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Abstract
In recent years, a number of benchmarks and test environments have been proposed for research on
AI algorithms that have made it possible to evaluate and accelerate development in this field. There
exists, however, an absence of environments in which to evaluate the feasibility of such algorithms in the
context of games intended for continuous development, in particular in regression testing and automatic
error detection tasks in commercial video games. In this paper we propose a new test-bed - Liquid Snake:
a 3D third-person stealth game prototype, designed to conveniently integrate autonomous agent-driven
quality control mechanisms into the development life cycle of a video game, based on the open source
ML-Agents library in Unity3D. Focusing on the problem of regression testing on the potential unexpected
changes induced in a game by altering the AI of enemies, we argue that this environment lends itself to
be used as a sample test environment for automated QA methodologies thanks to the complexity and
variety in the behaviors of NPCs naturally present in stealth titles.
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1. Introduction

In the continuous development of a commercial title, it is common to find numerous enemies and
NPCs being reused in different sections of the game that evolve over time. In this context, the
evolution of the AI controlling these agents can end up inducing non-negligible modifications
in the gameplay of a level, contrary to the intentions of the original designs. These changes
are not always straightforward to detect: on the one hand development teams often do not
have the resources to perform sufficiently exhaustive testing tasks, and on the other hand these
modifications do not necessarily have to “break” sections of the game, simply altering the user
experience in a more or less subtle way and thus may go unnoticed by testers with extensive
experience in the game.

The tests involved in the task of determining whether a feature or a design that was correct
in the past continues to work properly after some progress in the development of the project
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are known as regression tests, and their cost of execution grows dramatically as the volume
of the code base and elements included in the game increases, as they essentially entail the
recurring repetition of previously executed test batteries or checks. These tests may raise
functional questions (“does the enemy continue to approach the player when it encounters
them at a distance below a certain threshold?”), or more abstract questions linked to the game
design (“is it possible to complete the level in less than 10 minutes and without losing health
points?” or “is it possible to traverse the level while picking up all the collectibles and without
being detected by enemies in the process?”, to name a few examples). While the first types of
questions can often be addressed through the use of tools such as unit tests, for which most
commercial engines offer good support, this is typically not the case for the second type of
problems, which generally require humans playing the game repeatedly trying to figure out an
answer to the question posed by the test.

Since the latter poses both an economic and logistical bottleneck, different strategies have
been proposed in recent years in an attempt to automate these checks and alleviate the burden
they can place on a QA team. These include ideas such as replaying game traces recorded
by human players during testing [1] or training autonomous agents based on AIs capable of
interacting with the game in specific ways, each of them being more or less feasible to implement
in a real development context [2, 3, 4].

While it is true that nowadays there are numerous standardized test-beds and benchmarks for
machine learning techniques that are intended to act as “collective challenges” in the community
to guide research efforts towards solving specific problems and to serve as environments
for testing new algorithms, the same cannot be said for applications of such techniques to
development cycles within commercial studios. Regression testing techniques described in the
literature are often obtuse or inaccessible from the perspective of development teams, with
proprietary use examples or technologies that are difficult to transfer to new environments.

It is therefore relevant, from our point of view, to propose a test-bed oriented to serve as a
testing framework not only for machine learning algorithms, but also for their applications
on quality control strategies in commercial games and the development of support tools for
automated testing. Having a common environment also enables a shared vocabulary in the
community: for instance, it becomes possible to compare the results of two ways of approaching
a regression testing problem on specific and shareable modifications (such as “does my method
detect that it is more difficult to evade level 2 enemies after altering a node of its behavior
tree?”).

On the other hand, from the developers’ point of view, having a simple reference environment
where they can try out automatic testing mechanisms allows them to experiment with different
strategies in a smaller external project and validate them before taking the step of integrating
them into their own games. At the same time, this test-bed can be used as an architectural
reference for those teams that are considering undertaking automatic testing but are held back
by the complexities and technical unknowns associated with the problem.

With this, in this paper we present Liquid Snake - a third-person 3D prototype belonging to
the stealth genre and developed in Unity3D intended to act as a common test-bed for regression
testing and automatic quality control, as well as an architectural reference for the integration of
such methods in commercial projects. The rest of the paper is structured as follows. Section 2
discusses related work of interest in this field. Section 3 introduces Liquid Snake along with



the most relevant high-level dynamics within the game to provide a general understanding of
the prototype. In turn, section 4 details the technical and architectural features that we argue
make the project suitable for the uses described above, ending in section 6 with conclusions
and future work.

2. Related work

In view of the problem described above, in recent years a number of strategies have been
proposed to implement automatic testing methods, typically making use of autonomous control
agents capable of interacting with a level over a large number of simulations while collecting
metrics that must fall within specific ranges to consider that the user experience has not been
altered [5, 6]. This same principle has been used in platforms and engines such as Unity3D to
introduce tools to support the design and balancing of video games [7].

To create these control agents, one of the most straightforward alternatives is simply to make
use of segments recorded manually by a human performing the specified tasks, replaying them
every so often over the original environment to check that the player’s trace is still able to
complete the set objective [8]. However, when the structure of the environment is modified, or
the environment includes random elements that do not remain constant between runs, these
strategies are no longer valid, motivating the need to create agents with a certain capacity to
adapt to changes in their surroundings.

This is where methods based on AI-based strategies come into play, offering more reactive
and adaptive policies to changing environments. Some examples of these techniques for
automatic testing in video games adopt the use of machine learning algorithms based on Deep
Reinforcement Learning (DRL) [9, 10], Imitation Learning (IL) [11], or even hybrid models of
the previous strategies with control structures such as behavior trees (BTs) [5].

Nonetheless, the reality of the matter is that at present the implementation of these method-
ologies in commercial developments suffers from several integration problems that discourage
developers from employing them in their projects. First, the generation of autonomous agents
capable of naturally playing a given game is complex and requires non-trivial knowledge in
the field of machine learning to be implemented. This is cushioned to some extent by new
tools such as ML Agents [12] in Unity3D or MindMaker [13] in Unreal Engine, which allow
training policies in a more developer-friendly way, but these are mostly aimed at research or
small-scale proof-of-concept creation. Secondly, to our knowledge there is a dearth of accessible
benchmarks and environments that serve as showcases and examples for the use of automatic
testing techniques in games intended for continuous development. Although there is a wide
variety of benchmarks and environments designed to test different types of machine learning
algorithms, such as DeepMind Lab [14], MineRL [15], OpenAI Gym [16] or Starcraft II Learning
Environment [17], to name a few, all of them stem from a closed game in which the aim is to
find a policy capable of fulfilling a certain fixed objective (or maximizing a given performance
metric), as opposed to the problem that concerns us: starting from a game in open development
and using agents to perform regression tests as it is modified.

In this paper we present a prototype stealth game implemented in Unity3D - Liquid Snake,
as a contribution in progress to this field, intended to serve as an open source testing envi-



Figure 1: Height system in Liquid Snake. Captures from player in crawling (A) and crouching (B) states.

Figure 2: Sample interaction scenarios in Liquid Snake: picking up a collectible item (A), stealthily
attacking an enemy from their back (B) and jumping over a log (C).

ronment that comes equipped with the necessary tools to experiment with automatic testing
methodologies on a project under development.

3. Liquid Snake

Liquid Snake is a game with mechanics inspired mostly by the stealth genre: in it, the player
must navigate through different 3D rooms in an attempt to find the exit, while trying to avoid
the enemies that patrol the area in search of intruders and collecting as much loot as possible as
they move through the environment. The player has a finite number of health points that are
reduced every time they are hit by an enemy projectile, being defeated when these are reduced
to 0. Players may choose to walk, run, crouch, or crawl to navigate the room, thus modifying
the height at which enemies perceive them, their movement speed, and the noise they produce
(which influences the enemies’ ability to detect them).

The game considers two different heights for the player, as shown in figure 1. When deciding
to walk or run, the player maintains the default height H2, the only difference between the
two states being the speed of the character’s movement and the noise produced (running being
the faster but louder action). In the crouching and crawling states, the player adopts a height
H1, which allows them to conceal themselves behind low obstacles such as the trunks in the
figure so as to go unnoticed by enemies operating at a height H2. As with the walking-running
pair, the only difference between the crouching and crawling states is the speed of the player’s
movement and the noise generated, with the crawling state being the slower but stealthier of
the two.

The game also features interaction actions with objects in the environment and shooting



Figure 3: Sample level 1: disjoint enemy patrol paths separated by columns.

Figure 4: Sample level 2: clockwise overlapping enemy patrol paths.

with limited ammo to deal with certain vulnerable enemies. Some of the available interactions
in the sample environments can be found in figure 2. This includes scenarios such as picking
up a collectible item (figure 2-A), stealthily eliminating an enemy by interacting with it from
its back before being detected (figure 2-B), or jumping over a low obstacle leaving the player
positioned on the opposite side of the object (figure 2-C). In all cases, the player must approach
the element with which they wish to interact and press an interaction key in order to execute
the corresponding action. If there is more than one object with which an interaction can be
performed, the one closest to the character at that time is selected.

The current project also includes some preconfigured levels that can be used as a reference for
testing. All of them include at least one enemy with a predefined patrolling route and a number
of collectibles hidden in various less accessible areas of the level, as well as other interactive
elements such as jumpable logs. Some examples can be found in figures 3 and 4.

The decision to take a stealth game as a starting point for this test-bed is based on the fact that
these environments are particularly appealing due to the presence of a number of mechanics
that are very prevalent in a wide variety of genres and games and the presence of NPCs whose
behaviors significantly determine the gameplay of the level. Indeed, in a game of this type it is



common to design enemies in very specific ways to motivate certain strategies on the part of
the player, but also to increase the complexity of the AI so as to adapt it to new design needs,
which is why we believe them to be an ideal candidate for regression testing.

The source code for the project, along with some usage examples, may be found in [18].

4. Testing environment features

In this section wewill summarize themost relevant features of the proposed testing environment:
its native integration with the ML Agents library in Unity 3D, the chosen architecture for the
input and actions schemes to conveniently switch between control mechanisms, and the use of
Behavior Trees to support growing enemy policies.

4.1. Natural integration with ML Agents

Liquid Snake is natively integrated with the ML Agents library for the training of autonomous
agents that act as automatic testers and, as will be described later, allows to switch smoothly
between manual control of the character and control by means of agents already trained or in
training. Additionally, each level of the project is wrapped by a LevelManager to orchestrate
the initialization and reboot processes of the environment between training episodes. To
coordinate the resetting of the components within the environment, an IResetteable interface
is provided with a single Reset method, to be implemented by whichever level constituents
require a return to their initial configuration at the beginning of a new training episode, or
when respawning the player after dying. The LevelManager is responsible for subscribing to all
events in the environment that may result in a level reset (player death, time limit exceeded,
etc) and maintains references to all elements adhering to the IResetteable interface to call their
corresponding Reset methods each time one of these events is triggered in-game. This way, it
is sufficient to implement this interface to ensure that a new level element is restarted when
necessary, without the need to establish an explicit dependency between components, thereby
facilitating the scalability of the project.

A ChracterEvents component is also provided for global notification of the different events
of interest involving the character, which is particularly useful when linking occurrences with
training rewards (for instance, granting a positive reward after the event of reaching the room
exit) or with logistical operations on the scene (such as restarting the level from the LevelManager
after the event of character death). In practice, all the events triggered by the various components
that define the character’s behavior (health, interactors, movement managers, etc.) end up
being intercepted by the CharacterEvents component, which lifts and unifies them to provide
a single access point from the outside to the catalog of events exposed by the character. As a
result, it is only necessary to subscribe to the events of this component rather than having to
access each component of interest individually.

Once a trained model is available, it is possible to perform simulations on the level of interest
while collecting different customizable metrics related to the performance of the agents. At the
moment, the project provides a set of Unity 3D play mode tests that can be used as a guideline
to load scenes automatically, instantiate a standalone controller, associate it to the character
object and then run the corresponding scene for a fixed number of times collecting event-driven



Figure 5: Control scheme in Liquid Snake.

metrics. This allows to gather simulation metrics from a fair number of levels in a convenient
way, avoiding manual switches and executions. One limitation at the moment, however, is that
no historical record is kept of the metrics collected in the tests, which makes it necessary to
keep an external storage in which to place and analyze them retrospectively.

4.2. Decoupled input-actions scheme

One of the main bottlenecks when integrating a machine learning model with a test environment
is the difficulty to conveniently switch between control schemes. The most classic examples of
this situation are found in the need to alternate between manipulating the character manually,
using a policy trained by reinforcement learning, executing traces prerecorded by human
demonstrators, or applying hand-scripted routines to specify desired behaviors.

With this in mind, we consider it essential to start from a model in which the command modes
mentioned above are kept strictly decoupled from the actual control logic of the character, by
means of mechanisms natural to a programmer familiar with the engine. The proposed scheme
is summarized in figure 5, for the case in which it is intended to alternate between manual
control and control through an ML Agents library agent (either via heuristics, through a trained
model or a model undergoing training).

In the previous scheme, there exists an abstraction layer that is always present within the
character and acts as an interaction API with its set of supported actions, given by a component
CharacterActionsController attached to the object to be handled. On top of this layer it is
possible to place specific controllers that make direct use of this component to manipulate the
character (ManualCharacterController and MLCharacterController in figure 5).

For those cases where one wishes to implement a controller that requires human input, such
as in conventional controls or in the heuristic mode of ML Agents, we introduce an InputHandler
object in the scene, responsible for transforming human input registered in Unity’s input system
into methods specific to any controller that implements the ICharacterController interface



(methods such as “Move”, “Shoot” or “Interact”, which are more manageable and understandable
than raw input). It is worth mentioning here that the heuristic mode differs from traditional
control in that in the former case the agent must receive the commands represented following
the encoding used for the RL model, in an array of actions. This enables the collection of
human demonstrations that can be later used to train learning-by-demonstration models or to
reproduce historical traces. In this way, we are able to run a single input system, but operate it
in different ways depending on our needs (for instance, one would not expect to use heuristic
control as the main control in a commercial game).

To implement and deploy a character controller, we opt for a separation between the character
actor object itself (a game object in the scene that exposes a CharacterActionsController) and
the controller itself, which is nothing more than an empty object in the Unity scene with a
component that implements the ICharacterController interface and is provided with a reference
to the object that represents the character. In this way the character object acts as a “pawn”, and
the controller can be modified as desired without further restructuring references from other
objects in the scene to the player. This is convenient because in a game of these characteristics
it is very common to have a multitude of elements that reference the player in a fairly direct
way, being the enemies perhaps the most typical case, as they need to keep a reference to the
player in order to know what to chase and attack, and to gather information from the player
at run-time. If the controller were present in the character object itself, this would imply that
to change the scheme it would be necessary either to replace the object in use with another
one with different control components, or to allow the coexistence of numerous controllers in
the same object and implement some kind of manager dedicated to enable and disable them as
required, with the corresponding clutter and logistical complication that this may cause.

Additionally, when using a controller derived from the Agent class of ML Agents, it is common
to introduce different sensor components associated to the agent to enable more sophisticated
forms of perception such as visual observations from a camera, or spatial observations by means
of sensors based on raycasts around the object or grids centered on the agent to detect the
relative position of nearby elements in the scene. These sensors must be attached as components
to the object that hosts the controller and will always dispatch their observations without the
ability to disable them. Since it is usually desirable to experiment with various configurations of
sensors and parameters, it seems natural to keep each controller as an independent object that
can be easily replaced whenever one wishes to enforce a new perception system. One thing to
note here is that if one intends to use a sensor centered on the player’s object, then it becomes
necessary to ensure that the position of the controller matches that of the character, which is
typically rather straightforward, but important to note nonetheless.

4.3. Behavior trees for rich NPCs

As we mentioned before, in the development of commercial games with enemies and other
NPCs, it is common to start with a relatively simple AI that meets the design needs of the initial
levels and then evolve and expand it to adapt to new requirements as the project progresses.
These AIs are usually coded using behavior trees (BTs) or state machines, which is why in
Liquid Snake we include the Behavior Bricks library [19] for specifying the behavior of enemies
in the form of BTs. From this library it is possible to design arbitrarily complex flows that can



be expanded during development.
The current project features a suite of pre-designed behavior trees to define the flows of

several enemies present in the example levels that may be used as a reference for changes or
expansions. Included here are nodes encoding common conditions and checks such as “is target
in sight?” or actions such as “advance to the next patrol point” or “shoot at target”.

5. Testing process

Following the descriptions given in the previous sections, the process of creating a battery of
tests on one of the project’s environments would be as follows:

1. Set up a level on which one wishes to perform a regression test as a scene within the
game. Currently the levels in figures 3 and 4 are provided as testing samples (for which
pre-trained controllers and Play Mode tests that make use of them are provided).

2. Configure a controller that is able to automatically perform the desired behavior at the
created level. This can be done in a number of ways, either with a manually programmed
AI, with traces of human inputs or, as in the case of the examples in the project, by
training an agent through the ML-Agents library to take control of the player. As for
the behavior to be generated, this need not be limited to successfully completing the
level, but can specify more precise tasks, such as defeating a particular enemy or reaching
a sequence of points in order. In the example cases, the goal of the level is always to
reach an escape point before dying or running out of time, with a reward function that
penalizes enemy deaths and damage, and awards positive stimuli for approaching the
goal, reaching an exit point, or retrieving a collectible item. The implementation details
for these controllers (observations, reward functions, configuration of the underlying
neural network, etc) can be consulted in the project repository, where a quick start guide
explaining a simple training process is also included.

3. Write a Play Mode test in Unity’s Test Runner that instantiates the implemented controller
on the scene to be tested and binds it to the player object in the environment. In general, a
test runs the controller simulation over the scene for a set number of times (which should
be high enough to be in proportion to the variability of the level in order to collect as many
occurrences as possible) and collects execution metrics configured by the test designer,
such as number of objects retrieved or number of times that the player is detected by the
enemy. These metrics can make use of the player’s CharacterEvents component to be
constructed as certain standardized events are received. In the example cases, damage
to the player and goal reached events are used to compute the metrics per episode of
health remaining at the end of the level and time taken to escape from the room. The test
executor is also responsible for compiling the execution metrics and dumping them into
a log file, thus enabling subsequent analysis.

4. After applying a structural change on the scene, re-run the previous test to obtain a new
set of simulation metrics with the same agent. At this point it is possible to perform a
comparative analysis of the distributions of the metrics (applying, for example, a non-
parametric test such as Mann-Whitney to contrast the equality of pre- and post-change



distributions) or, if preferred, simply check if they are within acceptable limits given by
the design team.

The use of a Test Runner such as the one integrated in Unity allows to configure and launch
large numbers of tests on an arbitrary number of scenes in an automated way, so that it is
possible to repeat the capture of metrics at the end of a development day as a first verification
mechanism to check whether the metrics are maintained at appropriate values.

6. Conclusions and future Work

In this paper we present a test environment for automatic regression testing in Unity 3D as
a contribution to the field of quality control in commercial video games, arguing that it can
be used both as a reference for the integration of automatic testing methodologies in new
projects, and to evaluate new testing algorithms in a controlled and prepared environment
before deciding to proceed to incorporate them into a proprietary project. In particular, we
conclude that the architecture proposed in this paper offers a number of features that make it
particularly suitable for automated testing, such as its native integration with machine learning
libraries such as ML-Agents, a decoupled scheme of character controllers that allows seamless
switching between input and control mechanisms, and reference scenarios that exemplify its
use in Unity’s Play Mode Tests for the automated execution of multiple batteries of simulations.

The test-bed described in this article is under active development, and we aim to incorporate
new features that make it as easy as possible to perform tests on it, as well as to develop
thoroughly documented application examples of automatic testing techniques such as those
described in [5] as a showcase of the environment. In the short term, the highest priority is to
improve the tools to conveniently configure and perform the automatic execution of a large
number of tests with autonomous agents, as well as to collect the execution results of such
tests in a structured and manageable way. This will enable a good degree of control over the
evolution of the set of game sections avoiding the tedium of launching each regression test
manually.
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