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Abstract 
Travel demand, which include taxi, bus, and bike demand, forecasting the travel demand is 
an important part of intelligent city intelligent transportation system. Accurate prediction 
models can help cities pre allocate resources to meet travel demand, reduce energy waste. 
Travel demand prediction can be summarized as spatiotemporal sequence prediction. For a 
long time, in the field of spatiotemporal sequence prediction, most of them will emphasize 
the effective capture and modeling of nonlinear and complex spatiotemporal dependency, 
which can effectively improve the accuracy of spatiotemporal sequence prediction. At the 
same time, the demand for multi-step prediction is also increasing. Long-time high-precision 
prediction can effectively improve the auxiliary role of the model for decision-making. To 
address these issues, we propose a Spatiotemporal Attention Network (STATTN) with a 
novel spatiotemporal attention mechanism that capture dependency in time-dimension and 
spatial-dimension at the same time which is spatiotemporal dependency. In order to learn 
high-quality representation of spatial points in spatiotemporal sequence units, we adopt 
dilated temporal 1d convolutional neural networks which has ability to learn representation 
from data through back propagation. To alleviate the error propagation, we use the generate-
style decoder which can generate the output without iteration steps. Through extensive 
experiments on two prediction tasks, we demonstrate the advantages of STATTN in short-
term and long-term prediction scenarios. 
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1. Introduction 1 

Nowadays, with the increasing popularity of taxi service platforms such as Uber, LYFT and Didi, 
people are more willing to call a car on their smartphone than take a taxi at will. In most urban areas, 
the supply and demand of online car hailing services is unbalanced. For passengers, there is a 
situation that there are no taxis nearby in some periods of time. Meanwhile, some taxi drivers spend 
too much time roaming empty cars in other areas. Ultimately, these areas are divided into oversupply 
and oversupply. On the one hand, this leads to the loss of profits of drivers and taxi companies. On the 
other hand, it is a waste of time for passengers.  

Traffic prediction is one of the most basic problems in intelligent transportation system. In 
particular, travel demand forecasting is very important for traditional taxi services and online hailing 
systems (such as Uber, LYFT and Didi travel). In recent years, with mobile devices and wireless 
communication technology making a large amount of traffic data easy to obtain, travel demand 
forecasting has become an increasingly promising tool to balance vehicle supply and demand with 
low-cost and high-quality services, which will create greater economic profits. 
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With the fast development of artificial intelligence technology, the newly developed CNN, GCN 
and GAT network structures can effectively support the processing of spatiotemporal sequence unit 
data. While the sequence data in the time dimension we could use RNN, LSTM or Transformer which 
is brilliant in the field of natural language processing, and its variant informer model in the field of 
time series prediction can provide important support for our prediction work. 

Recent years’ research progress in spatiotemporal sequence modeling and prediction have proved 
that the unique spatiotemporal correlation modeling method can effectively improve the accuracy of 
model prediction. Take the peak demand of taxis as an example, which usually occurs in the business 
district, urban concentrated residential areas may have peak demand during working hours at the same 
time. These are important temporal and spatial relationships, so it is quite necessary to model these 
relationships. 

To cope with aforementioned issues, we proposed a model called STATTN. Specifically, we use 
Dilated TCN to generate the representation of each spatial node and dedicate spatiotemporal self-
attention network to capture spatiotemporal dependencies efficiently, carefully designed encoder and 
decoder make contribution to help us get high quality spatiotemporal representation and avoid error 
accumulation in inference period. 

2. Related work 

Traditional spatiotemporal series prediction models are generally based on the transformation of 
classical time series models, such as ARIMA and STARIMA. Some models are based on feature 
engineering to construct temporal and spatial relationship features, and use regression model to 
complete prediction work. 

Compared with the traditional time series problem, predicting spatiotemporal series is more 
challenging, because it deals with not only nonlinear time correlation, but also dynamic and complex 
spatial correlation [1]; Moreover, whether the traffic flow of urban road network or the travel demand 
of taxi and bicycle, the spatiotemporal observation of travel is not independent at each location and 
time point, and there is dynamic correlation. Therefore, the key to solve such problems is to 
effectively extract the spatiotemporal correlation of data [2], that is, spatiotemporal correlation 
modeling. Moreover, predicting the long-term future has become one of the most urgent needs of 
urban computing systems. More and more urban operations need several hours of preparation before 
the final decision, such as dynamic traffic management and intelligent service allocation [3]. 

ConvLSTM model changes the one-dimensional vector processed by the traditional LSTM model 
into a three-dimensional tensor, that is, it adds two dimensions of rows and columns to the original 
measurement vector. By setting the LSTM learning parameter as tensor, the original matrix 
multiplication is transformed into convolution operation, and the tensor input processing is realized to 
complete the task of spatiotemporal sequence prediction [4]. After the release of ConvLSTM model, 
there is no essential optimization in this structure. The research in the next few years is basically 
based on the simple expansion of this unit [5], application [6], and multi view training [7]. Until the 
release of SA ConvLSTM [8] model in 2020, the self attention mechanism is added to the ConvLSTM 
unit to capture long-range spatiotemporal correlation, which is a great progress. 

STGCN model [9], proposed in 2018, uses graph neural network (GCN) to complete the 
processing of timing units, and creatively proposes the gated time convolution structure to complete 
the prediction of traffic flow. Subsequently, in 2019, the team of Beijing Jiaotong University released 
the STGCN based on the attention mechanism version at the AAAI conference, that is, the ASTGCN 
model [2] to complete the traffic flow prediction. In 2020, the team released the STSGCN model [19] 
which can extract the temporal and spatial correlation at the same time to complete the traffic flow 
prediction, and achieved better prediction performance. 

Recently, lots of researches begin to focus on model the spatiotemporal correlation of 
spatiotemporal sequences in their respective deep learning models, so as to achieve better prediction 
results. Lin's research [1], MSA (multi space attention) mechanism is proposed to model 
spatiotemporal correlation; In Song's research [10], STGCM (spatial temporal synchronous graph 
neural module) was proposed to model local spatiotemporal correlation; In order to obtain global 
spatiotemporal correlation information, in the research of Li [11], the gated CNN module is 
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assembled in parallel with the spatial temporal fusion graph module. The remote spatiotemporal 
correlation can be extracted by stacking more module layers; In Fang's research [12], inspired by node 
[13] and xhoneux's work on continuity graph neural network [14], GCN can be understood as a 
discrete form of ODE (first-order differential equation). The introduction of ode can effectively avoid 
the problem of over smoothing caused by the increase of GCN layers and retain effective information 
for better spatiotemporal correlation modeling. In addition, the use of graph attention [15] is also a 
highly available method for modeling long-distance spatiotemporal correlation. For example, Fang's 
research in 2020 [16], using 3DGAT module to model spatiotemporal correlation and complete travel 
time estimation work. 

3. Preliminaries 

 
 

 

Figure 1. Structure of STATTN Figure 2. Structure of  DTCN Figure 3. Sketch Map of 
Spatiotemporal Attention 

3.1. Problem Formulation 

Given the tensor 𝒳 ∈ ℝ்×ே×ி  observed on a traffic demand map, our goal of traffic demand 
prediction is to fitting a mapping function f from the historical  𝑇 observations to predict the future  𝑇ᇱ 
traffic demand observations. 

 ሾ𝑋௧ି்ାଵ, 𝑋௧ି்ାଶ, … , 𝑋௧ሿ →௙ ሾ𝑋௧ାଵ, 𝑋௧ାଶ, … , 𝑋௧ା்ᇲሿ ሺ1ሻ 
 
We denote 𝑋 ∈ ℝே×ி  and 𝒳 = ሾ𝑋ଵ, 𝑋ଶ, … , 𝑋்ሿ் , 𝑁 denotes the grid numbers or observation 

numbers in the traffic demand map, F denotes the dimension of observation feature. 

3.2. Self-Attention Mechanism 

In most existing research on series processing, such as nature language processing, graph 
representation and time series representations, they[15][17][18]use self-attention mechanism to 
capture important dependency between neighbors in time axis or graphs in parallel. We define the 
input as 𝑋 ∈ ℝே×ி, and duplicate input 𝑋 to generate queries, keys and values, 𝑄, 𝐾, 𝑉 ∈ ℝே×ி, and 
compute output of self-attention mechanism as: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾, 𝑉ሻ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ𝑄்𝐾ඥ𝑑௞ ቇ 𝑉 ሺ2ሻ 

3.3. Tensor multiplication 

We define tensors 𝝉 ∈ ℝ𝒅𝟏×𝒅𝟐×𝒅𝟑 and 𝝊 ∈ ℝ𝒅𝟏×𝒅𝟐×𝒅𝟒, and computing the tensor multiplication as: 
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ሺ𝜏 ×ଶ 𝑣ሻ௜௟௞ = ෍ 𝜏௜௝௞ௗమ
௝ୀଵ · 𝑣௜௝௟ ሺ3ሻ 

4. Methodology 
4.1. Dilated Temporal Convolutional Network 

Most researches on spatiotemporal sequence prediction will use the date meaning of time points in 
time series, such as Monday or Tuesday in a week and which time period of the day to represent the 
spatial points of time series units. At the same time, many manually set semantic tags will be used to 
represent the spatial points in time series units. Most of the methods mentioned above require 
knowledge in relevant fields and many manual judgments. Among them, the parameters of this part 
cannot be optimized through gradient information, which deviates from the original intention of our 
data-driven model optimization. Therefore, in the problem of spatial points of sequential units, we use 
dilated 1-d temporal-axis convolutional network to capture the long-time dependency and use C 
channels to get the representation of the spatial points in time series units simultaneously. 𝐻்஼ே௟ = ൜ 𝒳            , 𝑙 = 0𝜎൫𝑊௟ ∗ௗ೗ 𝐻்஼ே௟ିଵ ൯, 𝑙 = 1,2, … , 𝑁 ሺ4ሻ 

where 𝒳 ∈ ℝ்×ே×ிis the input of TCN, 𝐻்஼ே௟ ∈ ℝ்×ே×஼ is the output of the 𝑙-th layer of TCN, 
and𝑊௟ denotes the 𝑙-th convolution kernel. To expand the receptive field, an exponential dilation 
rate𝑑௟ = 2௟ − 1 is adopted in temporal convolution. In the process, zero-padding strategy is utilized to 
keep time sequence length unchanged.  

4.2. Spatiotemporal Self-attention Networks 

In order to better obtain the characteristics of spatiotemporal Association of long-term and multi 
neighbours, so as to encode the historical information, so as to obtain better temporal representation 
for the subsequent spatiotemporal sequence prediction task, we propose spatiotemporal self-attention 
network to capture dependency in time-dimension and spatial -dimension at the same time. We 
organize all history information as 𝒳 ∈ ℝ்×ே×ி , then we use dilated temporal convolutional 
network(TCN) to generate node representation in spatiotemporal units, which means we could use 
TCN to get queries, keys and values in parallel: 𝑄, 𝐾, 𝑉 = 𝑇𝐶𝑁ሺ𝒳ሻ, 𝑇𝐶𝑁ሺ𝒳ሻ, 𝑇𝐶𝑁ሺ𝒳ሻ ∈ ℝ்×ே×஼ ሺ5ሻ 

Then, we calculate the attention score tensor as follows: 𝑆𝑐𝑜𝑟𝑒𝑠 = 𝑄 ×ଶ 𝐾 ∈ ℝ்×ே×்×ே ሺ6ሻ 

However, according to common sense, we know that it is impossible for all spatial points to have 
an interactive impact. In the decoder, we also need to consider that it is impossible for the later time 
point to have an impact on the previous time point. Therefore, we need to add mask after completing 
the calculation of attention score to prevent the above situation, so as to enhance the performance of 
the model. In the previous experiment, it has been shown that the addition of mask can effectively 
enhance the performance of the model in the prediction task. 𝑆𝑐𝑜𝑟𝑒𝑠௠௔௦௞ = 𝑆𝑐𝑜𝑟𝑒𝑠 × 𝑀𝑎𝑠𝑘௦௣௔௧௜௔௟ × 𝑀𝑎𝑠𝑘௧௘௠௣௢௥௔௟ ሺ7ሻ 

The design and calculation of temporal-mask and spatial-mask will be described in detail in 
subsequent chapters. After the calculation of attention score is completed and the residual connection 
is added, the calculation of single-layer spatiotemporal self-attention is completed： 𝑋௟ = 𝑋௟ିଵ + 𝑅𝑒𝐿𝑢 ൬𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬𝑆𝑐𝑜𝑟𝑒𝑠√𝐸 ൰ ×ସ 𝑉൰ ሺ8ሻ 
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4.3. Spatiotemporal Encoder 

Before explaining the design of encoder in detail, it is necessary to talk about the design and 
calculation process of spatial mask. In the previous research work of spatiotemporal sequence 
prediction, many models will define the adjacency relationship of spatial nodes in advance. Some take 
the historical sequence similarity of each node as the measurement index, and some take the distance 
of physical space as the measurement index. However, the above methods have to face the problem of 
manually determining the threshold to determine whether there is an edge between two points. The 
manually selected parameters, also non data-driven parameters, will have a certain impact on the 
performance of the model. Therefore, we use the learnable graph structure to obtain the spatial mask 
required by the encoder and subsequent decoder. 

As we all know, we can decompose the adjacency matrix of the graph as: 𝑨 = 𝑬𝟏𝑬𝟐𝑻    𝑬𝟏, 𝑬𝟐 ∈ ℝ𝑵×𝒅 ሺ𝟗ሻ 

We can set a and B vectors as learnable parameters, so that we can realize data-driven graph 
structure learning.In the process of encoder calculation, we only add spatial mask, which can avoid 
introducing unnecessary information in the process of obtaining the representation of time sequence. 
It is worth noting that in the process of encoder calculation, we do not consider adding temporary 
mask, which can ensure a better representation of spatiotemporal sequence. 

4.4. Spatiotemporal Decoder 

In the calculation process of decoder, we do not use the common iterative decoder paradigm like 
transformer, because the iterative decoder will not only greatly reduce the efficiency of model training 
and inference, increase the time consumption, but also have the problem of error transmission in the 
iterative process. In order to solve the above problems at the same time, we use the generative decoder. 
Instead of choosing a specific flag as the token like what research in NLP usually set, we sample a 𝐿token long sequence in the input sequence, which is an earlier slice before the output sequence. It 
works as follows: 

Firstly, we sample L long sequence in input sequence and concatenate it with target long sequence 
filled with 0: 𝓧𝒅𝒆𝒄𝒐𝒅𝒆𝒓 = 𝑪𝒐𝒏𝒄𝒂𝒕𝒆ሺ𝓧𝑳, 𝟎ሻ ∈ ℝ൫𝑳𝒔𝒂𝒎𝒑𝒍𝒆𝑳𝒕𝒂𝒓𝒈𝒆𝒕൯×𝑵×𝑭 ሺ𝟏𝟎ሻ 

Then, we send 𝒳ௗ௘௖௢ௗ௘௥ to complete the subsequent computation with spatial mask and temporal 
mask simultaneously. We use a upper triangular matrix to perform as a temporal mask, which can 
efficiently avoid leaving information from future points to historical points. 

4.5. Others 

After the calculation of the decoder, we send the hidden layer representation of the obtained 
spatiotemporal sequence into the full connection layer, that is, we get the spatiotemporal sequence 
value to be predicted. MSE loss is selected as the loss function: 

𝐿𝑜𝑠𝑠 = 1𝑁 + 𝐾 ෍ ෍൫𝑥ො௡,௧ − 𝑥௡,௧൯ଶ௄
௧ୀଵ

ே
௡ୀଵ ሺ11ሻ 

5. Experiments 
5.1. Datasets 

We use two crowd flow prediction data sets – Taxi-NYC and Bike-NYC. Taxi-NYC is obtained 
from NYC-TLC, and Bike-NYC is obtained from Citi-Bike[1]. They contain 60 days of trip records, 
in which the locations and times of the start and the end of a trip is included. We use the first 40 days 
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as training data and the rest 20 days as test data. Since these data sets are frequently adopted in crowd 
flow prediction researches, we adopt the general settings, including gird size, time interval, and 
thresholds. 

 
Table 1. Datasets 

Data sets Taxi-NYC Bike-NYC 
Map size 16×12 14×8 
Grid size 1km×1km 1km×1km 
Time interval 30 mins 30mins 
Features inflow/outflow inflow/outflow 
Futures 12 12 
Max 1409/318 262/274 
Mean 114.0/146.1 33.1/32.6 
Std 141.6/167.2 26.7/26.9 
Time Range 1/1/2016-2/29/2016 8/1/2016-9/29/2016 
Records 28.1 million 3.8 million 

5.2. Baselines 

We compare our model with following baseline models: 
1.MLP: Multi-Layer Perceptron, three-layer fully connected network. 2. LSTM: Long-short term 

memory neural network. 3. STGCN[9]: Spatio-Temporal Graph Convolution Network, which utilizes 
graph convolution and 1D convolution to capture spatial dependencies and temporal correlations 
respectively.4.ASTGCN-r[2]:Attention based Spatial Temporal Graph Convolutional Networks, 
which utilize spatial and temporal attention mechanisms to model spatial-temporal dynamics 
respectively. In order to keep the fairness of comparison, only recent components of modeling 
periodicity are taken. 5. STGODE[12]: Spatial-Temporal Graph Ordinary Differential Equation 
Networks, which capture spatial-temporal dynamics through a tensor-based ordinary differential 
equation (ODE), as a result, deeper networks can be constructed and spatial-temporal features are 
utilized synchronously. 

5.3. Metrics and Experimental Setting 

Three kinds of evaluation metrics are adopted, including root mean squared errors(RMSE), mean 
absolute errors(MAE), and mean absolute percentage errors(MAPE). 

All experiments are conducted on a Linux server (CPU: Intel(R) Core (TM) i9-11900K @ 
3.50GHz, GPU: NVIDIA RTX 3090 24GB). The hidden dimensions of TCN blocks are set to 64, 32, 
64, the learnable parameters’ dimension which is decomposition of graph adjacent matrix are set to 10, 
the linear output layers are set to 2 layers.We train our model using Adam optimizer with a learning 
rate of 0.002. The batch size is 32 and the training epoch is 400. 

5.4. Short-term Prediction 

In this section, we evaluate the effectiveness of our model and other baselines in modeling 
complex and dynamic spatial temporal correlations by examining short-term prediction results. As 
shown in Table 2, in the two crowd flow prediction tasks, the performance of deep learning method is 
better than that of traditional neural network because of its complex structure. 
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Table 2. Short-term Prediction 

 Bike-NYC Taxi-NYC 
Models RMSE MAE MAPE RMSE MAE MAPE 
MLP 10.67 8.21 26.49 24.10 14.90 21.88 
LSTM 10.53 8.03 26.16 25.35 13.76 25.52 
STGCN 9.57 6.81 25.87 21.39 13.31 17.44 
ASTGCN 9.88 7.04 23.94 21.40 13.42 18.40 
STGODE 9.68 6.95 22.01 21.30 14.20 17.46 
STATTN 9.38 6.65 21.72 21.05 13.14 18.30 

 
We can see from the results in the table above that the short-term prediction accuracy of the more 

complex in-depth learning model on the two data sets of travel demand prediction is higher than that 
of the simple MLP and LSTM models. The biggest difference between the following more complex 
deep learning models and MLP and LSTM models is that they often use graph neural network or 
graph attention mechanism to better capture the correlation between nodes in spatiotemporal sequence 
units.The key reason why ASTGCN performs better than STGCN is that ASTGCN integrates the 
dependence of temporal dimension and the dependence of spatial dimension for modeling. Compared 
with the structure in which STGCN models and calculates the two dimensions separately, it can 
implicitly capture the spatiotemporal correlation information. Compared with the above two deep 
learning models, STGODE has further improved the prediction accuracy. Because STGODE uses a 
tensor-based ordinary differential equation (ODE) to capture spatial-temporal simultaneously, the use 
of this structure can model the relationship between time and space dimensions at the same time. At 
the same time, the adoption of ODE greatly improves the calculation efficiency of the model and 
avoids the problem of over smoothing caused by the superposition of module layers. It is a model 
with excellent theoretical support and practical performance. The key reason why our model can 
achieve good results on two travel demand forecast data sets is that we use the spatiotemporal self-
attention network which can capture the non-linear spatiotemporal dependence better than STGODE. 
Furthermore, we use data-driven or so-called dynamic graph to guide our model to aggregate 
information from spatial neighbours which has been proven more efficient in many previous research. 

5.5. Long-term Prediction 

We evaluate the effectiveness of our model and other baselines in modeling complex and dynamic 
spatial temporal correlations by examining long-term prediction results. We take 12 steps history 
spatiotemporal stamps as input to make 12 steps ahead prediction in this section. Since the 
performance of MLP and LSTM models in this task is not particularly good, the comparison and 
analysis with MLP and LSTM models will not be carried out in this chapter. 

 
Table 3. Long-term Prediction 

 Bike-NYC Taxi-NYC 
Models RMSE MAE MAPE RMSE MAE MAPE 
STGCN 13.89 9.01 32.03 40.46 22.63 25.83 
ASTGCN 13.07 8.82 24.46 39.26 22.57 30.88 
STGODE 12.89 8.41 22.43 34.99 19.74 28.30 
STATTN 12.45 8.22 22.63 31.85 18.02 20.65 

 
As shown in table 3, we observe the increased errors for all evaluated approaches, compared to 

their results of merely performing short-term predictions. Specifically, in New York taxi data, the 
RMSE of DSAN increased by 10.8, while the RMSE of STGCN, ASTGCN and STGODE increased 
by 19.07, 17.86 and 13.69 respectively. It shows that connecting each output directly to all inputs 
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through the design of STATTN decoder module is crucial to mitigating error propagation, compared 
to relying entirely on previously predicted outputs. By comparing the performance of the baseline 
model and our model on two data sets and three evaluation indicators, we can see that our model is 
basically in the leading position in the task of long-term prediction. Therefore, it can be explained that 
the STATTN model using the X mechanism can achieve a good effect and play a certain advantage in 
the work of long series modeling and long series output prediction. In comparison, STATTN can still 
perform a reliable spatial-temporal prediction without considering any assisting information. 

5.6. Ablation Study 

To demonstrate the effects of different components in STATTN, we evaluate the following 
variants on long-term prediction task:1.-T-Mask: STATTN without temporal mask. 2.-S-Mask: 
STATTN without spatial mask. 3.-TCN: STATTN without dilated temporal convolutional network to 
get spatial points’ representation, which use the raw features of spatial points. 4.-Decoder: STATTN 
without decoder to generate the prediction result. Relatively, we use a fully-connected network is to 
transform the encoder’s output to the final output, which is part of complete STATTN. 

 
Table 4. Ablation Result 

 Bike-NYC Taxi-NYC 
Models RMSE MAE MAPE RMSE MAE MAPE 
-T-Mask 14.52 9.12 26.34 41.32 22.78 26.97 
-S-Mask 13.60 8.64 23.95 34.88 19.47 21.97 
-TCN 14.38 8.75 25.61 39.97 21.70 23.70 
-Decoder 12.76 8.51 23.65 32.18 19.01 21.30 
STATTN 12.45 8.22 22.63 31.85 18.02 20.65 

 
As shown in Table 4, the variants are more or less not as competent as STATTN. It is obvious 

from the results in the table that the RMSE of the model without Temporal-Mask on the Bike-NYC 
dataset is 14.52, which is obviously weaker than that of STGCN, and the same is true on the Taxi-
NYC dataset. The main reason is that the spatiotemporal phenomenon contains a large number of 
inputs (there are more than 1000 taxi companies in New York), which exceeds the ability of attention 
calculation. At the same time, if the temporary mask is not added to the decoder structure, it is very 
likely that the predicted value at the current stage will be affected by the future stage. For other 
variants, the RMSE of STATTN without Spatial-Mask in Bike-NYC task is increased by 9.23%, 
because there is no indication of spatial location in the attention calculation process. In addition, the 
lack of TCN will make the model unable to obtain high-quality spatial point representation, which 
lead to 13.38% increased in RMSE in Bike-NYC task. However, the adoption of decoder can help the 
model to directly output the values of all time steps that need to be predicted and avoid the 
propagation of error. However, according to the experimental results, we can only see that the 
addition of decoder does not help us to improve the performance of the model to a great extent. On 
the bike NYC dataset, the RMSE error is only reduced by 2.4%. As a conclusion, we can see that the 
adoption of temporary mask and TCN has a great impact on the performance of our STATTN model, 
because these two structures are related to the indication of attention mechanism in the time 
dimension and the acquisition of high-quality spatial point representation. 

6. Conclusions 

In this work, we present a novel model for spatiotemporal traffic demand forecasting. Our model 
could capture spatiotemporal-dependencies simultaneously and effectively by a novel spatiotemporal 
self-attention network. Using Dilated TCN to generate spatial nodes’ representation , using self-
attention mechanism to capture spatiotemporal dependencies and generation-style decoder prevent the 
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error accumulation between inference. Detailed experiments and analysis reveal the strengths and 
weaknesses of previous models, which can demonstrate the excellent performance of STATTN. 
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