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Abstract  
Cloud video conferencing and cloud video command play an important role in various fields. 

The balanced utilization of the underlying resources of cloud video conferencing systems is an 

important research direction for cloud video. At present, most of the cloud video server cluster 

resources are native scheduling algorithms, which are simple and weak in scene specificity. 

The native algorithm can meet the basic needs,but cannot well refine and balance scheduling 

resources. The previous research mostly carried out scheduling by formulating rescheduling 

strategies. The configuration is complex, and the amount of engineering is large. In this paper, 

the Refined Balanced Resource Allocation algorithm is proposed by introducing the coefficient 

of variation. Compared with the default algorithm, it is easy to implement in engineering, and 

can better achieve balanced scheduling of resources, avoid resource fragmentation, and 

distribute pods on the cluster more dispersed. After simulation experiments, the algorithm 

proposed in this paper improves Spread Score, and the balance of large cluster resources has 

increased by 14.28%. The algorithm proposed in this paper is quite effective and feasible.  
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1. Introduction 1 

Cloud video services play an important role in communication in our contemporary life. Since the 

COVID-19 pandemic, people's offline travel and communication have been greatly restricted. Due to a 

large number of users, the resource consumption of the server cluster is relatively large. In certain 

scenarios, it needs to face the problems of a sudden increase in access services and excessive server 

pressure. The emergence of cloud computing and container[1] technology can solve such problems, so 

the research on cloud-based server resource scheduling becomes very necessary. It can achieve better 

QoS through reasonable resource scheduling under limited hardware resources. 

Since 2013, with the rise of container technology [2, 3], many PaaS public cloud vendors such as 

Google and IBM have begun to use container technology. At present, many container cloud platforms 

provide application service running platforms through technologies such as Docker[4, 5] containers and 

Kubernetes [6]. Kubernetes is an open source project of Google, which comes from the internal project 

Borg [7, 8], and has a market share of 80%. Burns, Grant, and Oppenheimer[8] compared the container 

orchestration tools Borg, Omega and Kubernetes in detail. Although Kubernetes is superior to its 

predecessors, the configuration files are complex and require complete configuration semantics and 

corresponding debugging tools. This shows that the current cloud-native scheduling strategy is 

somewhat simple, the scenario is single, and the adaptability to specific scenarios is weak. 

Based on the above research, the survey found that the current cloud video has three challenges. 

First, the default scheduling strategy is too simple to meet the scheduling requirements of specific 

scenarios. Second, the default algorithm avoids fragmentation of resources on nodes during balanced 

scheduling, but high CPU and memory loads on specific nodes will occur, resulting in unbalanced use 

of cluster resources. Third, the unbalanced distribution of pods increases the node failure rate.  
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Our main contribution is three-fold. 

1. This paper proposes a Refined Balanced Resource Allocation (RBRA)algorithm by introducing 

the coefficient of variation. While the resources in the nodes are used in a balanced manner, the pods 

on the cluster is more dispersed.  

2. Compared with the default algorithm, the RBRA algorithm is easier to implement in 

engineering, and can better achieve balanced scheduling of resources, avoid resource fragmentation.  

3. The refined balanced allocation of cluster resources decreases the node failure rate. 

After simulation experiments, the algorithm proposed in this paper improves the spread score 

compared with the default algorithm, and the balance of large cluster resources has increased by 14.28%. 

2. Related work 

A Kubernetes cluster usually consists of a master and multiple nodes[9]. The master node is 

responsible for controlling the entire cluster. When a new demand Pod is submitted, Kubernetes will 

filter the nodes according to the default algorithm, score the nodes according to the default strategy, 

and select the optimal node. The default schedule is divided into two parts that can be customized: 

Predicates: It filters out nodes that do not meet the conditions from all nodes in the current cluster 

according to the scheduling policy. 

Priorities: Score these nodes; finally select the node with the highest priority and bind it to the Pod. 

The default balanced resource allocation algorithm, which belongs to priorities, selects nodes with 

the most balanced resource usage. Usually, when the number of resources is two, the algorithm first 

calculates the CPU and memory usage on the node. The difference is calculated between CPU and 

memory usage. 10 minus 10 times the difference between CPU and memory usage. The final score is 

obtained. 

𝑅𝐶𝑃𝑈 =
CPUuse

CPUtotal 
 , (1)  

 

𝑅𝑀𝑒𝑚 =
Memuse

Memtotal 
, (2)  

 

   ScoreDefualtBalance = 10 − 10| 𝑅𝐶𝑃𝑈 − 𝑅𝑀𝑒𝑚| (3)  

When the number of resources is three or more, the algorithm calculates the ratio of requests to 

allocable resources. Then mean of the ratio is calculated followed by calculating the standard deviation. 

After that, the Score represents 1 minus standard deviation then multiply by 100. 

Ratio of CPU  

𝑅𝐶𝑃𝑈 =
CPUrequest

CPUallocable 
 , (4)  

Ratio of Memory  

𝑅𝑀𝑒𝑚 =
Memrequest

Memallocable  
, (5)  

Ratio of Storage  

𝑅𝑆𝑡𝑜𝑟𝑎𝑔𝑒 =
Storequest

Stoallocable  
, (6)  

mean of ration  

𝑚𝑒𝑎𝑛 = 𝑅𝐶𝑃𝑈 + 𝑅𝑀𝑒𝑚 + 𝑅𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , (7)  

then the standard deviation  

  𝑆𝑡𝑑 =  [( 𝑅𝐶𝑃𝑈 −  𝑚𝑒𝑎𝑛 )2 + ( 𝑅𝑀𝑒𝑚 −  𝑚𝑒𝑎𝑛 )2 + (𝑅𝑆𝑡𝑜𝑟𝑎𝑔𝑒 − 𝑚𝑒𝑎𝑛  )2]
1
2/3, (8)  

the final Score 

ScoreDefualtBalance = (1 − 𝑆𝑡𝑑) ∗ 100 (9)  
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Scholars have also made improvements to the default algorithm. The existing research mostly adopts 

the combined scheduling strategy to schedule resources. Du Jun[10] expanded the default algorithm 

library by designing a new preselection function and introducing a balance factor, but the balance of 

cluster resources has not yet been achieved. The preemptive scheduling scheme proposed by Song Lin 
[11] optimizes the original grading basis. By setting a new sub-priority to schedule Pods, a more 

prioritized scheduling strategy is realized, but the tasks of preemptive eviction cannot be saved. Xu [12]et 

al. proposed a priority scheduling strategy based on network load, which uses network load status as an 

indicator to prioritize virtual machines for final scheduling, and its environment does not match cloud 

computing.  

Ghofrane [13]et al. proposed the KubCG algorithm to study CPU and GPU resource scheduling. 

KubCG reduces the time of cluster resource scheduling by 36%, and the resource utilization is more 

balanced. Xu[14] et al. proposed a Swift load balancing method that uses CPU, memory and I/O 

utilization as resource dynamic scheduling on OpenStack-based platforms, but it can only be used for 

OpenStack cloud platforms. Awad [15] proposed a mathematical model using load balancing mutation 

(balancing), a cloud computing scheduling and allocation based on particle swarm optimization 

(LBMPSO), which greatly reduces the time for resource scheduling. However, these studies focus on 

changing the weight and priority to achieve a better scheduling strategy but ignore the balance of 

resources within the cluster. These scheduling strategies generally involve multiple components[16, 17], 

rather than simply designing a scheduling algorithm, so there is still no specific design scheme that can 

solve the imbalance of cluster resources. The default algorithm avoids fragmentation of resources on 

nodes during balanced scheduling, but high CPU and memory loads on specific nodes still occur, 

resulting in unbalanced use of cluster resources. 

 
(a)            (b) 

Figure 1: Result of Default algorithm and one of the possible desired results. When a list of pod 
requirements is submitted, according to the default algorithm, pods will be preferentially scheduled 
to the nodes with the largest remaining node resources, as shown in (a); (b) represents the scheduling 
result after introducing the coefficient of variation to eliminate the influence of the order of 
magnitude of nodes in the cluster. 

3. Algorithm 

Based on the possible business requirements on the server, a Refined Balanced Resource Allocation 

(RBRA)algorithm is proposed. After deconstructing the resource scheduling algorithm[18], it is possible 

to qualitatively analyze the demanded resources, maximize the utilization of resources, allocate node 

resources in a balanced manner, and avoid continuously assigning pods to nodes with a large number 

of remaining resources. Decentralized configuration of underlying resources reduces the impact of 

single points of failure. 
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3.1. Refined Balanced Resource Allocation Algorithm 

To eliminate the influence of the level of data values and the different measurement units on the 

measurement value of dispersion degree, it is necessary to calculate the coefficient of variation[19]. 

Therefore in the process of balanced scheduling, this algorithm introduces the coefficient of variation 

to eliminate the influence of the order of magnitude of node resources. 

3.2. Definition of Coefficient of Variation 

For resource utilization data, set as 𝑥1, 𝑥2, … , 𝑥𝑛, n represents the number of resources, 𝑥𝑛 represents 

the ratio of the nth resource, and �̅� represents the average number of 𝑥1, 𝑥2, … , 𝑥𝑛. Then we calculate 

the degree of dispersion of the set of data. 

Then the variance is 

          𝑆2 =
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1
2

𝑛
, (10)  

The standard deviation is 

𝑆 = √
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1
2

𝑛
, (11)  

where 

�̅� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 , (12)  

V stands for the coefficient of variation 

𝑉 =

√∑ (𝑥𝑖 − �̅�)𝑛
𝑖=1

2

𝑛

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛

=
𝑆

�̅�
 . 

(13)  

Considering the influence of the order of magnitude of resources in the cluster in scoring, the 

coefficient of variation is introduced into the scheduling algorithm to form a multi-index scheduling 

algorithm such as CPU, memory and storage.  

The algorithm flow is as follows: 

 
Figure 2: The algorithm flow. 
 

1) Read Pods nodes information 

2) The number of resources ≤2, 𝑅𝐶𝑃𝑈 =
CPUuse

CPUtotal 
, 𝑅𝑀𝑒𝑚 =

Memuse

Memtotal 
. The calculation of the 

Score is the same as the default algorithm. Score = 10 − 10| 𝑅𝐶𝑃𝑈 − 𝑅𝑀𝑒𝑚|. 
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3) The number of resources >2. According to the requirements of N resources of a pod, such as 

N=3, the CPU usage request, memory usage request, and storage usage request are counted as, 

CPUrequest, Memrequest and Storequest respectively. 

4) According to the submitted service request, obtain the resource usage of candidate nodes, mark 

N resources of each node, and obtain the available resources of the node, for example, N=3, 

CPU, Memory, and Storage are counted as CPUallocable, Memallocable and Stoallocable 

respectively. 

5) Obtain the mean value of each resource’s ratio - the ratio of each resource, for example, CPU, 

Memory, and Storage are recorded as "cpuFraction", "memoryFraction", and "storageFraction" 

respectively. 

6) Find the average mean after adding the ratios of each resource in 5). 

7) Use the standard deviation to measure the dispersion of the ratio of resources, and find the 

standard deviation of the ratio of resources Std. 

𝑆𝑡𝑑 =  [( cpuFraction - mean )2 + ( memoryFraction −  mean )2

+ ( storageFraction −  mean )2]1/2/3 

8) Calculate the coefficient of variation V. 

𝑉 =
𝑆𝑡𝑑

𝑚𝑒𝑎𝑛
 

9) The score is 

𝑆𝑐𝑜𝑟𝑒 = (1 − 𝑉) ∗ 100 

Select the node with the highest score, when there are multiple nodes with the same highest score, 

randomly select the node as the deployment node. 

4. Experiments 

This section introduces the experimental results of the proposed RBRA algorithm based on 

simulation. First, the basic configuration of the experimental environment is introduced, and then the 

parameter settings of the experiment are described. In Section 4.1, we introduce the parameter 

configuration and scheduling results of the RBRA algorithm when the node resource difference is an 

order of magnitude 10. In Section 4.2, we show the scores of the RBRA algorithm under different 

cluster sizes and the imbalance of the cluster. 

For a cluster, the cluster standard deviation reflects the balance of cluster resources. It can be 

obtained by calculating the number of Pods on the cluster which is the same as the way used by Lin [20]. 

Standard deviation is also widely used in other fields like analysis of radar data[21]. Some scholars have 

also made improvements to the calculation dispersion degree according to the actual situation[22]. 
Define the cluster resource imbalance as 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑡𝑑, J represents the number of nodes, 𝑃(𝑗)means 

the number of pods on nodej  (𝑗 ∈ 𝐽). 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑡𝑑 =
√∑ (𝑃(𝑗) − 𝑃𝐴𝑉𝐸)𝑗∈𝐽

2

𝐽
, 

(14)  

Then the average of each node is 𝑃𝐴𝑉𝐸. 

𝑃𝐴𝑉𝐸 =  
∑ 𝑃(𝑗)𝑗∈𝐽

𝐽
. 

𝑅𝑗 =  
∑ 𝑃(𝑗)

𝑁
. 

(15)  

The smaller the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑡𝑑 is, the more balanced the distribution of Pods in the cluster, and the more 

dispersed the resource distribution of the cluster is.  

4.1. Parameter Configuration 

Through the Kube-scheduler-simulator and local Kubernetes cluster environment, the algorithm 

proposed in this paper is well verified. The experimental machine is Lenovo Blade 7000, processor 
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Intel Core I7-9700K, memory 32G, hard disk capacity 1T, operating system Windows10, CentOS7.9, 

software VmWare. 

When nodes with orders of magnitude difference appear in the cluster, they can be randomly 

scheduled to achieve balanced scheduling of resources by RBRA. First, we set up a master with two 

nodes. The allocable resource of the Node0 is CPU 4000m (m is one-thousandth of a core), Memory 

32GB, Storage 400GB, and the allocable resource of the Node1is CPU 40000m, Memory 320GB, 

Storage 4000 GB. Then the resource requested by Pod is CPU 300 m Memory 1GB Storage 10GB. The 

default algorithm continues to deploy Pods to Node1, and our algorithm can implement scheduling to 

Node0 or Node1 after introducing the coefficient of variation, which can better disperse Pods and make 

cluster resources more balanced. 

We set clusters with different numbers of nodes and conduct scheduling experiments. The results 

are displayed in 4.2 

4.2. Multi-node scheduling experiment 

 

Figure 3: Pods distribution on nodes with default algorithm. 
 

 

Figure 4: Pods distribution on nodes with our algorithm. 
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As shown in Figure 3 and Figure 4, the range of the default algorithm scheduling is larger, and its 

degree of dispersion is larger than that ours. Our algorithm makes the distribution of Pods on the cluster 

more balanced. We will next set and calculate the score of the cluster. 

Experiments, statistics and analysis of the above two algorithms are carried out respectively. Spread 

Score=P1* P2…*Pn n represents the number of nodes, and Pn represents the number of Pods on the nth 

node. Table 1 shows the Spread Score.  

 
Table 1 
Spread Score 

Nodes Pods 

Spread Score 

Default Scheduler Our Algorithm 

3 134 30996 64260 
5 206 26911170 51705024 
8 382 618271898400 2653862215680 

Compared with the default algorithm, our algorithm avoids fragmentation of cluster resources, and 

the Spread Score is higher according to table 1. 

 

 
Figure 5: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑡𝑑 

 

Figure 5 represents the imbalance of clusters by 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑡𝑑. Moreover, the pod distribution on the 

cluster is more balanced. When the number of nodes is three, the amount of data is small and not 

representative. As shown in Figure 5, the balance of large cluster resources has increased by 14.28% 

when the number of nodes is 8. 

5. Conclusion 

In this paper, by introducing the coefficient of variation, we propose the RBRA algorithm. When 

the order of magnitude difference of cluster resources is large, the resources can still be allocated to a 

node in a balanced manner, while ensuring that the resource utilization within the nodes is also balanced. 

It solves the problem of single policy mismatch caused by the default algorithm, resulting in a high load 

on the CPU, memory, etc. on the node, and uneven use of cluster resources, reducing the node failure 

rate. We conduct simulation experiments based on the local environment. The RBRA algorithm can 

better achieve balanced scheduling for clusters with large differences in the order of magnitude of 

resources, avoiding the devastating impact of a single node failure. According to the experimental data, 

it has a better application effect on the balanced scheduling of pods of different cluster sizes. 
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