 



~76%.

 
Figure 3: Model with SGD optimizer 

 

Figure 3 also shows a significant difference between the accuracy values on the training and test 

datasets: ~97% and ~75%, respectively. 

 

 
Figure 4: Model with RMSprop optimizer 
 
The classification accuracy for the model with the RMSprop optimizer on the training and test 

datasets was ~97% and ~89%, respectively (fig.4). 

 



The model with the Nadam optimizer also demonstrates significant overtraining. Accuracy 

on the training and test datasets is ~98% and 66%, respectively (fig.5). 
 

 
Figure 5: Model with Nadam optimizer 
 

 
Figure 6: Model with Adadelta optimizer 

 

As can be seen from Figure 6, the error and accuracy graphs are quite smooth. However, 

the classification accuracy on the training dataset was only ~73%. This is explained by 

another problem, namely underfitting. There are several options for its solution, such as an 

increase in the number of training epochs or an increase in the complexity of the used model. 



The accuracy values on the training and test data sets are almost the same for the model with the 

Adagrad optimizer and equal to ~95% (fig.7). 

 

 

 
Figure 7: Model with Adagrad optimizer 

 

 

 
Figure 8: All optimizers visualization 

 

Figure 8 shows that the error and accuracy curves on the test dataset for almost all models are not 

smooth, so the networks are retrained. This is evidenced by the significant difference in accuracy 

values on the training and test datasets. This problem can be solved by simplifying the neural network 

model or by increasing the number of images in the training dataset. On the other hand, the model 

with the Adadelta optimizer has an inverse problem called underfitting. To solve this problem, several 



techniques can be applied, such as increasing the complexity of the model or increasing the number of 

training epochs. 

 

 

7. Conclusions 
 

The results of the study are as follows: 

 

1. The authors of the research study conducted a comparative analysis of the gradient descent-

based algorithms for optimizing neural network parameters (Adam, SGD, RMSprop, Nadam, 

Adadelta, Adagrad, and Adamax). The comparison was made according to the criteria of network 

training time, loss function values, and classification accuracy on the cytological image dataset. 

2. Based on the cytological image dataset and the developed convolutional neural network 

model, the four best optimizers were selected according to the val_accuracy parameter: Adamax, 

Adadelta, Adagrad, and RMSprop. 

3. The graphs of val_loss and val_accuracy on the test data set for optimizers (except Adadelta) 

are not smooth. Unlike other algorithms, Adadelta is an optimization algorithm with an adaptive 

learning rate. Therefore, parameters are updated with a smaller step, and during the training, there is 

no problem with retraining. As a result, the accuracy and error curves on the training and test datasets 

almost coincide and are smooth. 

4. Since Adadelta is an adaptive algorithm, it is necessary to use a higher training rate at the 

beginning. This will significantly reduce the training time and ensure the convergence of the model. 

 

In this work, only one neural network model was used. In future research, it is planned to apply 

discussed optimizers to more complex and huge models. The further research direction will also cover 

the application of optimizers for generative-adversarial networks. 
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