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Abstract 
The common preprocessing method for abnormal traffic detection is feature-level 
preprocessing, which is more complex and requires some a priori knowledge (number, meaning, 
and characteristics of features, etc.) to be considered. A character-level preprocessing-based 
abnormal traffic detection method is proposed. Starting from the fine-grained character level, 
the network traffic data is treated as a sequence of characters, and the character sequence is 
encoded as a vector using four character encodings of the character-level convolutional neural 
network, and the vectors of each data after character encoding are aggregated into a matrix and 
fed into the improved convolutional neural network. Experimental results show that the ASCII 
encoding model in this paper performs best. Compared with the Sparse encoding model, the 
verification time was reduced by 1.07s and the accuracy rate is increased by 3.21%; Compared 
with the feature-level pretreatment model, the pre-treatment was simplified without 
considering the prior knowledge of the data, and the accuracy rate is increased by 4.49%.   
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1.Introduction 1 

In the 21st century, the network has become the largest and most comprehensive information center 
with the fastest delivery speed that mankind has ever had. The massive amount of traffic data generated 
by the network has security risks, and once it is maliciously attacked by hackers, it will bring serious 
harm to people's daily life and even national security. Anomaly detection is the focus of research in 
network security, in which network traffic anomaly detection can detect whether there is an attack in 
the network through the analysis of traffic data. 

In recent years, deep learning has started to emerge, and good research results have been achieved 
in natural language processing (NLP) [1], image recognition [2], and speech recognition [3]. The nonlinear 
network structure formed by constructing more hidden layers through deep learning methods can learn 
features in data autonomously and still performs well in the application scenario of massive data. 
Therefore, many scholars have also applied deep learning in the field of cyber security. Convolutional 
neural networks (CNNs), as the main model of deep learning, are widely used in the detection of 
malicious codes, malicious HTTP requests, and malicious Web request [4]–[6]. 

2.Related Work 

Deep learning is becoming increasingly popular in academic research due to its strong autonomous 
learning capability and is used in anomalous traffic detection. However, anomalous traffic detection 
data includes both continuous and discrete data, and the order of magnitude difference between different 
feature attributes in the data is large. To construct a reasonable dataset, it is usually necessary to pre-
process the dataset. The data preprocessing stage usually contains two parts: character feature 
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numericalization and numerical feature normalization. Numerical characterization refers to the mapping 
of data using one-hot encoding and other encoding methods; numerical feature normalization refers to 
the reduction of data values to the range of [0,1] using Min-Max, Z-score, and other normalization 
methods to eliminate the influence of size on feature attributes[7]. 

After research, according to the overall preprocessing process of abnormal traffic detection based 
on deep learning, it can be divided into feature level, hybrid level, and character level. Most of the 
preprocessing methods are used for feature-level preprocessing. Yin et al. [8] proposed a deep learning 
approach for intrusion detection based on recurrent neural networks (RNN-IDS), where the data were 
put into RNNs after feature-level preprocessing of the dataset, and the performances of the model in 
binary and multi-classification were investigated, as well as the impact of the number of neurons and 
different learning rates on the performances of the proposed model. Anju Krishnan et al. [9] proposed a 
one-dimensional convolutional neural network-based intrusion detection (1DCNN-IDS), where data 
after numerical and normalized feature-level preprocessing of character features were fed into a 1D-
CNN, and experimental results showed superiority over traditional machine learning models. Based on 
the advantages of CNN in the image domain, Xiao et al. [10] transformed the data after feature-level 
preprocessing and dimensionality reduction using PCA or AE into grayscale images input to CNN for 
feature extraction and classification, and the experimental results were better than traditional machine 
learning algorithms. Feature-level preprocessing is performed only with prior knowledge of the a priori 
knowledge of the features in the dataset (number, meaning and characteristics of the features, etc.), and 
in a real network environment, where there are more possible values of character types, the character 
feature numericalization will be incomplete and the generalization is not good. 

In terms of hybrid-level preprocessing, Min et al. [11] mixed feature-level and word-level using two 
modern NLP techniques: word embedding and Text-CNN, extracted salient features from the payload, 
and then performed a random forest algorithm on the combination of statistical features and payload 
features for classification. This method still requires prior knowledge of the statistical features in the 
dataset, which also complicates pre-processing. 

In terms of character-level preprocessing, Lin et al. [12] proposed an intrusion detection method based 
on character-level convolutional networks (CharCNN). The traffic data was treated as a special text 
sequence, and each character of the data is first transformed into a character vector using one-hot coding, 
and the vectors are converged into a matrix and fed directly into the convolutional neural network model, 
and the final experimental results show the highest accuracy rate compared with the traditional machine 
learning model. This process simplifies preprocessing by eliminating the need to know the prior 
knowledge of the dataset, but the character vector formed using one-hot encoding increases the 
dimensionality, which leads to a very sparse phenomenon.  

CharCNN was investigated due to the advantages of character-level preprocessing. Andrei Karpau 
et al. [13] introduced four encoding methods for CharCNN cited in NLP: Sparse, Sparse Group, ASCII, 
ASCII Group, and ASCII had a faster convergence speed. Joseph et al. [14] used the character encoding 
embedding method of UTF-8 to encode each character as a vector using a UTF-8 binary value. 
Experiments showed that training was faster and had higher performance, and it was easier to learn 
from character-level text. 

Therefore, this paper proposes a character-level convolutional neural network-based anomalous 
traffic detection model (ATD-CharCNN). Applying the character-level convolutional neural network 
in the field of NLP to anomalous traffic detection, the network traffic data is treated as a special kind 
of character text from a more fine-grained character level. The main work of this paper is as follows： 

(1) Four character encodings for the character-level convolutional neural network are introduced for 
character-level preprocessing of network traffic data; this method simplifies the preprocessing process 
without knowing the prior knowledge of the dataset features. 

(2) Experiments are conducted on the public dataset NSL-KDD [15], and then the effectiveness of the 
four character encodings in abnormal traffic detection is verified and compared with the detection 
performance of the model with feature-level preprocessing. 
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3.Abnormal Traffic Detection Based on CharCNN 

This paper does not use the mainstream preprocessing method but introduces the character-level 
convolutional neural network used in the natural language field for abnormal traffic detection, which 
simplifies the preprocessing steps and makes the model more generalizable. The overall process of the 
method is shown in Figure 1, which mainly includes three parts: (i) data preprocessing, the character 
encoding of traffic data as characters, convergence into vector matrix; (ii) construction of CNN model; 
(iii) Binary and multi-class training and testing using the NSL-KDD classic dataset. 

 
Figure 1.  ATD-CharCNN overall flow chart. 

3.1.The binary classification and multi-classification of NSL-KDD 

The distribution of the NSL-KDD dataset is shown in Table 1, and the network traffic in the dataset 
can be divided into two categories: Normal traffic and Abnormal traffic. NSL-KDD can also be divided 
into multi-classification in more detail: Normal traffic, Dos attack traffic, Probe attack traffic, R2L 
attack traffic, and U2R attack traffic. 

From NSL-KDDTrain+, we can see that the amount of normal and abnormal data in the binary 
classification is more balanced, and the detection effect will be higher when the abnormal traffic 
detection model performs binary classification, but only abnormal traffic can be detected, and it is not 
possible to know more deeply which kind of abnormal traffic it is. In multi-classification, the abnormal 
traffic is classified more specifically, and from the overall perspective, the distribution of the five traffic 
data in the training set is unbalanced, and although specific categories of abnormal traffic can be 
detected, the detection rate is not high. 

 
Table 1.  Distribution of traffic in NSL-KDD 

Binary classification Multi-classification NSL-KDDTrain+ NSL-KDDTest+ 
Normal Normal 67343 9711 
 
Abnormal 

Dos 45927 7458 
Probe 11656 2421 
R2L 995 2754 
U2R 52 200 

 Total 125973 22544 

3.2.Character level preprocessing 

In the classic traffic detection dataset NSL-KDD, there are numerical and character features. 
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However, for the neural network to better identify these features, the character features need to be 
numericalized before model training, and normalization is required to eliminate singular values. For 
example: in the NSL-KDD dataset, there are three character-type discrete features: 'protocol_type', 
'service', and 'flag', which are first quantized and encoded, and converted into digital representations. In 
this way of preprocessing, the quantification and normalization of features can only be carried out 
according to the prior knowledge of the features of the dataset, including the number, meaning, and 
characteristics of features.  

The character-level preprocessing method in this paper does not require such prior knowledge and 
only needs to process each character in the data. This model pre-processes traffic feature sequences 
with character length 𝑙0. If the characters in a sequence are less than 𝑙0, then spaces will be added to the 
header of the feature sequence to make it 𝑙0 length; if there are more characters in a sequence than 𝑙0, 
since the sequence header is often the basic feature of the traffic, it is not compatible with attacks. If the 
correlation is small, the characters beyond the head of the feature sequence are deleted [12].  

The character table composed of all the characters that may appear in the statistical dataset is as 
follows. Table 2 contains the upper and lower case of 26 letters, ten numbers, and 3 punctuation marks 
that appear in the dataset. 

 
Table 2.  Character List.  

a b c d e f g h i j k l m n o p q r s t u v w x y z 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 , . _              

 
The characters that appear are encoded and mapped in four ways, as follows: 
Sparse: The essence of Sparse encoding is one-hot encoding. All characters appearing in the dataset 

are first counted and numbered, and each character is encoded as a vector of zeros except for the number 
of character that appears, which is 1. All characters in this data set are 65 characters in Table 2, in which 
the uppercase letters are converted to lowercase letters to reduce sparsity, 39 characters are quantified 
as 1×39 vectors, e.g., the Sparse encoding of a is a vector containing 38 zeros: [1,0,0,0,0,0...,0,0]. For 
all characters except the character table, it is encoded as an all-zero vector with 39 zeros: 
[0,0,0,0,0,0...,0,0]. 

Sparse Group: This code adds 4 bits to identify the character type based on Sparse. Character types 
are lowercase letters, uppercase letters, numbers, and punctuation. For example, the Sparse Group 
encoding of the capital letter A is [1,0...,0,0,1,1,0,0], which is the Sparse encoding of a [1,0,0,0, 0...,0,0] 
adds [1,1,0,0] to identify as uppercase letters. This encoding provides more information about the 
characters and enhances the awareness of the model [13]. 

ASCII: The first two encodings contain a lot of zeros and high dimensionality, resulting in a very 
sparse phenomenon. ASCII encoding is a non-sparse encoding of an eight-bit binary based on the ASCII 
character set. Each character of the character table is encoded as a 1×8 vector according to the binary 
code value of ASCII, such as the ASCII encoding of A is [0,1,0,0,0,0,0,0,0,1].  

ASCII Group: Like the Sparse Group encoding, it is a 1×12 vector with 4 bits added to the ASCII 
encoding to identify the character type. For example, the ASCII Group code of A is 
[0,1,1,0,0,0,0,0,1,1,1,1,0,0]. 

 
Table 3.  Four character encoding methods. 

Encoding Size of the Alphabet Vector Length Encoding Examples 
Sparse 40 39 ‘a’: [1,0,0,0,0...,0,0] 

‘A’: no upper case 
‘,’: [0,0,0,0...,1...,0] 
‘1’: [0,0,0,0...,1...,0] 

Sparse 
Group 

66 43 ‘a’: [1,0...,0,0,1,0,0,0] 
‘A’: [1, 0 ..., 0, 0, 1, 1, 0, 0] 
‘,’: [0...,1...,0,0,0,1,0] 
‘1’: [0...,1...,0,0,0,0,1] 
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ASCII 66 8 
 

‘a’: [0,1,1,0,0,0,0,1] 
‘A’: [0, 1, 0, 0, 0, 0, 0, 1] 
‘,’: [0,0,1,0,1,1,0,0] 
‘1’: [0,0,1,1,0,0,0,1] 

ASCII Group 66 12 ‘a’: [0,1,1,0,0,0,0,1,1,0,0,0] 
‘A’: [0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0] 
‘,’: [0,0,1,0,1,1,0,0,0,0,0,1] 
‘1’: [0,0,1,1,0,0,0,1,0,0,1,0] 

 
Taking ASCII encoding as an example, the traffic feature sequence of a traffic record will be finally 

converted into a matrix 𝑋 of size 𝑙0×8. This matrix will be used as input to the convolutional neural 
network to train or test the model. The character length 𝑙0 is set to 177, which is not only greater than 
the entire character length of any traffic feature sequence in the experimental dataset NSL-KDD used 
but also greater than the character length of most actual network traffic feature sequences [12].  

Figure 2 shows the process of quantizing and assembling a matrix of ASCII encoding of a piece of 
traffic data and features. Among them, each block combination represents an ASCII-encoded vector 
corresponding to a character. For example, the eight-bit ASCII code values corresponding to "t", "c", 
and "p" are {01110100}, {01100011}, {01110000}, respectively. The white squares represent 0, and 
the black squares represent 1. All the ASCII-encoded vectors of the feature sequence of a flow are 
aggregated to form a feature matrix that can be used as CNN input. 

By performing character-level preprocessing on traffic data, the preprocessing no longer needs to 
consider the meaning and content of features, and the process is simplified. In addition, in a real network, 
if a new feature value of a feature is encountered, especially a character feature, the processing process 
does not need to readjust the preprocessing module in the model. 

 
Figure 2.  A piece of traffic data and ASCII encoding quantization process. 

3.3. Structure of ATD-CharCNN model 

Based on the CharCNN-IDS model [12], this paper improves the preprocessing method and neural 
network structure and improves the feature extraction ability and discrimination ability of the model. In 
the CharCNN model structure proposed by Zhang et al. [16], the convolutional neural network has 9 
layers, including 6 convolutional layers and 3 fully connected layers. Compared with text classification 
in the field of natural language processing, the amount of data to convert the sequence of traffic data 
into text input is smaller (for example, 𝑙0 in the natural language field is mostly 1014, and 𝑙0 in the traffic 
data set in this paper is 177, much smaller than 1014). Therefore, in the ATD-CharCNN model, 3 
convolution blocks and 3 fully connected blocks are enough to identify complex text patterns without 
consuming too many resources, and too many network layers will also cause overfitting. According to 
the experimental results, the convolutional neural network model in ATD-CharCNN is set as follows: 
the network contains a total of 6 layers, including 3 convolutional layers and 3 fully connected layers. 
The layout of the entire network model is shown in Table 4. 
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Table 4.  Network structure layout table in ATD-CharCNN. 
Type Function Feature amount Kernel Stride 

Conv1 
Convolution+ReLU 256 7 1 
Max pooling 256 3 3 

Conv 
Convolution+ReLU 256 7 1 
Max pooling 256 3 3 

Conv 
Convolution+ReLU 256 3 1 
Max pooling 256 3 3 

FC2 Linear+ReLU+Dropout 1280 1024 - 
FC Linear+ReLU+Dropout 1024 1024 - 
FC Linear 1024 2/5 - 

1. Conv: Convolutional layer  
2. FC: Fully-connected layer 
 

The traffic data is processed as special text, so the convolutional layers in the above table are all 
one-dimensional convolutions. To increase the nonlinear mapping learning ability of the model, ReLU 
is selected as the activation function for each layer in the network structure, and the maximum pooling 
layer is added between the convolutional layers to reduce feature redundancy and output local optimal 
features. Using the regularization method Dropout technology in the fully connected layer can avoid 
overfitting. The output of the last fully-connected layer uses Logsoftmax for binary and multi-
classification. Logsoftmax is the logarithm of softmax, it can avoid solving the overflow and underflow 
problem, and can speed up the operation speed and improve the data stability. The mathematical 
expression is shown in formula (1): Li =log ezi∑ ezjkj ሺ1ሻ 

where z௜ is the output value of category i in the fully connected layer, and k is the number of output 
nodes, that is, the total number of categories classified. 

4.Experiment 

The experiment of this model is trained and tested on the Jiutian·Bisheng platform. The graphics 
card is NVIDIA TESLA V100, and the video memory is 32GB. Based on the deep learning framework 
of Pytorch 1.8, the ATD-CharCNN model in this paper is implemented.  

4.1. Performance metrics 

The following metrics are used to evaluate the performance of ATD-CharCNN: Accuracy, Precision, 
Recall, F1-score, False Positive Rate (FPR), and AUC (Area Under Curve) values, as well as training 
and testing time. The larger the AUC value is, the better the classification performance is. The specific 
expressions are shown in formulas (2-6): Accuracy= TP+TNTP+TN+FP+FN ሺ2ሻ Precision= TPTP+FP ሺ3ሻ Recall= TPTP+FN ሺ4ሻ F1-score= 2×Precision×RecallPrecision+Recall ሺ5ሻ 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 ሺ6ሻ 
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where TP is positive cases detected as positive, TN is negative cases detected as negative, FP is 
negative cases detected as positive, and FN is positive cases detected as negative. Accuracy, which is 
used to reflect the classifier's ability to determine various types of samples; Precision, the proportion of 
correct attack predictions to the attack predictions; Recall, which can be the proportion of correct attack 
samples among all attack samples, reflects the classifier's ability to detect network attacks; F1-score, a 
weighted average of precision and recall; and False Positive Rate (FPR), which refers to the proportion 
of misclassified normal traffic as abnormal traffic to all normal traffic.  

4.2.Experimental Results and Analysis 

4.2.1.Experimental data and parameter settings. 

The experiments in this paper are to use four character encodings of CharCNN in abnormal traffic 
detection and to compare the performance. The experimental dataset is NSL-KDD, where the training 
set is NSL-KDDTrain+, and this dataset contains 125,973 data. The test set NSL-KDDTest+ has 22,544 
data. The NSL-KDD dataset is introduced in 3.1. In the experiments of binary classification and multi-
classification, the batch size of the training process (batch size) is 256, and the training process is 
optimized using the Adam optimizer with a loss function of cross-entropy function. 

4.2.2.Performance in binary classification. 

The two classifications in network traffic are divided into normal traffic and abnormal traffic. The 
NSL-KDDTrain+ dataset is used to train the ATD-CharCNN models with four character encodings. 
The loss curves and accuracy curves of the training are shown in Figure 3 and Figure 4 below. Table 5 
shows the training time, test time, and experimental results at NSL-KDDTest+ for each character 
encoding. 

From above Figure 3 and Figure 4, we can see that "Sparse" has less error and higher accuracy on 
the training set compared to "ASCII" and fits the training set better. From Table 5, it can be seen that 
"ASCII" outperforms "Sparse" in all four character encodings: shorter time, higher accuracy, lower 
false positive rate, and larger AUC value. The "Group" code with identifier type is better in terms of 
accuracy and AUC value, but it performs worse in terms of false positive rate, training time, and 
verification time. Combining the four graphs and the training set and test set accuracies in the table, we 
can see that "ASCII" has better generalization. 
 

 

 

 
Figure 3.  Loss curves.  Figure 4.  Accuracy curves. 
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Table 5.  The metrics of ATD-CharCNN in NSL-KDD. 
Encoding Training time(s) Testing time(s) Accuracy(%) FAR(%) AUC 
ASCII 3620.96 2.50 85.61 4.42 0.8682 
ASCII Group 3938.76 2.54 86.29 5.13 0.8733 
Sparse 3987.17 3.57 82.40 7.25 0.8366 
Sparse Group 4231.98 3.66 82.91 7.83 0.8404 

 
From above Figure 3 and Figure 4, we can see that "Sparse" has less error and higher accuracy on 

the training set compared to "ASCII" and fits the training set better. From Table 5, it can be seen that 
"ASCII" outperforms "Sparse" in all four character encodings: shorter time, higher accuracy, lower 
false positive rate, and larger AUC value. The "Group" code with identifier type is better in terms of 
accuracy and AUC value, but it performs worse in terms of false positive rate, training time, and 
verification time. Combining the four graphs and the training set and test set accuracies in the table, we 
can see that "ASCII" has better generalization. 

ASCII is an 8-bit binary non-sparse encoding, it is less memory intensive and takes less time to train 
than the Sparse encoding which contains 38 zeros in 39 bits. And ASCII is an international set of 
character encoding containing upper and lower case English characters, numbers, and punctuation 
marks. For data sets where all characters are in the ASCII character table, ASCII encoding is a more 
time- and memory-efficient encoding with a higher accuracy rate. In the field of NLP, it is better to 
distinguish between upper and lower case English characters than a model with only lower case English 
characters. From the accuracy of the Sparse Group encoding and ASCII encoding in Table 5, the 
encoding that artificially sets the identity character type does not have good detection performance for 
encodings that contain these character types on its own. 

4.2.3.Performance in multi-classification. 

It can be seen from Section 3.1 that the multi-classification in the network traffic data in the NSL-
KDD dataset is divided into five classifications. They are normal traffic, Dos attack traffic, Probe attack 
traffic, R2L attack traffic, and U2R attack traffic. There are few samples of the latter two abnormal 
flows. The Recall values and Accuracy values of various character encoding multi-classifications of 
ATD-CharCNN are shown in Table 6. 
 
Table 6.  Results of Recall and Accuracy values (%). 

Encoding Dos Probe R2L U2R Accuracy 
ASCII 88.75 62.95 2.29 0 77.08 
ASCII Group 92.05 60.63 2.80 0 76.89 
Sparse 81.12 62.12 0.62 0 75.29 
Sparse Group 80.63 66.42 1.20 0 74.75 

 
From the table, the recall values are larger for the attack types with large sample sizes in the dataset, 

and the detection rate of ATD-CharCNN for Dos attack traffic and Probe attack traffic is very high, and 
the low detection rates for the latter two are due to the small sample size, and the model learns less valid 
information when performing learning. From the overall Accuracy values, the ATD-CharCNN model 
with ASCII encoding has the best detection performance in multi-classification, and the ASCII Group 
encoding with four more identifying characters is not very useful in multi-classification, and the ASCII 
character set itself already identifies the character type. 

4.2.4.Comparison: ATD-CharCNN and CNN-IDS. 

To verify the effectiveness of the character-level preprocessing proposed in this paper in abnormal 
traffic detection, the detection accuracy of the convolutional neural network model with feature-level 
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preprocessing for intrusion detection is listed, and the detection accuracy of different models and the 
detection accuracy of the model proposed in this paper are compared, and the results are shown in Table 
7. 
 
Table 7.  Metrics of ATD-CharCNN and CNN-IDS (%). 

Model CNN-IDS (GoogleNet) [12] CNN-IDS(1D-CNN) Proposed method 
Accuracy 77.04  81.12 85.61 
Precision 91.66 89.69 95.89 
Recall 65.64 75.52 78.06 
F1-score 76.50 82.00 86.06 
FPR 7.89 11.47 4.42 

 
As can be seen from Table 7, the metrics value of the proposed character-level preprocessing is 

better than the feature-level preprocessing, indicating that the proposed method has better detection 
performance. Character-level preprocessing does not require numerical characterization by knowing 
the a priori knowledge of the dataset, nor does it require normalization of the singular values, which 
simplifies the pre-processing process and improves the detection performance. 

5.Conclusion and future work 

An ATD-CharCNN model with character-level preprocessing is proposed and experimentally 
validated on the dataset NSL-KDD. The effectiveness of character-level preprocessing in anomalous 
traffic detection is shown, where ASCII encoding has the best detection performance in binary and 
multi-classification with the shortest time and high detection rate. Compared with the feature-level 
preprocessing model, the model in this paper greatly simplifies the preprocessing process and the 
accuracy rate is increased by 4.49%, improving the detection performance. The model has a low 
detection rate for minority attacks in five classifications, and in future work, the imbalance of data will 
be further reduced to improve the detection rate for minority attacks. 
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