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Abstract 
The paper proposes an improved printed circuit board (PCB) defect detection algorithm based 
on the original faster region convolutional neural networks (Faster R-CNN) for the problems 
of low average accuracy mean value, poor detection of tiny defect targets and high leakage rate 
in PCB tiny defect detection. Firstly, a genetic algorithm is added to the K-means++ clustering 
algorithm to generate the initial anchor that match the data set in this paper. The standard 
convolution in the Resnet50 network is then replaced by a depth-separable convolution as the 
backbone network to reduce the number of computational parameters, and the multilayer depth 
features are extracted and fed into the improved feature pyramid network to train the model, 
effectively combining the geometric detail information in the bottom layer and the semantic 
contour information in the top layer to provide material for subsequent classification and 
localization. The experimental results show that the average accuracy of this algorithm is 95.6% 
and the detection speed is 0.125s, which is 9.2% higher than the current mainstream tiny object 
detection algorithm and has better detection accuracy for tiny defect object. 
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1. Introduction 

As an indispensable part of electronic products, the quality of PCB directly determines whether the 
electronic products can work normally, and the quality is closely related to each link of production. 
With the continuous development of hardware level, PCB design is developing towards the direction 
of multi-layer, table-pasting and densification. In addition, PCB production is composed of multiple 
links. For example, the production process of a single panel includes cutting, drilling, copper deposition, 
etching, resistance welding, hot air leveling, character and electrical measurement [1]. Problems in any 
of the above links may cause the final product to fail to work normally and thus increase production 
costs. An effective way to ensure the quality of PCB is to add PCB defect detection in the production 
process. Compared with electrical testing, it has the advantage of non-contact nondestructive testing, 
which can better protect PCB and avoid damage in the production process. So the research of PCB 
defect detection algorithm is very necessary. 

According to whether the PCB is mounted or not, PCB defect detection is divided into PCB bare 
board detection and PCB component detection. Reference [2] applies the multi-scale and pyramid 
structure of deep convolutional network itself to the construction of feature pyramid, so as to detect the 
tiny defects in PCB bare board. In reference [3], it is proposed that the improved YOLOv4 can locate 
and identify components on the circuit board, which can realize the identification of device leakage, 
device wrong installation, device offset, device skew and device polarity reverse installation. At present, 
the research on PCB bare board defect detection is divided into two directions: automatic optical 
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detection and machine vision defect detection based on deep learning. Automatic optical testing is 
affected by the changes of testing environment, circuit board types, personnel experience and other 
factors, so it is not robust to various PCB defects, and the cost of labor is too large. All kinds of PCB 
on the market have different line spacing rules and small line width. Automatic optical detection is 
difficult to detect such complex and diverse PCB, and the false detection rate and missed detection rate 
are still too high. The machine vision defect detection based on deep learning can not only save the cost 
of labor input, but also greatly reduce the false detection rate and missed detection rate. 

With the rapid development of convolutional neural networks in recent years, some excellent PCB 
defect detection algorithms based on deep learning have emerged. Reference [4] proposed a redesigned 
clustering method based on YOLOv3 and added attention mechanism to improve the detection speed 
of the algorithm. Reference [5] proposed a new anchor based on YOLOv4 redesigned clustering method 
to improve the detection speed to 37.09FPS. However, since most PCB defects are small defects, in 
order to improve the detection accuracy of small defects, this paper proposes a combination of K-
means++ clustering algorithm and genetic algorithm to generate an initial anchor suitable for small 
targets, and combines the improved Faster R-CNN detection algorithm to detect PCB defects. This 
paper chooses to study the defects of PCB bare board, and the detected defects include 6 common types, 
which are: missing hole, mouse bite, open, short, spur, and spurious copper. 

2. Design of improved K-means++ clustering algorithm 

The anchor of the traditional Faster R-CNN method is designed manually to detect large targets such 
as pedestrians, vehicles and tools in PASCAL VOC2007 data set [6], which is not suitable for the 
detection of small defect targets in this paper, and the robustness of manual design through experience 
is poor. Therefore, it is necessary to design an algorithm to cluster to get the anchor suitable for micro-
defect target detection, and select the size of the anchor suitable for the data set as the training parameter, 
so that the network can learn faster and get a better detector. This can reduce the difficulty of network 
fine-tuning anchor and improve the final recognition accuracy and speed. 

Therefore, this paper proposes to use genetic algorithm to optimize the anchor obtained by k-means 
++ algorithm. The idea is to firstly use K-means++ algorithm to select a more appropriate initial 
clustering center and then use k-means algorithm to get the clustering results. Finally, the final 
clustering results are optimized by genetic algorithm. The core of the algorithm and the three problems 
to be solved are how to select the initial cluster center, which distance formula between samples to 
select, and how to optimize the final result of the genetic algorithm. The following three parts are 
elaborated respectively.  

2.1. Select the appropriate initial cluster center 

Since the selection of the first clustering center of the standard k-means algorithm is randomly 
selected from all training samples, it is easy to finally select the size of the anchor that does not match 
the data set in this paper [7]. Moreover, the number of iterations and the final clustering effect of the 
algorithm are closely related to the selection of the initial clustering center. In order to get a better 
anchor, this paper uses K-means++ algorithm to select the initial cluster centers one by one, and the 
number of categories is K. According to the final generated five feature layers and three different 
proportions of anchor, we assign each feature layer in turn, so K is chosen as 15 here. Although K-
means++ algorithm increases the time to select the initial cluster center, it greatly speeds up the overall 
convergence speed and can avoid the selection of inappropriate anchor. On the whole, it improves the 
performance of the clustering algorithm. The selected initial cluster center is shown in Figure 1. 
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Figure 1: Initial cluster center 

2.2. Distance between samples was calculated 

The standard K-means algorithm uses Euclidean distance to calculate the distance between the 
training sample and the cluster center, in which the larger anchor will produce more errors than the 
smaller anchor. The defect detection problem studied in this paper requires the anchor to be as close as 
possible to the ground truth box size. Therefore, this paper uses the distance calculation as formula (1) 
and (2), where B represents the training sample and C represents the cluster center. The larger the 
intersection ratio, the smaller the distance, and the more likely they are to belong to the same class. It 
can describe the relationship between training samples and clustering centers more accurately. So as to 
improve the quality of the final anchor.  𝑑(𝐵, 𝐶) = 1 − 𝐼𝑂𝑈(𝐵, 𝐶) (1) 

𝐼𝑂𝑈(𝐵, 𝐶) = 𝑎𝑟𝑒𝑎(𝐵) ∩ 𝑎𝑟𝑒𝑎(𝐶)𝑎𝑟𝑒𝑎(𝐵) ∪ 𝑎𝑟𝑒𝑎(𝐶) (2) 

2.3. Genetic algorithm 

Genetic algorithm draws on the idea of biological evolution and introduces the concept of survival 
of the fittest into the clustering algorithm to optimize the clustering result. The characteristics of data 
set optimization, flexible probabilistic search and parallel computing in genetic algorithm just fill in the 
deficiencies of K-means algorithm [8]. The clustering center obtained by k-means algorithm is sent to 
the genetic algorithm, and the algorithm process is as follows: 

1. The width and height data of 15 anchors were coded to get chromosomes. 
2. The coincidence degree of ground truth box and anchor is defined as fitness function. The closer 

the size of anchor is to the size of ground truth box, the better its fitness will be. The mass of the 
anchor from the reaction. 

3. The mutation probability was set as 90%, the number of iterations was set as 1000, and the 
fitness threshold was 0.25. 

4. Application propagation and mutation generate the next generation population, and if the fitness 
of the next generation is greater than that of the previous generation, the next generation will be 
updated. 

5. If the suboptimal solution is equal to the last optimal solution or reaches the number of iterations, 
the algorithm ends. 

Figure 2 shows the final clustering results. 
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Figure 2: Final clustering results 

3. Design of improved Faster R-CNN algorithm 

In a nutshell, the object detection task is to input an image into the network and output an image 
containing the object bounding box and the category label score. With the iteration of the algorithm and 
people's pursuit of speed and accuracy, the target detection algorithm has gradually developed into one-
stage target detection algorithm and two-stage target detection algorithm. Relatively successful one-
stage target detection algorithms include SSD[9] and YOLO[10] series, which have the advantage of 
fast detection speed but poor detection effect on dense and small targets. However, the defects on the 
circuit board in this paper belong to dense and small targets, so we do not consider this algorithm. Two-
stage target detection algorithms with good results include R-CNN[11], Fast R-CNN[12], Faster R-
CNN[6], Mask R-CNN[13], etc., which have the advantage of high detection accuracy. Because PCB 
defect detection in industry needs to accurately detect all kinds of small PCB defects, this paper adopts 
the Faster R-CNN algorithm in the two-stage detection algorithm as the basis to improve the detection 
of PCB small defect targets. The process of Faster R-CNN algorithm is described below before the 
improvement. 

3.1. Faster R-CNN algorithm 

The overall process of Faster R-CNN algorithm is as follows, and its framework is shown in Figure 
3: 

1. Firstly, the shortest side of the input image is scaled to 600 according to the original aspect ratio. 
At this time, the other side is automatically scaled according to the original aspect ratio. In this 
way, the image is not distorted and the original information in the image is retained. 

2. The scaled image is input into the main feature extraction network, and the feature map is 
obtained after a series of convolution operations. 

3. The feature map is input to generate the suggestion box network, in which the feature map is 
processed by sliding window, and the suggestion box and the probability of having or not having 
a target are obtained by category prediction and position prediction. 

4. The feature map and the suggestion box are input into the ROI Pooling layer. Due to the different 
dimensions of the suggestion box, the size of the local feature map generated after mapping to 
the feature map is also inconsistent, which affects the unified management of data by the code. 
Therefore, the Pooling operation is carried out in the ROI Pooling layer to solve the above 
problems. The size of this series of local feature maps is adjusted to the same size and then 
spliced onto the same channel. 

5. This series of local feature maps are flattened and then input into the classifier for prediction 
and the regressor for prediction. The prediction bounding box and the confidence score are 
obtained. 
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Figure 3: Faster R-CNN framework diagram 

3.2. Improved feature extraction network 

Feature extraction in object detection task is to extract the details of the image, such as color, contour, 
texture and edge information. Using these features as the input of the detection algorithm can reduce 
the overhead of the algorithm in time and space. Many excellent feature extraction networks have been 
derived by improving and stacking modules such as convolutional layer, fully connected layer, 
activation function and pooling layer. In 1998, LeNet excellent performance in the visual task of 
handwritten digit recognition drew people's attention to the power of convolution [14]. In 2013, ZFNet 
explained how the convolutional neural network works and demonstrated the functions of the 
intermediate feature layer and the operation process of the classifier by using the visualization 
technology [15]. This network is also the feature extraction network used by the traditional Faster R-
CNN. In 2014, VGGNet uniformly adopted a convolution kernel size of 3×3 in order to simplify the 
selection of hyper parameters in the convolution layer, which simplified the design of the model and 
the number of network parameters and deepened the depth of the convolutional neural network, but at 
this time, the network depth was up to 19 layers [16]. In 2015, ResNet was proposed to solve the 
problem of gradient disappearance caused by network layer stacking, so that the network layer number 
can be deep [17]. In this paper, ResNet50 is selected as the basis of the backbone feature extraction 
network and the idea of deep separable convolution is introduced [18]. We call the improved feature 
extraction network DS-Resnet50. 

As shown in Figure 4, Depthwise Convolution and Pointwise Convolution divide Depthwise 
Convolution into two stages. The former uses three single-channel convolution pairs to carry out two-
dimensional convolution with step size of 1 and padding of 1 to extract spatial information in the 
direction of length and width of a single feature layer. Based on the output of Depthwise Convolution, 
the latter uses N three-channel 1×1 Convolution to perform 3D Convolution with step size of 1 and 
padding of 0 to make up for the lost cross-channel channel information of the former. Therefore, the 
number of parameters and the calculation amount are the sum of the two, as shown in Equations (3) and 
(4). 𝑃𝑎𝑟𝑎𝑚𝑠ௗ௣ = 9𝑁௜௡ + 3𝑁௢௨௧ (3) 𝐹𝐿𝑂𝑃ௗ௣ = 9𝐻 ∗𝑊 ∗ 𝑁௜௡ + 3𝐻 ∗𝑊 ∗ 𝑁௢௨௧ (4) 

The formula of parameter number and calculation amount of standard convolution is (5), as shown 
in (6). 𝑃𝑎𝑟𝑎𝑚𝑠௦௧ = 9𝑁௜௡ ∗ 𝑁௢௨௧ (5) 𝐹𝐿𝑂𝑃௦௧ = 𝐻 ∗𝑊 ∗ 𝑃𝑎𝑟𝑎𝑚𝑠௦௧ (6) 

By comparing the number of parameters and calculation amount of the above two operations, it can 
be seen that when the number of channels N in the feature extraction network is large, the depth 
separable convolution can effectively concentrate the training model and reduce the redundancy of the 
algorithm compared with the standard convolution. 

 
Figure 4: Schematic diagram of depth-separable convolution 
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We input images with holes missing defects that need to be detected into the improved feature 
extraction network. Five feature layers of different sizes are the inherent multi-scale pyramid structure 
of deep convolutional network, and the extracted features can be seen by using visualization technology 
on different feature layers. In Figure 5, we can clearly see that the features of defects are clearly 
distinguished, which provides help for subsequent defect detection. However, in the operation process 
of the trunk feature extraction network, the small target details of the bottom feature layer are gradually 
replaced by the whole information through the pooling layer, which makes our PCB defect detection 
task more difficult. Therefore, we improve it in Section 3.3. 

     
 

     
Figure 5: Original and depth feature maps 

3.3. Improved multi-scale feature fusion 

The results obtained by observing the same object at different distances belong to multi-scale, and 
the feature layers in each stage of deep learning field are called multi-scale. Because PCB defects vary 
in size, we use characteristic pyramid network to accurately detect PCB defects of various sizes. 

Feature pyramid network integrates feature maps from different layers in horizontal and vertical 
dimensions [19], as shown in Figure 6, which is mainly used to solve the shortcomings of PCB defect 
detection algorithm when dealing with multi-scale changes. In Faster R-CNN, detection is based on the 
last feature layer. An obvious defect of this approach is that it is not friendly to detect small targets, 
because the underlying feature map has high resolution, small receptive field and strong representation 
ability of geometric details, which is helpful to the localization function of target detection task. 
However, the high-level feature map has low resolution, large receptive field and strong representation 
ability of semantic contour information, which is helpful to the classification function of object 
detection task. If only the last layer is used for detection, it obviously does not make full use of the 
underlying geometric details, resulting in unsatisfactory detection effect of small objects. 

The bottom-up path is the sequential execution process of the algorithm, and the feature map 
generated by DS ResNet50 network is divided into four pyramid levels C2, C3, C4, C5 according to its 
size. Due to the high resolution and a large number of parameters. Conv1 is not considered to be 
included in the pyramid level because its large memory footprint affects the real-time performance of 
the algorithm. 

The top-down path is performed by enlarging the smaller feature map to the same width and height 
as the neighboring feature map by a 2 times up-sampling operation. Lateral linkage refers to the idea of 
residual network, and the feature map obtained by up-sampling in the previous layer is added to the 
feature map obtained by correcting the number of channels in the current layer. We fuse the fusion 
information from the top layer based on the bottom layer C2. The final multi-scale feature layers P1, 
P2, P3, P4 and P5 are formed by effectively combining the bottom level geometric detail information 
and the top-level semantic contour information. Finally, the generated multi-scale feature layers are 
input into the ROI Pooling layer to generate a series of local feature maps with the same size of 7×7. 
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After flattening, a vector is obtained, and the final detection map is obtained through classifiers and 
regressors. 

 
Figure 6: Characteristic pyramid structure 

4. Experiment and Analysis 
4.1. Experimental environment 

Considering the maturity of the deep learning framework and the ability of the environment to 
schedule hardware resources, this program is programmed in Python language, the experimental 
platform is Pycharm, PyTorch1.7.1 is used as the deep learning framework, and the running 
environment is configured as Ubuntu16.04 and CUDA10.0.130, Cudnn7.6.5, Quadro P5000 GPU, 
16GB of video memory. The CPU is Intel Xeon CPU E5-2699. 

4.2. The experimental data 

The PCB DATA SET used in this paper is from Peking University [2]. After data enhancement 
processing, a total of 10668 images were generated in the data set, which contained six kinds of PCB 
bare board defects, namely missing hole, mouse bite, open, short, spur, and spurious copper. 

4.3. Model training 

15 anchor boxes were obtained by using the improved K-means++ clustering algorithm in this paper 
on the real box data in the PCB DATA SET. Its size, respectively [9,10]、[14,13]、[14,18]、[19,19]、
[27,13]、[16,25]、[27,19]、[22,24]、[16,37]、[23,31]、[40,19]、[30,28]、[23,44]、[36,36]、
[47,53]. Figure 7 shows the final generated 15 anchor, each color corresponds to a feature layer, and 
each color has three anchors with different proportions to adapt to detection targets with different aspect 
ratios. 

 
Figure 7: The resulting anchor 
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The hyper parameter initialization Settings in this article's code are shown in Table 1. 
 

Table 1 
Hyper parameter setting during training 

Hyper parameter Name Value 
Epoch 15 

Learning rate 0.01 
Momentum 0.9 

Weight decay 0.0001 
Batch size 8 
Gamma 0.33 

Optimization Type SGD 

4.4. The evaluation index 

The evaluation indexes used in this paper are Accuracy (A), Precision (P), Recall (R), Frames Per 
Second (FPS), weighted harmonic average (F1), and detection Accuracy (mAP). Such as formula (7) - 
(11). 𝐴 = 𝑁்௉ + 𝑁்ே𝑁்௉ + 𝑁்ே + 𝑁ி௉ + 𝑁ிே (7) 

𝑃 = 𝑁்௉𝑁்௉ + 𝑁ி௉ (8) 

𝑅 = 𝑁்௉𝑁்௉ + 𝑁ிே (9) 

𝐹ଵ = 2𝑃𝑅𝑃 + 𝑅 (10) 

𝑚𝐴𝑃 = ∑ 𝐴𝑃(𝑖)௡௜ୀ଴𝑛  
(11) 

Where: NTP is the number of samples with positive prediction results and positive actual samples. 
NFP represents the number of samples with positive prediction results and negative actual results. NTN 
is the number of samples with negative prediction results and negative actual results. NFN is the number 
of samples that were predicted to be negative but actually were positive. FPS is the number of images 
transmitted per second, and F1 is the average of P and R. 

4.5. Results analysis 

Experiment 1 is to verify the detection effect of anchor obtained by the improved K-means++ 
clustering algorithm in PCB defect detection algorithm. We compared the detection speed and accuracy 
of anchor obtained by different clustering algorithms in the same detection algorithm and the same data 
set, as shown in Table 2. 

 
Table 2 
Different clustering methods are used to check the speed and accuracy 

Model Clustering method mAP/% Time/s 
Faster-RCNN Standard clustering 86.4% 0.189 
Faster-RCNN My clustering 90.7% 0.131 

My Model Standard clustering 91.8% 0.129 
My Model My clustering 95.6% 0.125 

 
From the data in bold in Table 2, it can be seen that the clustering method in this paper and the 

improved detection algorithm have been used to improve the accuracy and speed. The detection 
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accuracy was improved by 9.2%, and the detection speed was improved by 0.064s. This is due to the 
design of suitable anchor and the improvement of detection algorithm. 

In Experiment 2, the traditional Faster R-CNN algorithm was compared with the proposed algorithm 
in the same PCB DATA SET and the same hardware conditions by using the single variable comparison 
method. Figure 8 shows the detection result diagram of the traditional Faster R⁃CNN algorithm. It can 
be seen that 2 ⁃ defects were missed in the notch diagram, 1 ⁃ in the open circuit diagram, 1 ⁃ in the 
short circuit diagram and 3 ⁃ in the residual copper diagram. It can be seen that the original Faster 
R⁃CNN algorithm did not have a good detection effect on minor defect targets and could not accurately 
detect the defect positions in the diagram. 

 

   

   
Figure 8: Traditional Faster R-CNN detection results 
 

Figure 9 is the detection result chart of the algorithm in this paper. It can be seen that the improved 
algorithm can mark all the 6 types of defects contained in the figure. Compared with the standard Faster 
R-CNN algorithm, it is more suitable for small target detection and has significantly improved the 
missed detection rate and confidence. 

 

   

   
Figure 9: The detection results of the proposed algorithm 
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