
Monolith: Real Time Recommendation SystemWith
Collisionless Embedding Table

Zhuoran Liu1, Leqi Zou1, Xuan Zou1, Caihua Wang1, Biao Zhang1, Da Tang1, Bolin Zhu2,†,
Yijie Zhu1, Peng Wu1, Ke Wang1 and Youlong Cheng1,‡

1Bytedance Inc.
2Fudan University

Abstract
Building a scalable and real-time recommendation system is vital for many businesses driven by time-sensitive customer
feedback, such as short-videos ranking or online ads. Despite the ubiquitous adoption of production-scale deep learning
frameworks like TensorFlow or PyTorch, these general-purpose frameworks fall short of business demands in recommendation
scenarios for various reasons: on one hand, tweaking systems based on static parameters and dense computations for
recommendation with dynamic and sparse features is detrimental to model quality; on the other hand, such frameworks
are designed with batch-training stage and serving stage completely separated, preventing the model from interacting with
customer feedback in real-time. These issues led us to reexamine traditional approaches and explore radically different design
choices. In this paper, we presentMonolith1, a system tailored for online training. Our design has been driven by observations
of our application workloads and production environment that reflects a marked departure from other recommendations
systems. Our contributions are manifold: first, we crafted a collisionless embedding table with optimizations such as expirable
embeddings and frequency filtering to reduce its memory footprint; second, we provide an production-ready online training
architecture with high fault-tolerance; finally, we proved that system reliability could be traded-off for real-time learning.
Monolith has successfully landed in the BytePlus Recommend2 product.

1. Introduction
The past decade witnessed a boom of businesses powered
by recommendation techniques. In pursuit of a better
customer experience, delivering personalized content for
each individual user as real-time response is a common
goal of these business applications. To this end, infor-
mation from a user’s latest interaction is often used as
the primary input for training a model, as it would best
depict a user’s portrait and make predictions of user’s
interest and future behaviors.

Deep learning have been dominating recommenda-
tion models [1, 2, 3, 4, 5, 6] as the gigantic amount of
user data is a natural fit for massively data-driven neural
models. However, efforts to leverage the power of deep
learning in industry-level recommendation systems are
constantly encountered with problems arising from the
unique characteristics of data derived from real-world
user behavior. These data are drastically different from
those used in conventional deep learning problems like
language modeling or computer vision in two aspects:

1. The features are mostly sparse, categorical and
dynamically changing;
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2. The underlying distribution of training data is
non-stationary, a.k.a. Concept Drift [7].

Such differences have posed unique challenges to re-
searchers and engineers working on recommendation
systems.

1.1. Sparsity and Dynamism
The data for recommendation mostly contain sparse cat-
egorical features, some of which appear with low fre-
quency. The common practice of mapping them to a
high-dimensional embedding space would give rise to a
series of issues:

• Unlike language models where number of word-
pieces are limited, the amount of users and rank-
ing items are orders of magnitude larger. Such an
enormous embedding table would hardly fit into
single host memory;

• Worse still, the size of embedding table is ex-
pected to grow over time as more users and items
are admitted, while frameworks like [8, 9] uses a
fixed-size dense variables to represent embedding
table.

In practice, many systems adopt low-collision hashing
[1, 10] as a way to reduce memory footprint and to allow
growing of IDs. This relies on an over-idealistic assump-
tion that IDs in the embedding table is distributed evenly
in frequency, and collisions are harmless to the model
quality. Unfortunately this is rarely true for a real-world
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Figure 1: Monolith Online Training Architecture.

recommendation system, where a small group of users
or items have significantly more occurrences. With the
organic growth of embedding table size, chances of hash
key collision increases and lead to deterioration of model
quality [10].

Therefore it is a natural demand for production-scale
recommendation systems to have the capacity to capture
as many features in its parameters, and also have the
capability of elastically adjusting the number of users
and items it tries to book-keep.

1.2. Non-stationary Distribution
Visual and linguistic patterns barely develop in a time
scale of centuries, while the same user interested in one
topic could shift their zeal every next minute. As a result,
the underlying distribution of user data is non-stationary,
a phenomenon commonly referred to as Concept Drift
[7].

Intuitively, information from a more recent history
can more effectively contribute to predicting the change
in a user’s behavior. To mitigate the effect of Concept
Drift, serving models need to be updated from new user
feedback as close to real-time as possible to reflect the
latest interest of a user.

In light of these distinction and in observation of issues

that arises from our production, we designed Monolith,
a large-scale recommendation system to address these
pain-points. We did extensive experiments to verify and
iterate our design in the production environment. Mono-
lith is able to

1. Provide full expressive power for sparse features
by designing a collisionless hash table and a dy-
namic feature eviction mechanism;

2. Loop serving feedback back to training in real-
time with online training.

Empowered by these architectural capacities, Monolith
consistently outperforms systems that adopts hash-tricks
with collisions with roughly similar memory usage, and
achieves state-of-the-art online serving AUC without
overly burdening our servers’ computation power.

The rest of the paper is organized as follows. We first
elaborate design details of how Monolith tackles exist-
ing challenge with collisionless hash table and realtime
training in Section 2. Experiments and results will be
presented in Section 3, along with production-tested con-
clusions and some discussion of trade-offs between time-
sensitivity, reliability and model quality. Section 4 sum-
marizes related work and compares them with Monolith.
Section 5 concludes this work.
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Figure 2: Worker-PS Architecture.

2. Design
The overall architecture of Monolith generally follows
TensorFlow’s distributed Worker-ParameterServer set-
ting (Figure 2). In aWorker-PS architecture, machines are
assigned different roles; Worker machines are responsi-
ble for performing computations as defined by the graph,
and PS machines stores parameters and updates them
according to gradients computed by Workers.

In recommendation models, parameters are catego-
rized into two sets: dense and sparse. Dense parame-
ters are weights/variables in a deep neural network, and
sparse parameters refer to embedding tables that corre-
sponds to sparse features. In our design, both dense and
sparse parameters are part of TensorFlow Graph, and are
stored on parameter servers.

Similar to TensorFlow’s Variable for dense parame-
ters, we designed a set of highly-efficient, collisionless,
and flexible HashTable operations for sparse parame-
ters. As an complement to TensorFlow’s limitation that
arises from separation of training and inference, Mono-
lith’s elastically scalable online training is designed to
efficiently synchronize parameters from training-PS to
online serving-PS within short intervals, with model ro-
bustness guarantee provided by fault tolerance mecha-
nism.
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Figure 3: Cuckoo HashMap.

2.1. Hash Table
A first principle in our design of sparse parameter repre-
sentation is to avoid cramping information from different
IDs into the same fixed-size embedding. Simulating a dy-
namic size embedding table with an out-of-the-box Ten-
sorFlow Variable inevitably leads to ID collision, which
exacerbates as new IDs arrive and table grows. Therefore
instead of building upon Variable, we developed a new
key-value HashTable for our sparse parameters.

Our HashTable utilizes Cuckoo Hashmap [11] under
the hood, which supports inserting new keys without
colliding with existing ones. Cuckoo Hashing achieves
worst-case 𝑂(1) time complexity for lookups and dele-
tions, and an expected amortized 𝑂(1) time for insertions.
As illustrated in Figure 3 it maintains two tables 𝑇0, 𝑇1
with different hash functions ℎ0(𝑥), ℎ1(𝑥), and an element
would be stored in either one of them. When trying to
insert an element 𝐴 into 𝑇0, it first attempts to place 𝐴
at ℎ0(𝐴); If ℎ0(𝐴) is occupied by another element 𝐵, it
would evict 𝐵 from 𝑇0 and try inserting 𝐵 into 𝑇1 with
the same logic. This process will be repeated until all el-
ements stabilize, or rehash happens when insertion runs
into a cycle.

Memory footprint reduction is also an important con-
sideration in our design. A naive approach of inserting
every new ID into the HashTable will deplete memory
quickly. Observation of real production models lead to
two conclusions:

1. IDs that appears only a handful of times have
limited contribution to improving model quality.
An important observation is that IDs are long-tail
distributed, where popular IDs may occur mil-
lions of times while the unpopular ones appear
no more than ten times. Embeddings correspond-
ing to these infrequent IDs are underfit due to
lack of training data and the model will not be
able to make a good estimation based on them.
At the end of the day these IDs are not likely to
affect the result, so model quality will not suffer
from removal of these IDs with low occurrences;

2. Stale IDs from a distant history seldom contribute
to the current model as many of them are never
visited. This could possibly due to a user that
is no longer active, or a short-video that is out-
of-date. Storing embeddings for these IDs could
not help model in any way but to drain our PS
memory in vain.

Based on these observation, we designed several fea-
ture ID filtering heuristics for a more memory-efficient
implementation of HashTable:

1. IDs are filtered before they are admitted into em-
bedding tables. We have two filtering methods:
First we filter by their occurrences before they
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The information feedback loop from [User → Model Server → Training Worker → Model Server → User] would spend a long time
when taking the Batch Training path, while the Online Training will close the loop more instantly.

are inserted as keys, where the threshold of occur-
rences is a tunable hyperparameter that varies for
each model; In addition we utilize a probabilistic
filter which helps further reduce memory usage;

2. IDs are timed and set to expire after being inactive
for a predefined period of time. The expire time is
also tunable for each embedding table to allow for
distinguishing features with different sensitivity
to historical information.

In our implementation, HashTable is implemented as
a TensorFlow resource operation. Similar to Variable,
look-ups and updates are also implemented as native
TensorFlow operations for easier integration and better
compatibility.

2.2. Online Training
In Monolith, training is divided into two stages (Figure
1):

1. Batch training stage. This stage works as an or-
dinary TensorFlow training loop: In each train-
ing step, a training worker reads one mini-batch
of training examples from the storage, requests
parameters from PS, computes a forward and a
backward pass, and finally push updated param-
eters to the training PS. Slightly different from
other common deep learning tasks, we only train
our dataset for one pass. Batch training is useful
for training historical data when we modify our
model architecture and retrain the model;

2. Online training stage. After a model is deployed
to online serving, the training does not stop but

enters the online training stage. Instead of read-
ing mini-batch examples from the storage, a train-
ingworker consumes realtime data on-the-fly and
updates the training PS. The training PS periodi-
cally synchronizes its parameters to the serving
PS, which will take effect on the user side imme-
diately. This enables our model to interactively
adapt itself according to a user’s feedback in real-
time.

2.2.1. Streaming Engine

Monolith is built with the capability of seamlessly switch-
ing between batch training and online training. This is
enabled by our design of streaming engine as illustrated
by Figure 4.

In our design, we use one Kafka [12] queue to log ac-
tions of users (E.g. Click on an item or like an item etc.)
and another Kafka queue for features. At the core of the
engine is a Flink [13] streaming job for online feature
Joiner. The online joiner concatenates features with la-
bels from user actions and produces training examples,
which are then written to a Kafka queue. The queue for
training examples is consumed by both online training
and batch training:

• For online training, the training worker directly
reads data from the Kafka queue;

• For batch training, a data dumping job will first
dump data to HDFS [14]; After data in HDFS ac-
cumulated to certain amount, training worker
will retrieve data from HDFS and perform batch
training.
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Updated parameters in training PS will be pushed to
serving PS according to the parameter synchronization
schedule.

2.2.2. Online Joiner

In real-world applications, user actions log and features
are streamed into the online joiner (Figure 5) without
guarantee in time order. Therefore we use a unique key
for each request so that user action and features could
correctly pair up.

The lag of user action could also be a problem. For
example, a user may take a few days before they decide
to buy an item they were presented days ago. This is a
challenge for the joiner because if all features are kept in
cache, it would simply not fit in memory. In our system,
an on-disk key-value storage is utilized to store features
that are waiting for over certain time period. When a
user action log arrives, it first looks up the in-memory
cache, and then looks up the key-value storage in case of
a missing cache.

Another problem that arise in real-world application
is that the distribution of negative and positive examples
are highly uneven, where number of the former could be
magnitudes of order higher than the latter. To prevent
positive examples from being overwhelmed by negative
ones, a common strategy is to do negative sampling. This
would certainly change the underlying distribution of the
trained model, tweaking it towards higher probability of
making positive predictions. As a remedy, we apply log
odds correction [15] during serving, making sure that
the online model is an unbiased estimator of the original
distribution.

2.2.3. Parameter Synchronization

During online training, the Monolith training cluster
keeps receiving data from the online serving module and
updates parameters on the training PS. A crucial step to
enable the online serving PS to benefit from these newly
trained parameters is the synchronization of updated
model parameters. In production environment, we are
encountered by several challenges:

• Models on the online serving PS must not stop
serving when updating. Our models in produc-
tion is usually several terabytes in size, and as a
result replacing all parameters takes a while. It
would be intolerable to stop an online PS from
serving the model during the replacement pro-
cess, and updates must be made on-the-fly;

• Transferring amulti-terabytemodel of its entirety
from training PS to the online serving PS would
pose huge pressure to both the network band-
width and memory on PS, since it requires dou-
bled model size of memory to accept the newly
arriving model.

For the online training to scale up to the size of our
business scenario, we designed an incremental on-the-
fly periodic parameter synchronization mechanism in
Monolith based on several noticeable characteristic of
our models:

1. Sparse parameters are dominating the size of rec-
ommendation models;

2. Given a short range of time window, only a small
subset of IDs gets trained and their embeddings
updated;



3. Dense variables move much slower than sparse
embeddings. This is because in momentum-based
optimizers, the accumulation of momentum for
dense variables is magnified by the gigantic size of
recommendation training data, while only a few
sparse embeddings receives updates in a single
data batch.

(1) and (2) allows us to exploit the sparse updates across
all feature IDs. In Monolith, we maintain a hash set of
touched keys, representing IDs whose embeddings get
trained since the last parameter synchronization. We
push the subset of sparse parameters whose keys are in
the touched-keys set with a minute-level time interval
from the training PS to the online serving PS. This rel-
atively small pack of incremental parameter update is
lightweight for network transmission and will not cause
a sharp memory spike during the synchronization.

We also exploit (3) to further reduce network I/O and
memory usage by setting a more aggressive sync sched-
ule for sparse parameters, while updating dense param-
eters less frequently. This could render us a situation
where the dense parameters we serve is a relatively stale
version compared to sparse part. However, such incon-
sistency could be tolerated due to the reason mentioned
in (3) as no conspicuous loss has been observed.

2.3. Fault Tolerance
As a system in production, Monolith is designed with the
ability to recover a PS in case it fails. A common choice
for fault tolerance is to snapshot the state of a model
periodically, and recover from the latest snapshot when
PS failure is detected. The choice of snapshot frequency
has two major impacts:

1. Model quality. Intuitively, model quality suffers
less from loss of recent history with increased
snapshot frequency.

2. Computation overhead. Snapshotting a multi-
terabyte model is not free. It incurs large chunks
of memory copy and disk I/O.

As a trade-off between model quality and computation
overhead, Monolith snapshots all training PS every day.
Though a PS will lose one day’s worth of update in case of
a failure, we discover that the performance degradation
is tolerable through our experiments. We will analyze
the effect of PS reliability in the next section.

3. Evaluation
For a better understanding of benefits and trade-offs
brought about by our proposed design, we conducted
several experiments at production scale and A/B test
with live serving traffic to evaluate and verify Monolith
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. . .
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Figure 6: DeepFM model architecture.

from different aspects. We aim to answer the following
questions by our experiments:

1. How much can we benefit from a collisionless
HashTable?

2. How important is realtime online training?
3. Is Monolith’s design of parameter synchroniza-

tion robust enough in a large-scale production
scenario?

In this section, we first present our experimental set-
tings and then discuss results and our findings in detail.

3.1. Experimental Setup
3.1.1. Embedding Table

As described in Section 2.1, embedding tables in Monolith
are implemented as collisionless HashTables. To prove
the necessity of avoiding collisions in embedding tables
and to quantify gains from our collisionless implemen-
tation, we performed two groups of experiments on the
Movielens dataset and on our internal production dataset
respectively:

1. MovieLens ml-25m dataset [16]. This is a stan-
dard public dataset for movie ratings, containing
25 million ratings that involves approximately
162000 users and 62000 movies.

• Preprocessing of labels. The original labels
are ratings from 0.5 to 5.0, while in produc-
tion our tasks are mostly receiving binary
signals from users. To better simulate our
production models, we convert scale labels
to binary labels by treating scores ≥ 3.5 as
positive samples and the rest as negative
samples.

• Model and metrics. We implemented a
standard DeepFM [17] model, a commonly
used model architecture for recommenda-
tion problems. It consist of an FM com-
ponent and a dense component (Figure 6).
Predictions are evaluated by AUC [18] as



this is themajormeasurement for real mod-
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• Embedding collisions. This dataset con-
tains approximately 160K user IDs and
60K movie IDs. To compare with the colli-
sionless version of embedding table imple-
mentation, we performed another group
of experiment where IDs are preprocessed
with MD5 hashing and then mapped to a
smaller ID space. As a result, some IDs will
share their embedding with others. Table 1
shows detailed statistics of user and movie
IDs before and after hashing.

User IDs Movie IDs

# Before Hashing 162541 59047
# After Hashing 149970 57361
Collision rate 7.73% 2.86%

Table 1
Statistics of IDs Before and After Hashing.

2. Internal Recommendation dataset.
We also performed experiments on a recommen-
dation model in production environment. This
model generally follows a multi-tower architec-
ture, with each tower responsible for learning to
predict a specialized kind of user behavior.

• Each model has around 1000 embedding ta-
bles, and distribution of size of embedding
tables are very uneven;

• The original ID space of embedding table
was 248. In our baseline, we applied a hash-
ing trick by decomposing to curb the size
of embedding table. To be more specific,
we use two smaller embedding tables in-
stead of a gigantic one to generate a unique
embedding for each ID by vector combina-
tion:

𝐼𝐷𝑟 = 𝐼𝐷 % 224

𝐼𝐷𝑞 = 𝐼𝐷 ÷ 224

𝐸 = 𝐸𝑟 + 𝐸𝑞,

where 𝐸𝑟, 𝐸𝑞 are embeddings correspond-
ing to 𝐼𝐷𝑟, 𝐼𝐷𝑞. This effectively reduces
embedding table sizes from 248 to 225;

• This model is serving in real production,
and the performance of this experiment is
measured by online AUC with real serving
traffic.

3.1.2. Online Training

During online training, we update our online serving
PS with the latest set of parameters with minute-level
intervals. We designed two groups of experiments to
verify model quality and system robustness.

1. Update frequency. To investigate the necessity
of minute-level update frequency, we conducted
experiments that synchronize parameters from
training model to prediction model with different
intervals.
The dataset we use is the Criteo Display Ads Chal-
lenge dataset1, a large-scale standard dataset for
benchmarking CTR models. It contains 7 days of
chronologically ordered data recording features
and click actions. For this experiment, we use a
standard DeepFM [17] model as described in 6.
To simulate online training, we did the following
preprocessing for the dataset. We take 7 days of
data from the dataset, and split it to two parts:
5 days of data for batch training, and 2 days for
online training. We further split the 2 days of data
into 𝑁 shards chronologically. Online training is
simulated by algorithm 1.
As such, we simulate synchronizing trained pa-
rameters to online serving PS with an interval
determined by number of data shards. We exper-
imented with 𝑁 = 10, 50, 100, which roughly cor-
respond to update interval of 5ℎ𝑟, 1ℎ𝑟, and 30𝑚𝑖𝑛.

2. Live experiment. In addition, we also per-
formed a live experiment with real serving traffic
to further demonstrate the importance of online
training in real-world application. This A/B ex-
periment compares online training to batch train-
ing one one of our Ads model in production.

3.2. Results and Analysis
3.2.1. The Effect of Embedding Collision

Results from MovieLens dataset and the Internal
recommedation dataset both show that embedding colli-
sions will jeopardize model quality.

1. Models with collisionless HashTable consistently
outperforms those with collision. This conclusion
holds true regardless of

• Increase of number of training epochs.
As shown in Figure 7, the model with
collisionless embedding table has higher
AUC from the first epoch and converges
at higher value;

1https://www.kaggle.com/competitions/criteo-display-ad-challenge
/data

https://www.kaggle.com/competitions/criteo-display-ad-challenge/data
https://www.kaggle.com/competitions/criteo-display-ad-challenge/data


Algorithm 1 Simulated Online Training.

1: Input: 𝐷𝑏𝑎𝑡𝑐ℎ ; /* Data for batch training. */

2: Input: 𝐷𝑜𝑛𝑙𝑖𝑛𝑒
𝑖=1⋯𝑁 ; /* Data for online training, split into 𝑁 shards. */

3: 𝜃𝑡𝑟𝑎𝑖𝑛 ← 𝑇𝑟𝑎𝑖𝑛(𝐷𝑏𝑎𝑡𝑐ℎ, 𝜃𝑡𝑟𝑎𝑖𝑛) ; /* Batch training. */
/* Online training. */

4: for 𝑖 = 1⋯𝑁 do
5: 𝜃𝑠𝑒𝑟𝑣𝑒 ← 𝜃𝑡𝑟𝑎𝑖𝑛 ; /* Sync training parameters to serving model. */

6: 𝐴𝑈𝐶𝑖 = Evaluate(𝜃𝑠𝑒𝑟𝑣𝑒, 𝐷𝑜𝑛𝑙𝑖𝑛𝑒
𝑖 ) ; /* Evaluate online prediction on new data. */

7: 𝜃𝑡𝑟𝑎𝑖𝑛 ← 𝑇𝑟𝑎𝑖𝑛(𝐷𝑜𝑛𝑙𝑖𝑛𝑒
𝑖 , 𝜃𝑡𝑟𝑎𝑖𝑛) ; /* Train with new data. */

8: end for
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We measure performance of this recommendation model by on-
line serving AUC, which is fluctuating across different days due
to concept-drift.

• Change of distribution with passage of
time due to Concept Drift. As shown in

Figure 8, models with collisionless embed-
ding table is also robust as time passes by
and users/items context changes.

2. Data sparsity caused by collisionless embedding
table will not lead to model overfitting. As shown
in Figure 7, a model with collisionless embedding
table does not overfit after it converges.

3.2.2. Online Training: Trading-off Reliability For
Realtime

We discovered that a higher parameter synchronization
frequency is always conducive to improving online serv-
ing AUC, and that online serving models are more toler-
ant with loss of a few shard of PS than we expect.

1. The Effect of Parameter Synchronization Fre-
quency.
In our online streaming training experiment (1)
with Criteo Display Ads Challenge dataset, model
quality consistently improves with the increase
of parameter synchronization frequency, as is ev-
ident by comparison from two perspectives:

• Models with online training performs bet-
ter than models without. Figure 9a, 9b, 9c
compares AUC of online training models
evaluated by the following shard of data
versus batch training models evaluated by
each shard of data;

• Models with smaller parameter synchro-
nization interval performs better that those
with larger interval. Figure 10 and Table 2
compares online serving AUC for models
with sync interval of 5ℎ𝑟, 1ℎ𝑟, and 30𝑚𝑖𝑛
respectively.

The live A/B experiment between online training
and batch training on an Ads model in produc-
tion also show that there is a significant bump in
online serving AUC (Table 3).
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Figure 9: Online training v.s. Batch training on Criteo dataset.Blue lines: AUC of models with online training; Yellow lines:
AUC of batch training models evaluated against streaming data.

Sync Interval Average AUC (online) Average AUC (batch)

5 hr 79.66 ± 0.020 79.42 ± 0.026
1 hr 79.78 ± 0.005 79.44 ± 0.030

30 min 79.80 ± 0.008 79.43 ± 0.025

Table 2
Average AUC comparison for DeepFM model on Criteo dataset.

Inspired by this observation, we synchronize
sparse parameters to serving PS of our produc-
tion models as frequent as possible (currently
at minute-level), to the extent that the compu-
tation overhead and system reliability could en-
dure. Recall that dense variables requires a less
frequent update as discussed in 2.2.3, we update
them at day-level. By doing so, we can bring
down our computation overhead to a very low

level. Suppose 100,000 IDs gets updated in a
minute, and the dimension of embedding is 1024,
the total size of data need to be transferred is
4𝐾𝐵 × 100, 000 ≈ 400𝑀𝐵 per minute. For dense
parameters, since they are synchronized daily, we
choose to schedule the synchronization when the
traffic is lowest (e.g. midnight).

2. The Effect of PS reliability.
With a minute-level parameter synchronization,



Day 1 2 3 4 5 6 7

AUC Improvement % 14.443 16.871 17.068 14.028 18.081 16.404 15.202

Table 3
Improvement of Online Training Over Batch Training from Live A/B Experiment on an Ads Model.

0 10 20 30 40 50
Hours

0.790

0.795

0.800

0.805

0.810

AU
C

Sync Interval 5 hr
Sync Interval 1 hr
Sync Interval 30 min

Figure 10: Comparison of different sync intervals for online
training.

we initially expect a more frequent snapshot of
training PS to match the realtime update. To our
surprise, we enlarged the snapshot interval to 1
day and still observed nearly no loss of model
quality.
Finding the right trade-off between model quality
and computation overhead is difficult for person-
alized ranking systems since users are extremely
sensitive on recommendation quality. Tradition-
ally, large-scale systems tend to set a frequent
snapshot schedule for their models, which sacri-
fices computation resources in exchange for min-
imized loss in model quality. We also did quite
some exploration in this regard and to our sur-
prise, model quality is more robust than expected.
With a 0.01% failure rate of PS machine per day,
we find a model from the previous day works
embarrassingly well. This is explicable by the
following calculation: Suppose a model’s parame-
ters are sharded across 1000 PS, and they snapshot
every day. Given 0.01% failure rate, one of them
will go down every 10 days and we lose all up-
dates on this PS for 1 day. Assuming a DAU of
15 Million and an even distribution of user IDs
on each PS, we lose 1 day’s feedback from 15000
users every 10 days. This is acceptable because (a)
For sparse features which is user-specific, this is
equivalent to losing a tiny fraction of 0.01% DAU;

(b) For dense variables, since they are updated
slowly as we discussed in 2.2.3, losing 1 day’s
update out of 1000 PS is negligible.
Based on the above observation and calculation,
we radically lowered our snapshot frequency and
thereby saved quite a bit in computation over-
head.

4. Related Work
Ever since some earliest successful application of deep
learning to industry-level recommendation systems [1, 2],
researchers and engineers have been employing various
techniques to ameliorate issues mentioned in Section 1.

To tackle the issue of sparse feature representation,
[1, 10] uses fixed-size embedding table with hash-trick.
There are also attempts in improving hashing to reduce
collision [19, 10]. Other works directly utilize native
key-value hash table to allow dynamic growth of table
size [3, 5, 20, 4]. These implementations builds upon
TensorFlow but relies either on specially designed soft-
ware mechanism [3, 21, 20] or hardware [4] to access
and manage their hash-tables. Compared to these solu-
tions, Monolith’s hash-table is yet another native Tensor-
Flow operation. It is developer friendly and has higher
cross-platform interoperability, which is suitable for ToB
scenarios. An organic and tight integration with Tensor-
Flow also enables easier optimizations of computation
performance.

Bridging the gap between training and serving and
alleviation of Concept Drift [7] is another topic of inter-
est. To support online update and avoid memory issues,
both [5] and [3] designed feature eviction mechanisms to
flexibly adjust the size of embedding tables. Both [5] and
[21] support some form of online training, where learned
parameters are synced to serving with a relatively short
interval compared to traditional batch training, with fault
tolerance mechanisms. Monolith took similar approach
to elastically admit and evict features, while it has a more
lightweight parameter synchronization mechanism to
guarantee model quality.

5. Conclusion
In this work, we reviewed several most important chal-
lenges for industrial-level recommendation systems and



present our system in production, Monolith, to address
them and achieved best performance compared to exist-
ing solutions.

We proved that a collisionless embedding table is essen-
tial for model quality, and demonstrated that our imple-
mentation of Cuckoo HashMap based embedding table is
both memory efficient and helpful for improving online
serving metrics.

We also proved that realtime serving is crucial in rec-
ommendation systems, and that parameter synchroniza-
tion interval should be as short as possible for an ultimate
model performance. Our solution for online realtime
serving in Monolith has a delicately designed parameter
synchronization and a fault tolerance mechanism: In our
parameter synchronization algorithm, we showed that
consistency of version across different parts of parame-
ters could be traded-off for reducing network bandwidth
consumption; In fault tolerance design, we demonstrated
that our strategy of trading-off PS reliability for realtime-
ness is a robust solution.

To conclude, Monolith succeeded in providing a gen-
eral solution for production scale recommendation sys-
tems.
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