
Modeling of Small Data with Unsupervised Generative 
Ensemble Learning 
 

Serge Dolgikha 

 
a National Aviation University, 1 Lubomyra Huzara Ave, Kyiv, 03058, Ukraine  

  

Abstract  
Modeling and analysis of small data raises essential problems and challenges stemming from 

insufficient sampling of unknown observable distributions, complicating and exacerbating 

confident analysis and often reducing statistical confidence of the conclusions. In this work, 

an original approach to analysis of small data is proposed that is based on an ensemble of 

generative neural network models with the intent of identifying stable clusters of data in 

informative generative representations. We demonstrate how characteristic structure of stable 

clusters in generative representations of a dataset of images of basic geometric shapes can be 

determined from representations produced by a generative ensemble. The method can be 

used to identify characteristics structure, perform correlation analysis and augment data of 

different types and under some conditions that were discussed, improve the performance of 

supervised classification in cases with a deficit of training data.  
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1. Introduction 

Modeling and analysis of small data raises essential problems and challenges stemming from 

insufficient sampling of unknown observable distributions, complicating and exacerbating confident 

analysis and often producing lower statistical confidence of the conclusions. Nevertheless, early 

analysis of structure and trends in emerging data can be essential in situations and events of novel or 

rare nature / condition where large volumes of confident decisions may not be available for any 

reason [1]. 

Among the admitted challenges in practical applications of methods of machine intelligence in the 

analysis of small data are those of stability of learning and produced results. It can be observed for 

example, as a strong dependency of the learning success on the choice of training parameters, 

selection, temporal ordering of batches and other training factors. Issues that have been noted [2,3] 

include reproducibility of the results, overfitting, inability to generalize and others. Issuing from these 

challenges, results produced by models of similar architecture with the same datasets can be 

inconsistent and volatile, and the ability to generalize characteristic patterns, more limited than in 

conventional applications. Not in the least, reproducibility of the results that is essential in 

establishing confidence in the methods can be less certain, significantly complicating comparison of 

methods and models. 

Numerous efforts attempted to examine the problem of stability of small data learning and a 

number of promising approaches and directions described, including: cross-validation; ensemble 

methods [4]; Radial-Basis Function (RBF) networks [5,6] and other methods [7,8]. However, whereas 

some of the methods shown success in a number of specific applications, generality and applicability 

to different types of analyzed data and problems, to the best of our knowledge could not be 

established due to specialized structure, architecture and essential assumptions about the distributions. 

                                                      
IDDM-2022: 5th International Conference on Informatics & Data-Driven Medicine, November 18–20, 2022, Lyon, France 

EMAIL: sdolgikh@nau.edu.ua (A. 1)  

ORCID: 0000-0001-5929-8954 

 

©️  2022 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR Workshop Proceedings (CEUR-WS.org)  

 



In parallel to these developments, methods of unsupervised generative learning [9,10] 

demonstrated effective ability to achieve significant simplification of complex data in the process of 

unsupervised generative learning via reduction of redundancy in the observable parameters and 

identification (extraction) of informative features. In a growing number of instances, these methods 

were instrumental in the analysis of patterns in complex real-world data [11,12] including data 

strongly constrained by the size of the sample [13]. Critically for success in the identified problem 

area, application of such methods is not limited by availability of prior data including labeled datasets, 

and in many cases can be successful with smaller samples than conventional methods of supervised 

learning. These traits set methods of unsupervised generative learning as good candidates for analysis 

of data constrained by both size and availability of confident prior knowledge, without precluding 

aggregation of confidently known data for subsequent analysis with conventional methods.  

To address these challenges as outlined above, we propose the ensemble approach [14] based on a 

collective of unsupervised generative neural networks to identify stable patterns and structure in the 

observable (training) data, that simultaneously addresses both problems of the deficit of known labels, 

and stability of learning. Stable structures in the informative low-dimensional representations of 

observable data produced by generative models can be identified via a process that was developed and 

used for several purposes, including correlation analysis by factors of interest, augmentation of small 

data by producing newly generated data points from identified characteristic latent structure. In 

contrast to some of the methods mentioned earlier, this approach does not have strong dependencies 

on specific assumptions about observable distributions and can be used in a generic manner with data 

of different types and origin. 

2. Methods 

An ensemble of generative neural network models with an architecture of a deep convolutional 

autoencoder with a strongly compressed representation layer was used to produce two or three-

dimensional representations of small datasets of images of basic geometrical shapes.  

The advantage of the proposed architecture stems from previous applications in producing 

informative low-dimensional representations of complex data as well as universal approximation 

capacity of neural network models [15] making them a useful and versatile tool in modeling diverse 

distributions of complex data. 

Following successful generative training of the models in the ensemble, embedded distributions of 

the evaluated datasets were produced in the spaces of latent coordinates. We then attempted to 

identify stable populations of recognizable latent structures, such as visually identifiable clusters. The 

resulting structure of identified stable clusters had to be invariant with respect to individual training 

model and therefore represent innate characteristics of the input data that was possible to verify due to 

known composition of the dataset. 

2.1. Generative Neural Network Architecture 

A deep convolutional autoencoder neural [16,17] had the input layer of dimension p with 2-3 

convolutional layers common in the practice of learning visual data. Models had convolutional layers 

for acquisition of visual features, one deep layer and a central encoding layer of size d, creating two- 

or three-dimensional (i.e. d = 2, 3) latent representations of the input data defined by activation values 

of the latent neurons in the encoding layer.  

Overall, generative autoencoder models in this work had 48,000 – 96,000 trainable parameters 

depending on configuration of layers. The decoding or generating stage was fully symmetrical to the 

encoder. The models were implemented in Tensorflow / Keras [18] with data processing, plotting and 

visualization Python packages used in the analysis of the results. 

An architecture diagram of the model is shown in Figure 1. 



 
Figure 1: Deep convolutional autoencoder architecture with a strong dimensionality reduction. 

Training of the models proceeded in an unsupervised process with minimization of generative 

error (i.e., the distance of the generated output on the input training batches) with MSE (mean squared 

error) and CCE (categorical cross-entropy) cost. Unsupervised training in this process over 10 – 25 

epochs produced a strong reduction in the value of the cost function with majority in the ensemble of 

learning models. 

A success of generative learning was measured by two criteria: 1) drop in the value of the cost 

function on the validation dataset; 2) the ability of trained models to generate a randomly selected 

subset of training data (Figure 2). Up to 80 – 90% of training models trained successfully based on 

these criteria.  

 
Figure 2: Generative training with geometrical shapes dataset: evaluation of training success. 

2.2. Data 

For verification of the approach, we used a dataset of greyscale images of basic geometrical shapes 

including circles, triangles and empty backgrounds with variation in size and contrast. The 

composition of the dataset described in detail in [19]. Two small datasets of different sizes were used: 

G-150, 50 samples per shape, with overall size 150; and G-300, 100 samples per shape. Images of 

different geometrical shapes represented different characteristic patterns in small datasets of 

observable data. 

The dataset of geometrical shapes is described in Table 1.  

Table 1 
Main characteristics, Geometric shapes dataset 

Dataset Size Input size Composition Variation parameters 

G-150 150 32 x 32 3 shapes: circle, triangle, 
greyscale background  

size, contrast 

G-300 300 32 x 32 3 shapes size, contrast 

2.3. Unsupervised Ensemble Learning 

We decided to approach the question of stability of learning with small data with a set (an 

ensemble) of generative neural network models that do not require prior knowledge, including in the 

form of labeled data, for successful training. An ensemble of trained generative models of a size n 

thus produced an array of two-dimensional representations of the input data as shown in Figure 3. 



 

Figure 3: 2D latent distributions, G-150 dataset, three independently trained models. 

As a result of this phase of unsupervised generative ensemble learning was produced a set of pairs: 

R = { (trained model, map(input data point, 2D latent position) × n }. Association of a unique id to a 

latent position of an input data point (Figure 2, e1) relative to that of the other points in the set 

allowed to identify stable clusters K in the input data by entirely unsupervised process as follows 

(pseudocode, where D is input dataset, E: encoding phase of the generative model, where e(x) = E(x) 

encoded (latent) image of observable data point, m: the number of identified clusters): 

for x(k) in D:  

if ek = E(x(k)), ek-l in Kl : K(x) = Kl (known cluster) 

else if conf(ek, L) > γ : K(x) = L; m: = m+1 (a new cluster) 

else: K(x) = A (not in cluster) 

where A: an arbitrary id for elements with uncertain cluster; γ: confidence of identification of the 

latent position ek belonging to cluster L. The process can be described as follows: if the next element 

is in the same cluster as an earlier one (i.e., with a lower sequential id in the dataset), the cluster of 

that element is assigned. If cluster of the element is uncertain, an arbitrary constant number is 

assigned; finally, if neither of the conditions is satisfied, a new cluster is assigned and the process is 

repeated until the dataset is exhausted. This process is deterministic, and as can be seen does not 

depend on selection of ordering sequence, as long as the same sequence is maintained throughout the 

process.  

There result is a matrix K(D) of (data point, cluster id) pairs of a dimension (M × n) where M is 

the size of the dataset and n, the of the ensemble of generative models, where points in the same 

cluster (including uncertain cluster association) have the same cluster id. 

In the final step one can obtained the set of stable clusters Ks(D) identified by the ensemble as a 

subset of K(D) satisfying certain confidence criteria cs: 

 (1) 

For example, if correlation of K(x) in the matrix K(D) was found to be 0.9 (i.e., 9 out of 10 models 

in the ensemble produced the same cluster id for a given element) and the size of the ensemble, 20 

then the 95% confidence interval for the correlation coefficient of the element and the cluster would 

be [0.76, 0.96] indicating a strong and confident association of an element to a cluster.  

The resulting subset of stable clusters Ks(D) identified in the described process can be used in an 

analysis of composition of the input data and a number of other applications as discussed in the 

subsequent sections. It may be worth reiterating that at no point in the analysis any true known 

samples of classes in the input dataset were used. 

3. Results  
3.1. Cluster Structure 

The results of evaluation of the cluster structure with the datasets of images in a process described 

in the preceding section are presented in Table 2 and Table 3. Identification of clusters was performed 

by visual analysis (examples in Figure 3) that demonstrate both stability and accuracy of the 

identified cluster structure with the data in the study. In the future, unsupervised clustering methods 



such as DbScan [20], Meanshift and others can be applied to identify stable cluster structure in an 

automated unsupervised process. 

Table 2 
Cluster composition, G-150 and G-300 datasets, n(1) = 20 

Dataset Number, 
clusters 

Clustered fraction(2) 
at conf = 0.8 

Clustered fraction 
at conf = 0.95 

Visible cluster 
separation 

G-150 3 1.0 0.92 high 
G-300 3 1.0 0.96 high, very high 

(1) Ensemble size 
(2) Fraction of the dataset in identified stable clusters, at confidence level 

Table 3 
Cluster confusion matrix, G-150 dataset 

Cluster, type Cluster 1 Cluster 2 Cluster 3 

0 (circle) 1.0 0. 0. 
1 (triangle) 0.25 0.75 0. 
2 (background) 0. 0.15 0.85 

With a large unsupervised dataset, from G-150 to G-300 significantly improved accuracy of the 

cluster to type association was observed, rising to the level of 95 – 100%. Stability of the latent 

structure of clusters is a key observation and a necessary requirement for successful generation of new 

data, confirming that clusters identified by the unsupervised generative ensemble method indeed 

described stable characteristic patterns in the observable data. 

3.2. Generation and Prototypes 

The architecture of generative models provides a direct way to propagate positions in the latent 

space of generative models to the space of input (observable) parameters. The mapping can be 

obtained by taking a latent position with coordinates p = (l1, l2) as input to the generator component of 

the model (Figure 1) to produce an observable position Xobs: 

 (2) 
where G: R  O, is the generator component of the model, operating from the latent space R into the 

space of inputs, O. 

Based on (2) generative ability of successfully trained generative models can be used to create new 

data points with “similarity” to identified characteristic patterns by selecting positions in the latent 

regions of identified stable clusters as illustrated in Figure 4. 

 
Figure 4: Cluster-based data generation. Green, red dots: stable latent clusters; cross: newly 
generated data points; blue: other data points. 



The effectiveness of the proposed method of ensemble cluster-based data augmentation can be 

supported by the arguments:  

Consider a small data set S of size N with p input parameters. With a conventional method of 

approximation, e.g. Gaussian, the error of the mean in each of the parameters of the data can be 

estimated as: pmean / √N [21]. Where N is small the dispersion of observable parameters can be 

sufficiently large. Next, if a successful generative representation of a lower dimensionality d with a 

good cluster structure existed, the data can be approximated with a good accuracy by a quasi-multi-

modal distribution with the number of modes Nc, where Nc: the number of stable latent clusters, and 

the dispersion, dmean / √nclus (the size of a latent cluster). Where d is small:  (i.e., a strong 

reduction of dimension of observable data) and the number of samples in the principal clusters, 

sufficiently large one obtains a statistical problem of significantly lower complexity and dispersion. 

As an example, in this study, the reduction of dimensionality from 4,096 input parameters (grayscale 

images with resolution 64 × 64) to 2, i.e. by a factor of ~2,000 was achieved. 

4. Applications 
4.1. Data and Factor Analysis 

Decomposition of unsupervised datasets into a structure of stable latent clusters, where successful, 

can be helpful in the analysis of the distribution of data and associated factors of interest. As 

discussed earlier, the proposed approach offers a general, independent of specific types of data 

capability to decompose observable data into a structure of more homogenous regions, or clusters. 

Even without known samples of classes of interest, distributions of clusters, both latent and 

observable can be analyzed in detail, including observation of characteristic representatives of 

clusters, prototypes.  

Generative ability of models in the study combined with cluster decomposition of informative 

representations allows non-trivial analysis of composition of input data by generating typical 

observable instances of stable clusters, or prototypes of characteristic natural classes of data. With 

stable clusters identified with proposed methods, one can generate specific latent positions associated 

with clusters for example, as a mean of cluster member positions and propagate them to the 

observable space with generative transformation (2).  

  (3) 
where K: stable latent cluster, P(K): observable prototype. Examples of observable prototypes of 

clusters in the dataset G-150 are shown in Figure 5. 

 
Figure 5: Cluster prototypes, G-150 dataset. 

Importantly, cluster decomposition can provide insights into essential associations of the data to 

the factors of interest, again without any previously known context or associations. For an example 

consider a hypothetical dataset where input datapoints { x } in the dataset G-150 represent patient data 

and are associated with certain factor of interest f(x), such as a reaction to an infection. A direct 

correlation analysis in the observable space can be challenging due to large number of observable 

parameters (close to 5,000). On the other hand, cluster decomposition as discussed earlier can provide 

a mapping of input data to its stable cluster: x  K(x) resulting in a single dimension correlation 

problem (f(x), K(x)), a massive reduction of complexity.  

4.2. Data Generation and Augmentation 

Based on the discussion in Section 3.2 cluster decomposition can be used to generate new data 

points and augment small datasets, again without any limitations on the prior knowledge of the 

distribution of the input data. Once a structure of stable latent clusters has been identified, it is 



straightforward to determine their distribution regions and produce latent candidate positions for 

augmentation of the original data. Generative transformation (2) can then be applied to obtain the 

related data points in the space of observable parameters. 

To summarize the results and discussion on data generation, ensemble-based generative 

augmentation of small data can be successful under these conditions: 

 The latent dimensionality is sufficiently small: . 

 The models demonstrate good learning success and consistent, stable, cluster structure. 

 The number of stable clusters is small compared to the size the dataset (the number of 

samples), and the population of main clusters is sufficiently large: N / nclus  1. 

If the conditions are satisfied, the original data can be described by a multi-modal distribution of 

stable latent clusters that can be identified with density clustering or another method as demonstrated 

earlier; further, augmentation of data can be performed in an unsupervised process based on the 

identified distribution in the latent space and will provide stable results invariant with respect to the 

selection of a specific instance of generative model. 

4.3. Classification 

The method of augmentation based on unsupervised cluster structure produced in generative 

learning can be employed to improve the success of classification with models of supervised learning 

trained with small datasets, as in the conventional practice of supervised learning, the size and 

representative quality of training data can have strong influence on the accuracy of classification [22]. 

The success of the method essentially depends on the presence of a correlation between stable 

latent structure of clusters and the factor of interest for classification that can be used as a label in 

supervised learning. If such a correlation can be established between the data points in identified 

stable clusters and the factor of interest as discussed in Section 4.1, an augmentation process outlined 

in Sections 3.2, 4.2 can be applied, with class labels assigned to generated data points based on the 

established association between latent clusters and known classes. Such a process of augmentation 

can produce an improvement in classification accuracy due to larger and more representative dataset 

in supervised learning.  

For example, a clustering analysis performed with the ECE dataset [13] demonstrated a strong 

correlation of the identified cluster structure with the classification factor of interest, an 

epidemiological outcome. In that and similar cases where correlation of identified cluster structure 

with an observable factor of interest can be established, augmentation of data with the method 

described in this work can produce substantial improvements in classification. 

5. Conclusions 

The method of identification of unsupervised cluster structure in generative representations of 

small datasets with an ensemble of unsupervised generative models has been described and verified 

with small datasets of visual data of basic geometrical shapes. It was shown that a stable structure of 

clusters can be identified in the latent representations of successful generative models with high 

confidence in the interval 90–100% with the dataset used in the study. The structure of stable clusters 

representing characteristic types in the input data can be used to augment small datasets by generating 

new data points with several potential applications, including enhancement of labeled datasets with an 

objective to improve the success of classification in supervised learning. 

It needs to be noted that the method described in this work may not have universal applicability to 

all datasets and its effectiveness is defined not only by the observable parameters, but also by the 

composition and characteristics of the dataset such as: the size, the number and population of 

principal clusters in the latent representation of the data and their correlation with the factors of 

interest. Where the conditions described in Section 3.2 are met, augmentation can produce additional 

data points associated with principal clusters and improve the performance of conventional 

classification methods trained with augmented datasets.  



In novel, rare, non-standard cases, events and environments, large volumes of known data may be 

needed for confident analysis with conventional methods of machine learning. Availability of training 

data may present strong challenges in such cases. Methods of unsupervised generative learning, 

including the ensemble approach presented in this work, can be successful in identification of 

characteristic structure and patterns even with smaller sets of observable data without requirements of 

massive prior knowledge offering a practical direction toward improving the confidence of the 

analysis. 
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