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Abstract 
With the development of the big data age, the demand of modern emerging disciplines for the 
fine quantitative tail characteristics of financial data analysis is constantly developing, so the 
research method of tail index change point in the thick tail sequence is particularly important. 
In this paper, we extend the Ratio statistic proposed by Kim to the test of change point of tail 
index in infinite variance observations. The null distribution of the statistic and its consistency 
under alternative hypothesis were obtained. Prior with the least squares estimation method used 
in previous articles,we used robust M estimation to estimate unknown parameter ,making 
parameter estimation in the model more accurate.The Monte Carlo numerical simulation shows 
that our test works well. 
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1. Introduction 1

In the age of big data, pre-detecting structural changes allows us to better interpret data, predict data
more accurately and avoid risk. Therefore, the study of structural change points has attracted wide 
attention from many scholars. Tail index change point is one of the core contens of change point research, 
which is widely used in pratical life. Such as finance, hydrology, communication engineering and other 
fields. Several tail index change-point tests have been proposed in the past decade. Quintos, Fan, and 
Phllips [1] employed three tests to verify tail index change-points in independent samples and ARCH 
models. And later Kim and Lee [4] studied the tail index change-point test based on autoregressive 
residuals. 

Reasonable estimates of the parameters in the models are also momentous. The least squares 
estimation is the most commonly used point estimation method in parameter estimation, but data with 
anomalies or strong influence points are often encountered in pratical problems, while the least-squares 
estimator is sensitive to the emergence of outliers in the data. Therefore, in order to eliminate or reduce 
the effect of outliers, The estimator is required to have a robustness. While M estimation is a commonly 
used class of estimates in current robust estimation methods, and there have been a series of extensive 
studies on M estimation. Richard, Keight and Liu [10] used M estimation to study the estimates of 
autogressive parameters in heavy-tailed sequences, and later Keith Knight  proposed the limit theory 
of M estimation in heavy-tailed sequences.  

In this paper, We employ robust M estimation to estimate unkown parameters in the model and 
obtain the asymptotic behaviour of the estimator. To define the test statistic, we cite the test statistic 
based on detecting change point in the persistence by Kim[8] to test the change point of heavy index. 

This paper is arranged as follows. Section 2 we show the model and assumptions. Section 3 represent 
test statistic and asymptotic distribution. Section 4 the Monte Carlo simulation is made.Section 5 
summarize this paper.  
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2. Model and Assumption 

Our model is presented as follows: y୲ = u + ε୲, t = 1,2, ⋯ T                            (1) 

where μ is unknow parameter and we employ the M estimation to estimate μ. This paper is based 
on the following assumption: (𝐴ଵ){ε୲}is an i.i.d. sequence of r.v.’s with E(ε୲ଶ) = ∞which are in the domain of attraction of a stable 
law of order α ∈ (0,2].The normal distribution corresponds to α = 2. (𝐴ଶ)ρᇱ = ψ(. );E൫ψ(η୲)൯ = 0;E(|ψ(η୲)|ଶାஓ) < ∞,for some γ > 1. (𝐴ଷ)ψᇱ(. )  is Lipschitz continuous; 0 < หE൫ψᇱ(η୲)൯ห < ∞. 

Lemma.1. if the assumption (Aଵ) holds, then ቀa୘ିଵ ∑ ε୲[୰୘]୲ୀଵ , a୘ିଶ ∑ ε୲ଶ[୰୘]୲ୀଵ ቁ ⇒ ൫U୩(r), ׬ (dU୩)ଶ୰଴ ൯                  (2) 

Where a୘ = Tଵ/୩L(T) ,for slowly varying function, the U୩(r)  is a standard stable process with 
index k and the characteristic function of U୩(1) has the form eିୡ|౩|ౡwhere c = ൜Γ(1 − k) cos( πk/2), k ≠ 1π/2, k = 1                            (3) 

Moreover, U୩(r) =rଵ/୩U୩(1). 
Remark 1. Specific reference Phillips [13]. 
Lemma.2. If assumption (Aଵ) − (Aଷ) holds, then  Tଵ/ଶ(μොଵ − μ) → ୆(த)த⋅୉(நᇲ(க౪)) , t = 1,2, ⋯ [Tτ]                    (4)  Tଵ/ଶ(μොଶ − μ) → ୆(ଵ)ି୆(த)(ଵିத)⋅୉(நᇲ(க౪)) , t = [Tτ] + 1, [Tτ] + 2, ⋯ T       (5) 
where μොଵ , μොଶ represents M estimation based on respectively yଵ, yଶ, ⋯ y[୘த] and y[୘த]ାଵ, ⋯ , y୘ . B(τ) is Brownian motion.  
Proof of Lemma.2. 
We consider estimates μොଵ defined by minimizing ∑ ρ(y୲ − μ)୬୲ୀଶ . Define the process 

 Z୬(v) = ∑ ቆρ ቀε୲ + vTିభమቁ − ρ(ε୲)ቇ[୘த]୲ୀଵ , 

and note that vො  which minimizes Z୬    is simply Tభమ(μොଵ − μ) .Then we using the Taylor series 
expansion of each summand of Z୬   around v = 0,we get 

 Z୬(v) = Tିభమv ∑ ψ(ε୲)[୘த]୲ୀଵ + ଵଶ Tିଵvଶ ∑ ψᇱ(ε୲∗)[୘த]୲ୀଵ ,  

where ε୲∗ lies between ε୲ and ε୲ + Tିభమv.Using the fact that ψᇱis Lipschitz-continuous|ψᇱ(ε୲) −ψᇱ(ε୲∗)| ≤ K ቚTିభమvቚ, and reference Keith Knight[11],we can get 

                 Tିభమ ∑ ψ(η୧)[୘த]୧ୀଵ → B(τ),Tିభమ ∑ ψ(η୧)୘୧ୀ[୘த]ାଵ → ൫B(1) − B(τ)൯.              Tିଵvଶ ෍|ψᇱ(ε୲) − ψᇱ(ε୲∗)|[୘த]
୲ୀଵ ≤ vଶTିଵ ⋅ [Tτ] ⋅ k ฬTିଵଶvฬ →୮ 0 

To see this ,note that sup଴ஸதஸଵ ቚTିଵ ∑ ൫ψᇱ(ε୲) − E(ψᇱ(ε୲))൯[த୘]୲ୀଵ ቚ →୮ 0, 

Thus, the finite dimensional distributions of Z୬(⋅)converge weakly to those of Z(⋅), 
where Z(v) = vB(τ) + ଵଶ vଶτE(ψᇱ(ε୲)),let Zᇱ(v) = 0,we get v = Tଵ/ଶ(μොଵ − μ) → ୆(த)த⋅୉(நᇲ(க౪)),  

In the same way, t = Tτ + 1, Tτ + 2, ⋯ T,  v = Tଵ/ଶ(μොଶ − μ) → ୆(ଵ)ି୆(த)(ଵିத)⋅୉(நᇲ(க౪)). 
specific reference Keith Knight[10]. 
Now,we take into account the following null hypothesis and alternative hypothesis:  
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 H଴:k is constant  Hଵ:k = k Iଵ {୲ஸ୩∗} + k Iଶ {୲வ୩∗} 
3. Test Statistic and Asymptotic Distribution 

We consider the Ratio statistic presented by Kim: 

Ξ୘(τ) = ([ଵିத]୘)షభ ∑ ቀ∑ கොభ,౟౪౟స[ಜ౐]శభ ቁమ౐౪స[ಜ౐]శభ[த୘]షభ ∑ ൫∑ கොబ,౟౪౟సభ ൯మ[ಜ౐]౪సభ                         (6) 

where εො଴,୧  and εොଵ,୧  represents M estimation residuals based on respectively yଵ, yଶ, ⋯ y[୘த]  and y[୘த]ାଵ, ⋯ , y୘ .According to ratio statistic, a Maximum Chow-type test is proposed Ξ୘ = maxத∈୘ Ξ୘(τ), T ∈ (0,1)                           (7) 

Theorem 3.1 Suppose the assumption Aଵ − Aଷ holds, then under the null hypothesis, Ξ୘(τ) ⇒ (ଵିத)షభ ׬ ୋభమ(୰ିத)ୢ୰భಜதషభ ׬ ୋభమ(୰)ಜబ                           (8) 

And Ξ୘ ⇒ Ξ୘(τ),Gଵ(r) = U୩(r),r ∈ (0, τ);Gଵ(r − τ) = U୩(r) − U୩(τ),r ∈ (τ, 1) 
Proof of Theorem 3.1 
According to Lemma.1, Lemma.2, let t = Tr ,we have 

 a୘ିଵ ∑ εො଴,୧୘୰୧ୀଵ = a୘ିଵ ∑ (ε୧ − (uොଵ − u))୘୰୧ୀଵ ⇒ U୩(r) = Gଵ(r),so [τT]ିଵ ∑ ൫∑ εො଴,୧୲୧ୀଵ ൯ଶ[த୘]୲ୀଵ ⇒ τିଵ ׬ Gଵଶ(r)த଴ . 
Similarly, a୘ିଵ ∑ εොଵ,୧୘୰୧ୀ୘தାଵ = a୘ିଵ ∑ (ε୧ − (uොଶ − u))୘୰୧ୀ୘தାଵ ⇒ U୩(r − τ) = Gଵ(r − τ). 
Finally, we get the limit distribution of the statistics unde the null hypothesis Ξ୘(τ) ⇒ (1 − τ)ିଵ ׬ Gଵଶ(r − τ)ଵத drτିଵ ׬ Gଵଶ(r)த଴ dr  

Theorem 3.2 If assumption Aଵ − Aଷ holds, and τ∗ is the break time, then under the alternative 
hypothesis, (1)kଵ > kଶ and 0 < τ ≤ τ∗,we have 

 Ξ୘ = maxத∈୘ Ξ୘(τ) = O୮(ୟ౐మమୟ౐భమ), As T → ∞,Ξ୘ → ∞                  (9) 

For τ∗ < τ < 1,we have Ξ୘ = maxத∈୘ Ξ୘(τ) = O୮(1). 

 (2) kଵ  < kଶ  and 0 < 𝜏 ≤ 𝜏∗, we have Ξ୘ି ଵ = maxத∈୘ Ξ୘ି ଵ(τ) = O୮(1),  
For τ∗ < τ < 1，we have  Ξ୘ି ଵ = maxத∈୘ Ξ୘ି ଵ(τ) = O୮(ୟ౐భమୟ౐మమ) → ∞,As T → ∞,Ξ୘ି ଵ → ∞     (10) a୘భ = Tଵ/୩భL(T),a୘మ = Tଵ/୩మL(T),L is slowly function. 
Proof of Theorem 3.2 
We first consider the case (i) kଵ > kଶ,0 < τ ≤ τ∗,similar to Proof of Theorem 3.1, the denominator 

is [τT]ିଵ ∑ ൫∑ εො଴,୧୲୧ୀଵ ൯ଶ[த୘]୲ୀଵ = O୮(a୘భଶ ).The numerator is ([1 − τ]T)ିଵ ቄ∑ ൫∑ εො଴,୧୲୧ୀ[த୘]ାଵ ൯ଶ +[த∗୘]୲ୀ[த୘]ାଵ ∑ ൫∑ εොଵ,୧୲୧ୀ[த୘]ାଵ ൯ଶ୘୲ୀ[த∗୘]ାଵ ቅ = O୮൫a୘భଶ ൯ + O୮( a୘మଶ ).  

When kଵ > kଶ,Ξ୘(τ) = O୮(ୟ౐మమୟ౐భమ ) → ∞.The case τ∗ < τ < 1, 

the denominator is [τT]ିଵ ൜∑ ൫∑ εො଴,୧୲୧ୀଵ ൯[த∗୘]୲ୀଵ ଶ + ∑ ൫∑ εොଵ,୧୲୧ୀଵ ൯[த୘]୲ୀ[த∗୘]ାଵ ଶൠ = O୮(a୘భଶ ) + O୮(a୘మଶ ), 

and the numerator is ([1 − τ]T)ିଵ ∑ ൫∑ εොଵ,୧୲୧ୀ[த୘]ାଵ ൯ଶ୘୲ୀ[த୘]ାଵ = O୮(a୘మଶ ).  
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Above all,Ξ୘ = maxத∈୘ Ξ୘(τ) = O୮(ୟ౐మమୟ౐భమ).As T → ∞, Ξ୘ → ∞. 

Then the case (ii) kଵ < kଶ,similar to the case (i), The proof is omitted . 
Theorem 3.3 If Aussmption Aଵ − Aଷ holds, then under the alternative hypothesis, if kଵ  ≠ kଶ  ,we 

have 
 Ξ୘∗ = max൛Ξ୘, Ξ୘ି ଵൟ, As T → ∞, Ξ୘∗ → ∞.                    (11) 

4.Monte Carlo simulation 

This section we use the Monte Carlo numerical simulation method to verify the effectiveness of our 
Ratio test.We obtain the empirical level value and empirical potential function value . Consider the 
following data generation process: 𝑦௧ = 𝑢 + 𝜀௧ , t = 1,2, … T . The sample size is T =200，500，1000 . heavy-tailed index {κ =  0.6, 0.8,0.9 ,1.6,1.8,1.9}  .The test was repeated 2000 
times and significance level α = 0.05.The original statistic and the inverted statistic are identically 
distributed, so we only give the critical value of the original statistic. 

 
Table 1 
Critical values of Maximum-Chow 

k  0.6 0.8 0.9 1.6 1.8 1.9 

T=200 Ξ்(𝜏) 70.6102 64.2800 55.7735 18.3333 16.1118 14.4291 

T=500 Ξ்(𝜏) 70.3438 60.0030 59.5982 14.8721 18.5255 13.9622 

T=1000 Ξ்(𝜏) 71.2121 68.7985 52.4784 17.0133 18.4640 13.9873 

 
Table 2 
Empirical size of Maximum-Chow 

k  0.6 0.8 0.9 1.6 1.8 1.9 

T=200 Ξ்(𝜏) 0.0470 0.0500 0.0510 0.0470 0.0500 0.0500 

T=500 Ξ்(𝜏) 0.0490 0.0510 0.0500 0.0460 0.0510 0.0520 

T=1000 Ξ்(𝜏) 0.0498 0.0499 0.0510 0.0510 0.0490 0.0486 

 
Table 3 
power experience of Maximum-Chow 

T kଵ → kଶ 𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.7 𝑘ଵ → 𝑘ଶ 𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.7 
200 1.9 → 1.8 0.2260 0.2050 0.2720 0.9 → 0.8 0.2230 0.2040 0.2300 
 1.9 → 1.6 0.2460 0.2640 0.3660 0.9 → 0.6 0.2240 0.2620 0.2940 1.8 → 1.6 0.2090 0.2130 0.2330 0.8 → 0.6 0.2050 0.2110 0.2290 1.8 → 1.5 0.2150 0.2220 0.2450 0.8 → 0.5 0.2120 0.2260 0.2330 
500 1.9 → 1.8 0.2320 0.2480 0.2820 0.9 → 0.8 0.2130 0.2210 0.2200 
 1.9 → 1.6 0.2560 0.2670 0.3690 0.9 → 0.6 0.2330 0.2580 0.2850 1.8 → 1.6 0.2360 0.2540 0.2940 0.8 → 0.6 0.2540 0.2590 0.2860 1.8 → 1.5 0.2680 0.2720 0.2950 0.8 → 0.5 0.2580 0.2620 0.2880 
1000 1.9 → 1.8 0.2350 0.2890 0.2990 0.9 → 0.8 0.2230 0.2520 0.2610 1.9 → 1.6 0.2590 0.2690 0.3740 0.9 → 0.6 0.2600 0.2640 0.2680 1.8 → 1.6 0.2660 0.2670 0.2950 0.8 → 0.6 0.2490 0.2540 0.2640 1.8 → 1.5 0.2690 0.2900 0.2990 0.8 → 0.5 0.2500 0.2620 0.2980 
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Table 1 is the critical value of the statistic,we can see that with the increase of the sample size, the 
critical value gradually stabilizes, Table 2 is the rejection rate of the statistic under the null hypothesis, 
and the empirical size is close to the significance level 5%. 

Table 3 is the empirical powers under the alternative hypothesis, we consider τ = 0.3,0.5,0.7,from 
the table we can get that :power increases as the jump amplitude increases; when the jump amplitude is 
constant, power decreases as τ increases and as the sample size increases，because the larger the sample 
size T, the more dispersed the statistics are.In general, the larger the sample size, the greater the jump 
amplitude, and the smaller the τ, the better the statistical test effect. Furthermore kଵ < kଶ，We can get 
the same results.For reasons of space, I will not repeat them here. 

5.Conclusions 

In this paper, we investigate the heavy index change point in thick tail sequence, and this theme is 
closely related to the big data setting and financial market. we adopt M-estimate to estimate unknow 
parameter, and absort to the statistic proposed by Kim, obtained the limit distribution of the statistics 
unde the null hypothesis and its consistency under alternative hypothesis.Numerical simulations verify 
that our statistics work very well. 
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