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Abstract
Amazon encompasses a large number of discrete businesses such as Retail, Advertising, Fresh, Business (B2B e-commerce),
and Prime Video, most of which maintain a presence across its e-commerce website. They produce content for our customers
that belong to diverse content types such as merchandising (e.g. product recommendations), product advertisements (e.g.
sponsored products and display ads), program adoption banners (e.g. Amazon Fresh), and consumption (e.g. Prime Video).
When customers visit a web page on the website, it triggers a content allocation process where we determine the specific
content to show in regions of customer shopping experience on that web page. Content produced by the aforementioned
businesses then needs to be arbitrated during this process. We present a causal bandit based framework to address the
problem of content optimization in this context. The framework is responsible for fairly balancing the differing objectives
and methods of these businesses, and selecting the right content to display to the customers at the right time. It does so with
the goal of improving the overall site-wide customer shopping experience. In this paper, we present our content optimization
framework, describe its components, demonstrate the framework’s effectiveness through online randomized experiments,
and share learnings from deploying and testing the framework in production.
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1. Introduction
Amazon encompasses a large number of discrete busi-
nesses such as Retail, Advertising, Fresh, Business (B2B
e-commerce), and Prime Video, most of which maintain a
presence across its e-commerce (or retail) website. These
discrete businesses produce content for our customers
that belong to diverse content types such as merchandis-
ing (e.g. product recommendations), product advertise-
ment (e.g. sponsored products and display ads), program
adoption banner (e.g. Amazon Fresh), and consumption
(e.g. Prime Video). Each such content is rendered in the
form of a widget within independent ‘regions of customer
shopping experience’ on the website, also known as wid-
get groups. For instance, widgets such as ‘customers who
viewed this also viewed’ and ‘customers who bought this
also bought’ are displayed on product detail pages of the
website alongside other organic and advertising content.
The region of customer shopping experience on the web-
site where the collection of such widgets are displayed is
an example of a widget group. We illustrate the concept
of a product (or an item), widget, and widget group in
(figure 1).
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When customers visit a web page on the website, it
triggers a content allocation process where we deter-
mine the specific content to show in the widget groups
on that web page. Content produced by the aforemen-
tioned discrete businesses then needs to be arbitrated
during this process. As the common integration point,
Amazon’s content optimization framework is responsi-
ble for this content arbitration. It accomplishes this by
fairly balancing the differing objectives and methods of
these businesses through optimization capabilities, and
by taking into account customer, content, and shopping
context. This results in the right content being shown
to the customers at the right time thereby providing a
consistent and personalized shopping experience. The
content optimization framework is an ecosystem which
enables businesses to interoperate independently by en-
abling content creators, customer shopping experience
providers, and web page owners to efficiently construct
and serve content for the retail website.

In this paper, we present a causal bandit based frame-
work to address the problem of content optimization
with the objective of improving the overall customer
shopping experience on Amazon’s retail website. Our
contributions include:

• application of a contextual bandit framework to
enable introduction of new content through on-
line randomized experiments (or A/B tests) and
to learn the value (or benefit) of new content
through exploration,
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Figure 1: Below is an example of a widget group in a shopping page on Amazon’s retail website. It is part of the checkout
experience that surfaces after an item has been added to your cart. Here, we see carousels of products (or items) each of
which is associated with a title, for instance, "Try before you buy with Prime Wardrobe". Each such carousel of products is
rendered in the form of a widget which are marked by blue lines in the figure. A single product recommendation within a
widget is marked by the green border while the widget group, which is a collection of widgets, is marked by the orange border.
Note that widget groups are regions of customer shopping experience on the website, and each web page on the website can
contain one or more widget groups. While the example in this figure illustrates a widget as a carousel of products, they are not
limited to it. Widgets can also be used to render images, banners, advertisements, and other types of content. The homepage
of Amazon’s retail website illustrates this diversity in content type, where a widget is one of the many cards shown in the
customer’s feed. For reference, we have included an example of Amazon’s homepage in Appendix A.

• an approach to measure the reward for actions
taken by the contextual bandit framework,

• application of view-through attribution (VTA) to
attribute reward in the context of content ranking
which only requires that content be impressed,

• utilization of an uplift modeling framework to
augment VTA and to optimize for incremental
benefit,

• a methodology to incorporate diversity in content

ranking by using cross-content interactions, and
• learnings from the deployment of a low-latency

learning framework in production that reduces
the delay in feedback and increases the velocity
of our learning loop.

Finally, we also demonstrate the effectiveness of our
framework through online A/B tests, and share results
and insights gathered through the same.



2. Related Work
Application of exploration strategies in the context of rec-
ommender systems is an active area of research. In recent
years, multiple exploration strategies have emerged and
shown promising results [1, 2]. They include epsilon-
greedy [3, 4], upper confidence bound (UCB) [5, 6],
adding random noise to parameters [7, 8, 9], and boot-
strap sampling [10, 11]. We adopt the Thompson sam-
pling algorithm [12] to balance exploration with exploita-
tion under the contextual bandit setting. Originally in-
troduced in 1933 [13], Thompson sampling has been
widely adopted in the context of bandit problems recently
[14, 15, 16]. It has been shown to achieve state-of-the-art
results on some real-world use cases and be robust to
delay [17, 18].

Uplift modeling is a widely used approach to mea-
sure incremental effect [19, 20, 21, 22]. Our approach to
estimate incremental effect or benefit is similar to the
meta-learning approach presented in [23, 24]. In [25], the
authors presented an application of a causal bandit in tar-
geting campaigns. They estimated incremental effect to
optimize for clicks in email marketing campaigns and ad-
vertisement campaigns on Amazon’s mobile homepage.
In this work, we explore an application of causal bandit
for content optimization by estimating and optimizing
for heterogeneous treatment effect [26].

3. Problem Description
Let 𝒫 be the set of all web pages and 𝒬 be the set of
all widget groups on Amazon’s retail website. Here, a
widget group refers to real estate or region of customer
shopping experience on the website which can be pop-
ulated with content 𝑐 in the form of a widget. Content
𝑐 can belong to diverse types of content such as prod-
uct advertisements (e.g. sponsored products and display
ads), merchandising (e.g. product recommendations),
program adoption banners (e.g. Amazon Fresh), and con-
sumption (e.g. Prime Video). Each widget group 𝑞 ∈ 𝒬
in turn can render (or display) a set of ranked content
𝑇𝑞 = {𝑐𝑟 | 𝑐𝑟 ∈ 𝐶𝑞 𝑎𝑛𝑑 𝑟 ∈ {1, . . . , 𝑘𝑞}} where 𝑟 is
the rank of content rendered in widget group 𝑞, 𝑘𝑞 is
the total number of content that can be rendered in 𝑞,
and 𝐶𝑞 is the set of all possible candidate content that is
eligible to be rendered in 𝑞. Here, the cardinality of set
𝐶𝑞 >> 𝑘𝑞 . Eligibility for rendering content 𝑐 in widget
group 𝑞 is typically determined by business rules and
content creators.

When a customer visits web page 𝑝 ∈ 𝒫 on Amazon’s
retail website, a request is generated with customer and
shopping context 𝑋 to optimize and display content for
widget group 𝑞 on page 𝑝. Context for candidate content
𝑐 ∈ 𝐶𝑞 can be constructed and is denoted by 𝑍 . We now

formally define the problem we address as determining
ranked set 𝑇𝑞 from 𝐶𝑞 given contexts 𝑋 and 𝑍 so as to
maximize the expected reward ℛ. Here, reward ℛ is a
measure of improved customer shopping experience on
the retail website. We denote the metric for measuring
reward ℛ by 𝑀𝑂𝐼 , short for ‘metric of interest’. In our
setting, 𝑀𝑂𝐼 takes into account the short-term as well
as long-term impact to the customer’s shopping experi-
ence, and helps us to fairly balance multiple and differing
objectives of various stakeholders. It is computed us-
ing actions taken by the customer after interacting with
content such as impressions, clicks, purchases and other
high-value actions. Note that our problem is different
from that of ranking products (or items) within a single
widget for a particular recommender system.

A key challenge we face in predicting 𝑀𝑂𝐼 using 𝑋
and 𝑍 is that of the estimate being biased due to the cold-
start problem. New content gets continually introduced
to be shown on Amazon’s retail website while existing
content can be sunsetted at any point of time. Empirically,
we observe a propensity in customers to interact more
with content displayed higher up in the widget group and
on the web page. Furthermore, we only observe reward
for content that was shown to customers before, but we
only show content to customers for which we predict
there will be sufficient reward. Consequently, content
with few or no prior observations is unlikely to be ranked
higher or chosen to be shown to the customers even if
it could generate a high-reward in the counterfactual
event where a customer were to interact with it. Here,
we could use aggregate-level features to partially address
the cold-start problem but cannot fully solve it. Moreover,
we observe that customer preferences and their interac-
tions with content change over time. To address these
challenges, we use a contextual bandit based framework
to create a learning loop for new content that has never
been shown before to the customers and to dynamically
adapt to changing customer preferences.

4. Methodology
In this section, we present a causal bandit based frame-
work to address the problem of content optimization.

4.1. Features
When a customer visits web page 𝑝 ∈ 𝒫 on Amazon’s
retail website, we receive customer and shopping con-
text 𝑋 . Context 𝑍 corresponding to each candidate con-
tent can also be generated separately. We then com-
bine contexts 𝑋 and 𝑍 non-linearly to form a single
d-dimensional vector 𝐵 ∈ R𝑑. We also include second-
and third-order interaction terms between the explana-
tory variables observed in the context. For reference, we



include a few examples of context below:

• Shopping context: region, web page type, widget
group id, page item, metadata of page item, and
search query

• Customer context: recent interaction events, cus-
tomer signed-in status, and prime membership
status

• Content context: widget id, widget meta informa-
tion, and content attributes

4.2. Ranking Model
We formulate the problem of content optimization as that
of learning to rank the set of eligible content 𝐶𝑞 . Our aim
is to determine the rank of each eligible candidate content
𝑐 ∈ 𝐶𝑞 and return the 𝑡𝑜𝑝 − 𝐾 ranked content 𝑇𝑞 so
as to render them in widget group 𝑞. To do so, we need
a utility function using which we can evaluate eligible
content and rank them. We propose using reward ℛ to
be generated over a subsequent time horizon in the event
content were to be shown to a customer, 𝒮 ∈ {0, 1},
as our utility function. We model it using a generalized
linear model,

𝐸(𝑅|𝑆,𝐵) = 𝑔(𝐵⊤𝑊 ) (1)

where, g is the link function. Since reward ℛ takes
continuous values in our problem setting, we choose
an identity link function. We use the set of past obser-
vations 𝐻 made up of triplets of context, action and
reward {(𝑋𝜏 , 𝐴𝜏 , 𝑅𝜏 ), 𝜏 = 1, . . . , 𝑡 − 1} to train the
ranking model and estimate regression parameters using
a Bayesian framework.

4.3. Reward
A fundamental challenge in our problem setting is that
of defining and measuring reward so as to evaluate di-
verse types of content together on an equal footing [27].
When content optimization systems seek to maximize
the attributed value (or reward) to individual content,
we observe that it leads to development and launch of
bespoke recommender systems that optimize for individ-
ual objectives and cater to page specific use cases. For
instance, recommender systems displayed on different
web pages can optimize for increasing customer inter-
actions with themselves through view, clicks, purchases
and other high-value actions without being complemen-
tary (or incremental) to the customer’s current shopping
intent. This often results in a poor customer shopping
experience which in turn leads to a negative impact to
business metrics such as revenue. An alternative here is
to attribute value to individual content only if interaction
with it is in addition to purchase of the page item (or
product) wherever applicable. In empirical evaluation,

we observe that results from such an approach can be
mixed in that it may improve customer shopping expe-
rience on some web pages of the website but not all of
them.

To address these challenges, we propose optimizing
directly for overall down-session value generated after
customer has interacted with content. In this approach,
once content has been ranked and rendered, we record
customer’s interaction events with it such as impressions,
clicks, purchases and other high-value actions. There-
after, we measure the aggregate value generated from
these events over a subsequent time horizon to compute
our metric of interest 𝑀𝑂𝐼 . The measured value is at-
tributed to content as reward, if it meets a predefined
criteria. Content ranking models then learn to predict for
this down-session value of showing content to customers
given a context, and make ranking decisions based on
the predicted value. This approach enables us to measure
and attribute site-wide impact across all devices, apps,
widget groups, and web pages from the moment a cus-
tomer has interacted with content. We call this approach
to define reward and rank diverse type of content using
aggregate down-session value as holistic optimization.

4.4. Attribution
The predefined criteria used to attribute aggregate down-
session value as reward also defines the form of attri-
bution such as click-through attribution (CTA) or view-
through attribution (VTA). The distinction between these
two forms of attributions is the customer interaction
event that triggers the measurement of reward. In CTA,
reward is measured after a click event with content oc-
curs while in VTA reward is measured after a view event
with content occurs. Note that both VTA and CTA are
a form of equal credit attribution model. Likewise, the
time horizon over which the reward is measured is called
an attribution window. The window is triggered after a
customer interaction event with content occurs. We de-
termine attribution windows by performing exploratory
data analysis of the length of customer shopping sessions
and use multiple windows in practice to cater to varied
use cases. We illustrate the concept of VTA and CTA
with an attribution window using the example in (figure
2).

A key drawback of CTA is that it cannot attribute re-
ward to content that cannot be clicked or where clicking
on content does not necessarily indicate a positive cus-
tomer shopping experience. We observe that CTA also
leads ranking models to favor content that has a high
click propensity. Consequently, such models promote
content which at times is not relevant to customer’s on-
going shopping mission. This distracts the customer from
their mission which in turn results in a negative impact
to their shopping experience. VTA on the other hand



Figure 2: Here, content (c1) corresponding to view (v1) will be attributed with MOI of 30 (= 10 + 20) under view-through
attribution. Likewise, under click-through attribution content (c2) corresponding to click (cl-1) will be attributed with MOI of
30 (= 10 + 20) while content (c3) corresponding to click (cl-2) will be attributed with MOI of 50 (= 20 + 30). Note that content
(c1) corresponding to view (v1) will be attributed MOI=0 under click-through attribution.

allows us to capture both the positive and negative im-
pact of presenting content to customers. It enables us
to capture the value of showing content which inspires
customer shopping missions including scenarios where
customers can compare selection without requiring di-
rect interaction with content. Furthermore, it is closer in
alignment with how an experimentation framework for
conducting online A/B tests may measure and attribute
aggregate downstream impact after a customer has been
exposed to a new shopping experience (or treatment).
Thus, it can enable parity in the methodology used to
attribute reward in the content optimization and online
experimentation systems.

4.5. Uplift Modeling Framework
Both VTA and CTA assume a causal relationship between
customers interacting with shown content through views
and clicks (cause), and observed reward (effect). In the
case of CTA, there is a strong connection between the
cause and effect as often times a click is an intentional
action on the part of a customer. However, with VTA
we cannot establish this direct connection between a
customer viewing content and the observed reward. As
such, we assume a causal relationship which introduces
noise in our observations. Models incrementally trained
using such observations are likely to have a high variance
in the predictions.

In addition, the attribution model described in the pre-
vious section does not capture the incremental value of
showing content. Customers can have an underlying
propensity to shop products or consume content based
on prior exposure or affinity. As a result, attributing

observed down-session value as reward without account-
ing for the counterfactual outcome could lead to models
overestimating the predicted benefit at inference time.
To address these challenges, we use an uplift modeling
framework. It estimates Conditional Average Treatment
Effect (CATE) [28] between exposure and non-exposure
of content to customers using observational data. We
assume conditional unconfoundedness in our problem
setting [29, 30]. Then,

𝐶𝐴𝑇𝐸 ≡ 𝐸[𝑅(1)−𝑅(0)|𝐵 = 𝑏] (2)

= 𝐸[𝑅(1)|𝐵 = 𝑏]− 𝐸[𝑅(0)|𝐵 = 𝑏]

where, 𝐵 is the d-dimensional feature vector. Here,
𝐸[𝑅(1)|𝐵 = 𝑏] is the mean of the treated group
where content 𝑐 is shown in the shopping session, and
𝐸[𝑅(0)|𝐵 = 𝑏] is the mean of the untreated group where
content 𝑐 is not shown in the shopping session. We have
explored two approaches to estimate the latter: i) using
the mean of untreated group calculated from our ranking
logs as a biased estimate for 𝐸[𝑅(0)|𝐵 = 𝑏], and ii) by
estimating 𝐸[𝑅(0)|𝐵 = 𝑏] from randomized controlled
trials.

The uplift modeling framework is then defined using
a two-part model. First, a baseline model estimates the
expected counterfactual reward when content 𝑐 is ranked
but not shown in the shopping session. We illustrate the
underlying theory using a linear regression model:

𝜇0 = 𝐵⊤𝛽 + 𝜖 (3)

Treatment or incremental effect for each observation in
the treated group where content 𝑐 is ranked and shown



in the shopping session is then estimated as:

𝐷
(1)
𝑖 = 𝑅𝑖 − �̂�0(𝑏) (4)

where, 𝑅𝑖 is the observed down-session reward for ob-
servation 𝑖, and 𝐷

(1)
𝑖 is the imputed incremental effect

for observation 𝑖 in the treated group. In the second
part, pseudo-effect 𝐷 is used as the target variable in
our ranking model, described in (eqn. 1), to predict the
incremental benefit of showing content 𝑐 to a customer
in widget group 𝑞.

4.6. Exploration Strategy
The exploration component of our content optimization
framework explores content with few observations from
the past. To do so, it aims at solving a contextual bandit
problem. Here, we use Thompson sampling, an algo-
rithm widely used to balance exploration and exploita-
tion. It suggests to randomly play each arm according to
its probability of being optimal. In our problem setting, it
means choosing content proportional to the probability
of it being optimal. This implies we won’t be necessarily
choosing content with the highest expected incremental
benefit at each time step. It is a trade-off we make to ex-
plore content with few observations from the past which
have high uncertainty but ultimately may drive a higher
reward. In practice, we apply the Thompson sampling
algorithm by sampling model parameters 𝑊𝑡

ˆ from their
posterior distributions followed by choosing content that
maximizes the reward.

Algorithm 1 Thompson Sampling Algorithm for Con-
tent Optimization

1: for 𝑡 = 1, . . . , 𝑇 do
2: for all 𝑟𝑎𝑛𝑘 = 1, . . . , 𝑘𝑞 do ◁ 𝑘𝑞 is the value

of 𝐾 corresponding to widget group 𝑞
3: Receive context 𝑋𝑡

4: Sample 𝑊𝑡
ˆ from the posterior distribution

Pr(𝑊 |𝐻𝑡)
5: Select 𝐴𝑡𝑟𝑎𝑛𝑘 = argmax𝐴 𝐵⊤�̂� 𝑡

6: end for
7: Choose 𝑡𝑜𝑝−𝐾 arms and observe reward 𝑅
8: 𝐻𝑡 = 𝐻𝑡−1 ∪

{(𝑥𝑡𝑟𝑎𝑛𝑘 , 𝑎𝑡𝑟𝑎𝑛𝑘 , 𝑟𝑡𝑟𝑎𝑛𝑘 ), 𝑟𝑎𝑛𝑘 = 1, . . . , 𝑘𝑞}
9: end for

Candidates that are ranked and chosen to be displayed
by the ranking model are then logged along with their
observed reward in the form of triplets (𝑥𝑡, 𝑎𝑡, 𝑟𝑡). There-
after, we estimate the incremental effect for each obser-
vation in the logged feedback using our uplift modeling
framework. The incremental effects are subsequently
used as target variables to incrementally train our rank-
ing model using a batch update under the Thompson Sam-
pling framework. While doing so, we decay the model

parameters by a small fraction of their existing value
to account for changes in the environment [31]. This
completes the feedback loop which allows us to contin-
uously explore actions and expand our knowledge for
making better decisions in the future. This in turn en-
ables us to support running online A/B tests using which
content creators can introduce new content across Ama-
zon’s retail website with the goal of improving customer
shopping experience and measure its benefit while doing
so.

4.7. Incorporating Diversity in Ranking
Showing high-relevance content without taking content
diversity into account leads to monotony and tends to
make the holistic shopping experience less meaningful
for the customers. Optimizing for the whole widget group
involves balancing relevance and diversity of the content
therein, where the whole-widget group effect is repre-
sented using the amount of similar content displayed
in it. One approach followed here is to model this as a
submodular optimization problem [32]. In [33, 34], the
authors propose using submodular functions which have
a diminishing returns property. In their approach, the
total score for a content is derived from its relevance
while also accounting for the decreasing utility of show-
ing multiple content of the same type. As a result, the
value of selecting content from a given category or type
decreases as a function of the number of content belong-
ing to that type already selected. A key shortcoming of
this approach is that it lacks a feedback loop and param-
eters of the diversity scoring function aren’t learned to
optimize for the same objective as the relevance scoring
function.

Instead we propose a two-stage model for incorporat-
ing diversity into content. We first rank all the eligible
content 𝑐 ∈ 𝐶𝑞 to be shown in widget group 𝑞 using our
underlying ranking model (eqn. 1). Thereafter, we iter-
atively re-rank content at each position 𝑟 in the widget
group by taking into account the content that is already
ranked in the previous 𝑟 − 1 positions. This is accom-
plished by using a second ranking model which includes
cross-content interaction features. To capture these in-
teractions, we categorize each content 𝑐 in to one of 𝑚
distinct categories or types. The goal is to then select
an optimal number of highly relevant widgets in each
category. For a given widget group 𝑞 ∈ 𝒬, the overall
value of widget group 𝑞 is represented as:

𝑓(𝑐𝑘|𝑞,𝑋) =

𝑘∑︁
𝑟=1

𝑓(𝑐𝑟|𝑇𝑞(𝑟−1)
, 𝑋,𝑊 ) (5)

𝑓(𝑐𝑟|𝑇𝑞(𝑟−1)
, 𝑋,𝑊 ) = 𝑔(𝐵⊤𝑊 ) (6)

where, 𝑐𝑟 is the content at rank 𝑟 in widget group 𝑞,
𝑇𝑞(𝑟−1)

is the set of content allocated in the top 𝑟 − 1



positions, 𝑋 is the request and customer context received
as before, 𝑊 are the model parameters, and 𝑔 is a gener-
alized linear model.

5. Low Latency Learning
Framework

In production, we observed that our content optimiza-
tion framework suffered from a delay in feedback as it
needed multiple days on average to complete the learning
loop. This involves logging the feedback after customers
are shown with content on the website, measuring and
attributing reward in our data pipelines, incrementally
training the models at a daily cadence, and deploying
the retrained models in production. A delay in feedback
has the following consequences in production for our
content optimization framework:

• When new content is introduced into the ecosys-
tem, the optimization framework is not able to
effectively estimate its potential benefit, and the
content is subject to exploration as expected. Due
to the delay in feedback, this can result in new
content being explored at a higher show-rate
for the duration of the delay during the initial
learning period before sufficient observations are
logged for the model to learn from its own feed-
back. This in turn can result in sub-optimal deci-
sion making and introduction of poor customer
shopping experience during the learning period.

• While the cost of exploration may be amortized
over long running content campaigns, a longer
feedback loop induces limitations in realizing ben-
efit during high-value events such as Cyber Mon-
day where new content may be introduced for a
short period of time. In such cases, some content
promoting sales or other events will be turned off
even before their benefit is effectively learned by
the model.

• A longer feedback loop also decreases the velocity
of running online A/B tests where new content
and improvements to optimization framework
may be introduced with the aim of improving
customer shopping experience.

To address these challenges, we developed a Low Latency
Learning (L3) framework which has reduced the learning
loop for our content optimization framework by 90% from
multiple days to a couple of hours.

5.1. Bayesian Regularization
A key challenge we encountered in the development of
L3 framework was that of the number of samples avail-
able for incremental training being significantly lower

than before as we retrained the models at a faster ca-
dence. This impacts the model’s learning process in two
ways: i) outliers in the dataset can cause the model to
incorrectly associate higher potential reward for some
content despite winsorization techniques, and ii) insuf-
ficient data can limit the model’s ability to learn about
content’s reward distribution especially in regions with
small amount of traffic. Empirically, we observe that both
of these scenarios lead to over-exploration of content.

We address this challenge using Bayesian Regulariza-
tion. The use of Gaussian priors has been established in
[35] as a form of L2 regularization wherein the following
equivalence is explored:

(𝐵𝐵𝑇 + 𝛼𝐼)−1𝐵𝑇𝑅 = E
[︁𝑃 (𝐵|𝑊 )𝑃 (𝑊 )

𝑃 (𝐵)

]︁
(7)

Here, instead of initiating the feature weights from a
static prior (i.e. mean 0 and variance 1), we derive a
prior distribution from previously learned weight distri-
butions in order to allow for a more pessimistic explo-
ration regime. For instance, by using a prior representing
20th percentile mean of all features and 75th percentile
variance of all features, we can reduce the chances of
over-exposure for new content during the learning pe-
riod. This improvement in turn has enabled us to launch
the L3 framework in production and reduced the delay
in feedback by 90%.

6. Experiments
We first evaluate our content optimization framework
using both traditional offline evaluation and off-policy
evaluation methodologies [36, 37]. This allows us to eval-
uate and prune alternative treatment policies before intro-
ducing them in online randomized experiments [38, 39].
Here, we use regression and ranking metrics to evalu-
ate the framework quantitatively, and content’s share-of-
voice and ranking distributions to evaluate it qualitatively
using domain knowledge. Subsequently, we demonstrate
the effectiveness of our framework through five online
A/B tests.

6.1. Online Experiment Setting
In our online experimentation setting, observational
units (or shopping sessions) are randomly exposed to
either the baseline control policy or the alternative treat-
ment policies. Here, we track the impact to our metric
of interest 𝑀𝑂𝐼 , which is a measure of improved site-
wide customer shopping experience. In the results, we
include the causal effect w.r.t percentage improvement
in this metric at Amazon’s scale. The experiments are
conducted across all of Amazon’s world-wide market-
places and product categories. Level of significance 𝛼 for



Table 1
Online experiment results.

Experiment Incremental Impact p-value
(% improvement)

EXP-1 +0.16% 0.02
EXP-2A +0.01% 0.12
EXP-2B +0.01% 0.09
EXP-3 +0.09% 0.02
EXP-4 +0.05% 0.19
EXP-5 +0.11% 0.00

these experiments was determined by Amazon’s business
objectives and was set to 0.10. Duration for these experi-
ments was estimated from statistical power analysis. We
allocated equal traffic to both the control and treatment
groups. During the course of the experiment, the models
were incrementally trained using their own set of logged
feedback.

6.2. Experiment 1: Application of the
Holistic Optimization Framework

We first test the effectiveness of our holistic optimization
framework to rank content in a widget group on product
detail pages of Amazon’e retail website. This is a region
of customer shopping experience on the website where
we usually see organic content such as ‘customers who
viewed this also viewed’ and ‘customers who bought this
also bought’ widgets being displayed alongside adver-
tising content. A key challenge in dynamically ranking
content in this setting was that of attribution of reward
to diverse type of content which were generated by con-
tent creators who optimized for differing business ob-
jectives. As such, our framework needed to arbitrate
content during the content allocation process and fairly
balance the differing objectives. Since holistic optimiza-
tion framework measures reward using the aggregate
down-session value after customer has interacted with
content, we wanted to test its effectiveness in addressing
this problem. In the control group, content was statically
ranked by a rule-based system while in the treatment
group, our framework dynamically ranked content using
the holistic optimization framework. In the results (EXP-
1), we observe a practically and statistically significant
improvement in the 𝑀𝑂𝐼 metric which is a measure of
site-wide improvement in customer shopping experience.

6.3. Experiment 2: Application of
View-through Attribution

In this experiment, we applied our content optimization
framework to the image size selection problem. Usually,
product display images on Amazon’s detail page exist in

three sizes – small, medium and large. Here, the size of a
rendered image can influence the customer’s understand-
ing of the product. Hence, we want to select and render
an optimal size of the same product image so as to help
the customers evaluate products better especially for high
consideration purchases. This is a use case where click-
through attribution cannot be used as clicking on the
content does not necessarily indicate a positive customer
shopping experience. We formulate the task of optimal
image size selection as a learning to rank problem, and
use view-through attribution to measure and attribute
reward to the rendered image size. To demonstrate the
effectiveness of this approach, we ran two experiments –
one each for desktop and mobile surfaces. In the control
group, image size was selected by a rule-based system
while in the treatment group, our framework ranked the
image size variations and chose the top ranked variation
to render. In both the experiments (EXP-2A and EXP-2B),
we observe an improvement in the 𝑀𝑂𝐼 metric which
is practically significant at Amazon’s scale.

6.4. Experiment 3: Application of the
Causal Bandit Framework

After demonstrating the effectiveness of VTA, we tested
the utility of the uplift modeling framework. The frame-
work allows us to measure and optimize for incremental
value generated by content, and reduces the observa-
tional bias in data. We conducted an experiment in a
widget group which is located at the bottom of product
detail pages on the desktop retail website where person-
alized content that is usually generated by taking recent
browsing history into account is shown. This in turn
allowed us to test our hypothesis that customers can
have an underlying propensity to shop products or con-
sume content based on prior exposure or affinity, and
optimizing for incremental benefit can result in a posi-
tive customer shopping experience. In the control group,
content was ranked by a linear bandit without using the
uplift modeling framework while rewards were measured
and attributed using CTA. In the treatment group, con-
tent was ranked using a linear causal bandit with VTA.
In the results (EXP-3), we observe that the linear causal
bandit using VTA performed better than the linear ban-
dit which did not use uplift modeling framework. The
improvement in 𝑀𝑂𝐼 metric was both practically and
statistically significant.

6.5. Experiment 4: Application of
Incorporating Diversity in Ranking

Subsequently, we ran an experiment (EXP-4) on the desk-
top homepage of Amazon’s retail website to test the im-
pact of incorporating diversity in content. In the control
group, content was ranked using just the single baseline



ranking model, while in the treatment group, content
was ranked using the two-stage ranking model – first
using the baseline model followed by a re-ranking model
which incorporates diversity using cross-content interac-
tion features. Here, we observe a practically significant
improvement in the 𝑀𝑂𝐼 metric. Based on the results,
we infer that incorporating diversity into content ranking
can lead to a better customer shopping experience.

6.6. Experiment 5: Application of the
Low Latency Learning Framework

L3 pipeline has shortened the delay in feedback for our
contextual bandit based framework by 90%. As a result,
we expect the bandit retrained at hourly cadence to con-
verge sooner and perform better than the one retrained
at a daily cadence. To test the benefit and measure the
impact of low latency learning, we ran an experiment
on the mobile homepage of Amazon’s retail website. In
the control group, content was ranked by a linear bandit
incrementally trained at a slower cadence with a learning
loop of multiple days, while in the treatment group, con-
tent was ranked by a linear bandit incrementally trained
at a faster cadence with a learning loop of a few hours.
In the results (EXP-5), we observe that the bandit with
a shorter delay in feedback performed better w.r.t our
metric of interest 𝑀𝑂𝐼 where the improvement was
both practically and statistically significant. Based on the
results, we infer that reducing the delay in feedback and
increasing the velocity of learning loop has a positive
impact on customer shopping experience.

7. Conclusion
In this paper, we presented a causal bandit framework
to address the problem of content optimization with the
objective of improving the overall customer shopping
experience on Amazon’s e-commerce (or retail) website.
Therein, we introduced a holistic optimization frame-
work that enables us to define reward and rank diverse
types of content using aggregate down-session value;
presented the concept of view-through attribution; dis-
cussed how it addresses some of the shortcomings of
click-through attribution; and presented applications of
VTA in ranking content belonging to diverse type. To ad-
dress the shortcomings of view-through attribution, we
used an Uplift modeling framework which has enabled
us to rank content using incremental or causal bene-
fit instead of overall value. Subsequently, we proposed
a two-stage model to incorporate diversity in content
ranking by using cross-content interaction features. It
helps us to balance relevance with diversity in content
shown on Amazon’s retail website and provide a mean-
ingful experience to our customers. Thereafter, we shared

learnings from the deployment of a low-latency learning
framework in production that has reduced the delay in
feedback and shortened the learning loop by 90%. Here,
we described our application of Gaussian prior as a form
of L2 regularization which in turn enabled the launch
of the L3 framework. We then demonstrated the effec-
tiveness of our methodology through multiple online
experiments, and shared results and insights gathered
through the same. Finally, we believe our methodology
and learnings are generic and can be extended to con-
tent optimization problems in other domains. It can also
be extended to rank items (or products) within a single
widget for a product recommendation system.
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APPENDIX

A. An Illustration of Diverse Type of
Content on Amazon’s Homepage

Below, (figure 3) illustrates diverse type of content being
shown on the homepage of Amazon’s retail website.
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Figure 3: Homepage of Amazon’s Retail Website.
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