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Abstract  
Damage tolerance design can ensure the structural safety of civil aircraft throughout its life 
cycle, which requires accurate analysis of crack extension life and crack extension length. This 
paper proposes an XGBoost-based crack extension life and crack extension length prediction 
method for civil aircraft structures. The method uses machine learning algorithms to train the 
structural state prediction model. The advantage of this method is that it can quickly determine 
the crack life and crack length without relying on the processing technology and engineering 
diagnosis experience of a large amount of collected data, which provides a more flexible 
method to determine the crack extension life and crack extension length under various 
influencing factors. By comparing a variety of machine learning algorithms, XGBoost model 
obtained the highest test scores, the experimental results show that the method achieves 
accurate prediction of crack extension life and critical crack length, which can be used for rapid 
engineering evaluation. 
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1. Introduction 

Damage tolerance design is a modern fatigue fracture control method developed and progressively 
applied since the 1970s to ensure the structural safety of structures throughout their life cycle. The 
theory assumes that each structural material has internal defects in the course of processing or using, so 
the rate of expansion of these defects and the remaining strength of the structure needs to be determined 
using various damage theories (such as fracture mechanics) and a given external load [1]. Damage 
tolerance is also a major component of the assessment for strength certification of aircraft by NASA, 
FAA, and other agencies. In the damage tolerance analysis, in addition to determining the critical parts 
of the damage tolerance and their sensitive parts, the accuracy of the crack extension life calculation 
and crack extension length calculation for this part is an important part to ensure the correct conclusion 
of the analysis [2]. However, there are various types of structural details in the airframe structure and 
their load states are complex, while the material of each part of the structure are different [3]. Therefore, 
in addition to the traditional fracture mechanics-based analysis methods, a tool that can quickly evaluate 
the crack extension life and the final crack length of the corresponding structure is also needed. 

XGBoost, which is short for eXtreme Gradient Boosting, is an algorithmic toolkit based on the 
Boosting framework and is very powerful in parallel computation efficiency, missing value handling, 
and prediction performance [4]. In data science, XGBoost is well suited for performing data mining; in 
industrial large-scale data, the distributed version of XGBoost has extensive portability and supports 
running on various distributed environments such as Kubernetes and Hadoop, making it a good solution 
for industrial large-scale data. 
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The current theories based on data-driven deep learning and machine learning, as the latest research 
results in pattern recognition, have achieved fruitful results in big data processing in various fields with 
powerful modeling and characterization capabilities. Therefore, using XGBoost-based crack extension 
prediction can get rid of the reliance on the traditional analysis method of mechanism-based fracture 
mechanics, complete the adaptive extraction of structural states and the construction of complex models, 
and finally realize end-to-end modeling to complete the prediction of complex indicators [5, 6, 7]. 

2. Crack extension dataset creation 

As a part of the aircraft, the fuselage skin is an important part of the whole aircraft structure. In this 
paper, crack expansion prediction is performed for the fuselage and wing skin structure, which is usually 
considered as the central crack of an infinite plate, and the simplified model is shown below.  

 
Figure 1: Central crack simplified model 

 
Since the specimen-level test matrix of crack expansion usually cannot meet the data volume 

demand of machine learning, the data set in this paper is obtained by the crack expansion analysis 
software. Among them, if only the pressure-filled load of the skin is considered, the loaded state of the 
structure can be simplified to an equal amplitude spectrum. The specific parameters include structure 
width (plate width), maximum stress, structure thickness and initial crack size [8, 9]. 

The specific parameters and range are as following. 
• structure width (plate width), 100-1500 mm; 
• maximum stress, 100-200 MPa; 
• Structure thickness, 0.5-5.5 mm; 
• initial flaw(crack) size, 1.27-3.77 mm. 
The specific dataset was created as follows. 
1. Carrying out NASGRO input file generation based on a script that can automatically generate 

input files in Python, based on the planned test matrix; 
2.  Performing batch calculations; 
3. The script obtains the cycle number and crack length information in each output file and 

summarizes them as the output result data table. 
Over 1200 sets of data were eventually collected, including four input parameters as well as crack 

extension life and critical crack length [10].  

3. Crack extension cycle and critical crack prediction based on XGBoost 

This section covers the modeling and prediction of crack extension life/critical crack length based 
on XGBoost, and also includes the modeling process, data preprocessing, parameter optimization, 
model training, model testing results and comparison of other algorithms. 
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3.1. Modeling Process 

The overall XGBoost prediction model can be divided into several parts: data reading and 
preprocessing, parameter optimization for cross-validation, model training, model testing, and result 
output. The flow is shown in Figure 2. 

 
Figure 2: Modeling Process 

3.2. Data preprocessing and parameter optimization 

The original data was saved in csv format, and after removing the samples containing missing values 
and samples with too high lifetimes, the final 900 data sets were left. The total data set was partitioned 
8:2, in which 80% of the training set (720 samples) was used for training the xgboost model and 20% 
of the test set (180 samples) was used for performance testing. 

In modeling and training with xgboost, where the boosting round as an important parameter can be 
searched using the cross-validation function that comes with the model. In this paper, we use Random 
Search to find the optimal boosting round, with the upper limit of 500 cycles, Early stopping and 
automatic termination after 5 times of no change in the optimization index, tolerance of 0.01, cross-
validation of 10fold, and optimization index of MSE. The final best The final best value of boosting 
round is 143. 

3.3. Model training and model testing 

The XGBoost model is trained using the training dataset, where the boosting round is 143. the rest 
of the model parameters are listed in the following table [11]. 

 
Table 1 
XGBoost model parameters 

Parameters Value Parameters Value 
colsample_bytree  1.0 lambda 1.0 
scale_pos_weight  1.0 eta 0.3 

base_score  0.5 grow_policy  depthwise 
max_depth  6 alpha 1.0 

colsample_bynode  1.0 objective reg:squared error 
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The model performance was tested using the full test set data, and the test set prediction scores are 
shown in the figure. After 143boosting rounds of training, the performance metrics of the model are 
shown in the following table. 

 
Table 2 
XGBoost model test score 

Categories RMSE MAE R square 

Cycles 119.528 70.703 0.9999 
Crack size 0.526 0.269 0.9997 

 

      

Figure 3&4:  Actual value vs predicted value of cycles(left) and crack size(right) 
 
The predicted model weights are analyzed. As shown in figure 5, the weights vary widely among 

the different attributes, which is of greater significance for analyzing the key influencing factors and 
optimizing the model inputs, and the relatively high-weighted attribute such as width may provide more 
information about the overall structural state of the aircraft. 

 
Figure 5: Attributes weights 

3.4. Comparison with other algorithms 

This study also applies other machine learning methods for modeling, including generalized linear 
regression models, decision tree, and support vector machine, to model the prediction of crack 
expansion number and critical crack length as well. The prediction models were all trained using the 
same 80% dataset (720 samples) and tested using 20% dataset (180 samples). One of the decision tree 
models, max_depth, was kept consistent with the XGBoost parameters above. The corresponding 
evaluation indexes are given for the performance of XGBoost and the other three prediction models in 
the test set. The prediction result scores for the number of crack expansion cycles are shown in Table 
3, and the prediction result scores for the critical crack length are shown in Table 4 [12, 13, 14]. 
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Table 3 
Cycles prediction test score 

Categories RMSE MAE R square 
XGBoost 119.528 70.703 0.999 

Generalized linear  15682.212 12117.993 0.764 
Decision tree 862.681  702.061 0.997 

SVM 16436.034 12781.517 0.754 
 
Table 4 
Crack length prediction test score 

Categories RMSE MAE R square 
XGBoost 0.526 0.269 0.997 

Generalized linear  15.612 12.453 0.742 
Decision tree 1.665 1.214 0.997 

SVM 15.772 11.050 0.740 

4. Conclusion 

The XGBoost model has the best test score regardless of the number of crack expansion cycles or 
the length of critical cracks, and the model accuracy can meet engineering applications. Among the 
other tested models, the decision tree model has the closest score to Xgboost, which is also consistent 
with the performance consistency of the same tree model on the same data set. 

In this paper, the Xgboost-based model achieves the prediction of the extended life and critical crack 
length of the center penetration crack of a flat plate. The model can be applied to the rapid assessment 
of damage tolerance in engineering. However, the model data is obtained based on fracture mechanics 
software simulations, which will have some deviation when applied to real aircraft structures, and can 
be combined with crack extension test data for further migration learning. 
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