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Abstract  
Traffic forecasting is crucial to intelligent transportation system, and very challenging due to 
the uncertainty and complexity of spatial-temporal dependencies in real-world traffic network. 
Many existing approaches use the pre-defined graph to model spatial correlations, but they fail 
to capture the latent spatial evolution. Then some dynamic graph-based methods are proposed 
to address this issue, however they separately model spatial and temporal dependencies without 
internal connection. In this paper, we propose a novel Dynamic gated Spatial Temporal Graph 
Neural Network (DSTGNN) for traffic forecasting, which can capture time-varying spatial 
correlations and temporal dependencies jointly. Besides, we apply gate mechanism into 
residual connection between extracted spatial and temporal features. Experimental results on 
two real-world traffic datasets have demonstrated the effectiveness of DSTGNN, and that the 
proposed DSTGNN can compete with state-of-the-art baselines. 
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1. Introduction 1 

As a core component of Intelligent Transportation System (ITS)[4], real-time and accurate traffic 
forecasting is curial for road resource planning and public traffic safety. The key of traffic forecasting 
is to capture dynamic and uncertain spatial-temporal dependencies from historical data. 

In early deep learning approaches, convolutional neural networks (CNNs) are used to extract spatial 
correlations and RNNs are used to model temporal dependencies. However, CNNs are only suitable for 
capturing spatial features in grid-data and perform poorly in non-Euclidean space. Recently, graph 
neural networks (GNNs)[1,12,13] have been generalized as convolution on graph-based data, which 
can extract the intrinsic spatial topological information of graphs. 

To model both temporal and spatial dependencies, many early approaches [3]combined GNNs with 
RNN-based sequence models and achieved improvement. However, most of them model spatial 
correlations based on predefined static graph and cannot capture spatial dynamics. With the advent of 
self-attention in Transformer[13]spatial and temporal attention are adopted in these methods[6,9,11]to 
model dynamic spatial-temporal correlations and improved a lot. However, spatial-temporal 
correlations are not captured interactively, resulting in learning irrelevant or redundant information. 

In this paper, we proposed an end-to-end model named Dynamic gated Spatial Temporal Graph 
Neural Network (DSTGNN), which models spatial-temporal dependencies jointly to address the above 
issues. Specifically, we stack multiple the proposed dynamic gated spatial-temporal(DGST) blocks to 
extract spatial-temporal features from historical traffic data. Each DGST block consists of a dynamic 
graph convolution module for extracting dynamic and static spatial correlations, a temporal attention 

 
ICBASE2022@3rd International Conference on Big Data & Artificial Intelligence & Software Engineering, October 21-
23, 2022, Guangzhou, China 
EMAIL: 2927990583@qq.com (Ziyan Gui); lch52012@163.com (Changhui Liu)*; 2273167975@qq.com (Li Xiong); 
1584103174@qq.com (Zuoquan Xie) 
ORCID: 0000-0002-4530-5604(ZiyanGui); 

 
© 2022 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 

187



module for modeling time dynamics and a gated residual connection for interaction between extracted 
spatial and temporal features. The contribution of this paper can be summarized as: 

• We propose the dynamic gated spatial-temporal block that jointly models the spatial and 
temporal dependencies of traffic data, and then make prediction in a non-autoregressive way. 

• Experiments on two real-world traffic datasets are conducted to evaluate the effectiveness of our 
model, and results show that our model can compete with the state-of-the-arts. 

2. Related works 
2.1. Graph Convolutional Network  

As an efficient variant of CNNs on graph-structured data, graph convolutional networks (GCNs) 
have been applied into various areas and achieved state-of-the-art results. In the spectral perspective 
[1], GCNs need to compute the eigen-decomposition of the Laplacian matrix, which leads to a huge 
consumption of computation resources. Subsequently, methods[12,14]based on Chebyshev polynomial 
approximation are proposed to improve the computing efficiency. In addition, GCNs based on the 
spatial perspective[15,16]not only avoid the eigen-decomposition of Laplacian matrix but also can learn 
the vertices representations inductively.[5]proposes STGCN combined GCN with standard temporal 
1D CNN to tackle the traffic time series prediction. [10]proposes Graph WaveNet which learns static 
adjacency matrices for spatial-temporal modeling but failed to capture dynamic spatial correlations. 

2.2. Attention based Traffic forecasting 

Attention mechanism has been extensively utilized in many domains such as natural language 
processing and graph learning (GAT[16]). Recently, researchers apply attention mechanism to model 
spatial-temporal dependencies for traffic forecasting. GMAN[6] proposes the ST-Attention block, 
which adds a transform attention layer between the encoder and decoder and models dynamic spatial-
temporal correlations in both the encoder and decoder. For learning spatial-temporal features, 
ASTGCN[9]employs attention mechanisms in the spatial and temporal dimensions, respectively. A 
general dynamic graph neural network is created by STTN[11]to model the spatial dependencies that 
change over time. LSGCN[2]combines GCN with graph attention for long short-term traffic prediction. 

3. Methodology 
3.1. Problem Definition  

In this study, a traffic network is denoted as a directed weighted graph ( , ,A)G V E= , where V is a set 
of | |N V= nodes representing sensors in traffic network; E is a set of edges indicating the connectivity 
among the nodes; and A N N×∈ is the weighted adjacency matrix of graph G representing the proximity 
measured by the Euclidean distances between sensors via Gaussian kernel. 

At each time step t  , the traffic conditions can be represented as a graph signal N C
tX ×∈ on graph G , 

where C is the number of traffic conditions observed such as traffic speed, traffic density and so on. 
Given a traffic network graph G and traffic conditions of historical P time steps 1, , P N C

t P tX X × ×
− + ∈   

observed by the N nodes, we aim to learn a function f to forecast the traffic conditions of the next F
time steps over all nodes. The process can be formulated as: 

 
( )1 1, , ,ˆ , ;ˆ

t t F t P tX X f X X G+ + − +=  , (1) 

 
where 1

ˆ ˆ, , F N C
t t FX X × ×
+ +

 ∈   . 
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3.2. Overall Architecture  

 
Figure 1: The overview of DSTGNN 

 
The overall architecture of the proposed DSTGNN is shown in Figure 1, which consists of three 

main components including input layer, multiple stacked dynamic gated spatial-temporal (DGST) 
blocks and output layer. We first use two-layer fully-connected network before traffic data enters the 
model to project the data to high-dimension space, then the multiple stacked DGST blocks extract 
spatial and temporal dependencies jointly from input. Finally, the output layer transforms the features 
with spatial-temporal information from high-dimension space to traffic speed. Besides, DSTGNN 
predicts future traffic conditions in a multi-step manner. The detailed modules will be introduced later. 

3.3. Dynamic Graph Convolution Module  

 
Figure 2: Illustration of the proposed dynamic graph convolution (DGC) module 

 
Traffic conditions at a location are influenced not only by predefined static graph relations, but also 

by dynamic spatial correlations at that time step, with varying degrees of influence at each time step. 
According to CDGNet[12]is vital to reflect the sparsity of spatial correlations in real traffic network, 
instead of calculating a dense adjacency matrix at each time step via the dot-product operation. In the 
proposed dynamic graph convolution (DGC) module, the sparse dynamic adjacency matrix is combined 
with predefined graph to extract dynamic and static spatial correlations jointly at each time slice. 

As shown in Figure 2, the output tensor P N d
SX × ×∈ of input layer is embedded by spatial temporal 

positional embedding module to get P N d
SX ′ × ×∈ according to STTN, before it entering the first DGC 

module (for DGC module in the first DGST block, (0)
ST SX X ′= ). We first view the temporal dimension of

SX ′ as a batch dimension, and then SX ′ is transformed to the query, key and value subspaces by three 
different linear projection, obtaining , P N d

S S SQ K V × ×
′ ∈ ，formally: 

( 1) ( 1) ( 1), ,l l l
S ST q S ST k S ST vQ X W K X W V X W− − −= = = , (2) 

where , , d d
q k vW W W ×∈ are all learnable weight matrix, ( 1)l P N d

STX − × ×∈  is input of DGC module in thl  
DGST block, and d is the dimension of feature space. 

Next, we use ( )ReLU ⋅  to sparse the dense adjacency matrix derived from dot product as follows: 

( )Re T
S S NA LU Q K I= + , (3) 
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where N NA ×∈  is the sparse spatial correlation matrix, NI is an identity matrix, and add it to enhance 
the self-connection ability. Furthermore, to capture both dynamic and static spatial correlations, we 
combine A and the predefined adjacency matrix A by element-wise product with broadcasting 
mechanism. A ( )softmax ⋅ function is then adopted to normalize the combined adjacency matrix to avoid 
gradient disappearing or explosion, the final graph convolution operation can be expressed formally as: 

( ) ( )l
S SH softmax A A V=   , (4) 

where ( )l P N d
SH × ×∈ denotes the output of the DGC module in the thl DGST block, and stands for 

element-wise product. 

3.4. Gated Residual Connection  

As shown in Figure 1, we apply a gate function to regulate the flow of residual information, drawing 
inspiration from the gate mechanism in the Gated Recurrent Unit (GRU). How much the previous 
residual information can influence the following module is regulated by this gate mechanism. 
Specifically, a gated residual shortcut path is added to DGC module, fusing the spatial correlation of 
the output ( )l

SH and the input's spatial-temporal features ( 1)l P N d
STX − × ×∈ in the thl DGST block with (0)

ST SX X ′= , 
which can be formulated as: 

( )
( ) ( ) ( 1)

( 1)

l l l
T s S ST res

l
s ST g

X g H X W

g X Uσ

−

−

= +

=

 , ,
 

(5) 

where ( )l P N d
TX × ×∈ is the following temporal attention module's input, P N d

sg × ×∈ denotes the gate,
d d

resW ×∈  denotes the linear projection weight, and d d
gU ×∈ denotes the state-to-state weight matrix, 

is the element-wise product, and 𝜎 stands for the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ⋅ሻ non-linear activation function. 
Similar to DGC module, we also added a gated residual shortcut path to the following temporal 

attention module, which combines the spatial correlation of input ( )l
TX with the temporal dependence of 

output ( )l
TH , building an interaction between the extracted spatial and temporal information that can be 

learned to extract spatial-temporal representations ( )l P N d
STX × ×∈ . This process can be written as： 

( )
( ) ( ) ( )

( )

l l l
ST t T T res

l
t T g

X g H X W

g X Uσ

= +

=

 ,,  
(6) 

where ( )l P N d
TH × ×∈ is output of the following temporal attention module, and tg is the gate function. 

3.5. Temporal Attention Module  

The temporal attention module takes the output ( )l P N d
TX × ×∈ of gated residual connection in DGC 

module as input and views the spatial dimension of ( )l
TX as a batch dimension. Then it uses the 

transformer-based encoder to model temporal dependence from ( )l
TX  with spatial correlation. It mainly 

consists of attention aggregation and FFN refining, with the former highlighting relative temporal cues 
and the latter updating refined features. The output tensor ( )l P N d

TH × ×∈ of the temporal attention module 
can be computed as follows: 

( )( )

( ) ( ) ( )

( )

LN

LN FFN

l l l
T T q T T k T T v

T
T T

T T T

l
T T T

Q X W K X W V X W

Q KV softmax V X
d

H V V

′ ′ ′

′

′ ′

= = =

  
= +     

= +

,, , ,
,

 

(7) 
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where d d
q k vW W W′ ′ ′ ×∈， ，  are all weight matrix, LN indicates layer normalization, and FFN is the feed 

forward network. The above calculation can also be extended in a multi-head manner. 

3.6. Loss Function 

The output layer regards the last DGST block's output ( )l P N d
STX × ×∈ as input, then transforms it to final 

prediction results ˆ F N CY × ×∈ . The proposed DSTGNN can be trained in an end-to-end style via back-
propagation by minimizing the mean absolute error between predicted values and ground truths: 

, ,
1 1

1( ) ˆΘ
F N

t n t n
t n

Y Y
F N = =

= −
×   

(8) 

where Θ denotes all the learnable parameters in our model, and 𝑌 denotes the ground truth. 

4. Experiments 
4.1. Experimental Settings 
4.1.1. Datasets 

As detailed below, we evaluate our DSTGNN on two public real-world traffic datasets, namely 
PeMSD7 and PEMS-BAY. PeMSD7 collects 2-month traffic data on 228 sensors during the weekdays 
of May and June 2012 in California's District 7. PEMS-BAY contains six months of traffic data from 
325 sensors in the Bay area from January 1st to May 31st, 2017. Following STGCN[5], PeMSD7 uses 
the first 34 days as a training set and the remaining days as a validation and test set. As with DCRNN[3], 
PEMS-BAY is divided into three sets: training (70%), validation (10%), and test (20%). 

4.1.2.  Evaluation Metric 

Metrices. To evaluate the performance of our model, we employ three metrics: Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). 

Baselines. Our DSTGNN is compared to the following baselines: ARIMA[7], FC-LSTM[8], 
DCRNN[3],  STGCN[5], GMAN[6], ASTGCN[9], STTN[11], Graph WaveNet[10], LSGCN[2]. 

4.2. Experimental Results and Analysis 

Table 1 
Traffic forecasting performance comparison of DSTGNN and other baselines. 

 
 

Table 1 shows the experimental performance of DSTGNN and baselines for 15, 30 and 60 minutes 
ahead prediction on the PeMSD7 and PEMS-BAY datasets. The prediction performance comparison 
results show that DSTGNN can compete with the state-of-the-art methods in both long-term and short-
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term predictions on both datasets, while outperforming predefined graph-based spatial-temporal models, 
namely STGCN[5]and DCRNN[3]. 

In terms of short-term prediction (<= 30 min), DSTGNN outperforms STTN[11]and GMAN[6]on 
PEMS-BAY but falls short of Graph WaveNet[10]. It is superior than Graph WaveNet in long-term 
prediction (60 min), and competitive with STTN, weaker to GMAN. On PeMSD7, DSTGNN displays 
similar results. This fact specifies that DSTGNN performs better in long-term forecasting due to its use 
of gated residual connections in DGST block, which sufficiently incorporates related spatial-temporal 
information and alleviates the accumulation of errors over time. 

5. Conclusion 

In this paper, we propose a novel framework named dynamic gated spatial temporal graph neural 
network (DSTGNN) for long and short-term traffic forecasting. In DSTGNN, we adopt the DGC 
module to precisely integrate both static and dynamic spatial correlations and at the same use temporal 
attention module to capture evolution cues in time series. Besides, we add the gated residual connection 
to the proposed DGST block for fusing extracted spatial and temporal features. The experiments on two 
real traffic datasets verifies the effectiveness of DSTGNN on modeling spatial-temporal correlations 
from time series. In the future, we will consider our DSTGNN for more general spatial-temporal 
structural graph sequence forecasting tasks, such as preference prediction in recommendation systems. 
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