
Hamilton: enabling software engineering best practices for
data transformations via generalized dataflow graphs
Stefan Krawczyk1,*, Elijah ben Izzy1 and Danielle Quinn1

1Stitch Fix, 1 Montgomery Tower, Suite 1500, 94104, San Francisco, California, USA

Abstract
While data science, as a high level consumer of and producer to data ecosystems, has grown in prevalence within organizations,
software engineering practices for data science code bases have not. Stereotypical data science code is not known for unit
testing coverage, ease of documentation, reuseability, or enabling quick incremental development as it grows. Over time,
this lack of software engineering quality impacts the maintainers ability to make progress within a data ecosystem. The
data platform team at Stitch Fix created Hamilton to solve these software engineering pain points with respect to data
transformations. It does this by requiring a programming paradigm change that enables straightforward specification and
execution of dataflow graphs. Hamilton has enabled data science teams at Stitch Fix to scale their code bases to support 4000+
data transformations, by ensuring that transformation code is always unit testable, documentation friendly, easily curated,
reuseable, and amenable to fast incremental development. Hamilton also enables transparently scaling computation onto
distributed systems such as Dask, Ray, and Spark, without requiring a rewrite of data transform logic. Hamilton therefore
represents a novel approach to modeling dataflows that is decoupled from materialization concerns, and presents an industry
pragmatic avenue for building a simpler user experience for high level data ecosystem practitioners. Hamilton is available as
open source code.

1. Introduction
With the shift to "Full Stack Data Science"[1], data scien-
tists are expected to not only do data science, but also
engineer and manage data pipelines for their production
models. This additional responsibility places burdens on
data scientists, who no longer hand off their ideas off to a
software engineering team for implementation and main-
tenance. This burden becomes especially acute in the
domain of time-series forecasting, where data transfor-
mation needs involve creating an ever increasing number
of features (columns) in a dataframe (table) for use with
model fitting/forecasting. To create better time-series
forecasts, one is continually seeking to add more features
by incorporating new data, updating existing features,
and deriving new features from existing ones. The ma-
jority of features are the product of a chain of transfor-
mations over other features. At Stitch Fix, the Forecast-
ing, Estimation, and Demand (FED) team had curated a
code base over the course of several years, to produce a
dataframe for fitting time-series models with thousands
of such features. Unfortunately, maintaining and adding
features to the code base had become burdensome to the
point where their delivery of work slowed significantly.
Unit-testing was virtually non-existent, documentation
was scattered and inconsistent, and determining feature

Proc. of the First International Workshop on Data Ecosystems (DEco’22),
September 5, 2022, Sydney, Australia
*Corresponding author
$ stefank@cs.stanford.edu (S. Krawczyk);
elijah.benizzy@stitchfix.com (E. b. Izzy);
danielle.quinn@stitchfix.com (D. Quinn)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

lineage grew in difficulty with the number of transforms.
The Hamilton framework[2] was therefore conceived

to mitigate the FED team’s software engineering pain
points. Specifically, Hamilton enables a simpler paradigm
to create, maintain, and execute code for data engineer-
ing, especially in the case of highly complex data trans-
formation dependency chains. Hamilton does this by
deriving a directed acyclic graph (DAG) of dependencies
using specially defined Python functions that describe the
user’s intended dataflow. Altogether, Hamilton makes
incremental development, code reuse, unit testing, deter-
mining lineage, and documentation natural and straight-
forward. Furthermore, it provides avenues to quickly
and easily scale computation onto various distributed
computation frameworks, e.g. Ray[3]/Spark[4]/Dask[5],
without changing much code.

We will first provide some examples of typical soft-
ware engineering pain points with data transformations
at Stitch Fix, then talk about related tooling, and spend
the rest of this report diving into Hamilton’s program-
ming paradigm. We will show the benefits this paradigm
brings, provide a lightweight evaluation of the frame-
work, and finish with a summary and a description of
future work.

2. Software engineering pain
points with data
transformations

Since software engineering pain points are somewhat
subjective, we present the following Python script using
Pandas[6] to illustrate common software engineering
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pain points we encountered at Stitch Fix. It demonstrates
creating data transforms that represent features to fit a
time-series model.

1# create_features.py
2import pandas as pd
3from library import loader, is_holiday, is_uk_holiday
4

5def compute_bespoke_feature(df: pd.DataFrame) -> pd.
Series:

6 """Some documentation explaining what this is"""
7 return (df[’A’] - df[’B’] + df[’C’]) * loader.

get_weights()
8

9def multiply_columns(col1: pd.Series,
10 col2: pd.Series) -> pd.Series:
11 """Some documentation explaining what this is"""
12 return col1 * col2
13

14def run(dates, config):
15 df = loader.load_actuals(dates) # e.g. spend,

signups
16 if config[’region’] == ’UK’:
17 df[’holidays’] = is_uk_holiday(df[’year’], df

[’week’])
18 else:
19 df[’holidays’] = is_holiday(df[’year’], df[’

week’])
20 df[’avg_3wk_spend’] = df[’spend’].rolling(3).mean

()
21 df[’acquisition_cost’] = df[’spend’] / df[’

signups’]
22 df[’spend_shift_3weeks’] = df[’spend’].shift(3)
23 df[’special_feature1’] = compute_bespoke_feature(

df)
24 df[’spend_b’] = multiply_columns(df[’

acquisition_cost’], df[’B’])
25 save_df(df, "some_location")
26if __name__ == ’__main__’:
27 run(dates=..., config=...)

Listing 1: Example script that loads data, transforms data
into features, and saves them

Listing 1 demonstrates the highly heterogenous nature
of data transformation code. The run function:

1. loads some data into a central dataframe object
(line 15).

2. adds and derives features through various means:
a) inline code that directly alters the dataframe

(lines 20-22).
b) a function that takes the whole dataframe

and assigns the result to a new column
(lines 5, 23).

c) a function that uses columns from the cen-
tral dataframe and assigns the result to a
new column (lines 9, 17, 19, 24).

d) a conditional branch that changes the im-
plementation used to compute a column
based on some configuration (lines 16-19).

3. contains only sporadic documentation.

4. relies heavily on code execution order; line 21 has
to occur before line 24.

At only twenty-seven lines, the code in Listing 1 looks
innocuous. However, scaling this script from six to 1000+
data transforms (as occurred at Stitch Fix) presents the
following problems:

2.1. Inconsistent unit test coverage
Only three of the derived features lend themselves to-
wards straightforward unit testing. One cannot unit test
the inline dataframe manipulations without running the
entire script, so the code base inevitably has minimal, if
any, test coverage. In such a codebase, it is difficult to
determine behavioral changes when code changes.

2.2. Code readability and documentation
Well organized code with documentation is critical for a
maintainer to understand and contribute to a codebase.
It ensures information is not siloed in the original devel-
oper’s mind, and that newcomers to the codebase can
quickly become productive. In Listing 1, code readability
and documentation is tragically lost between inline ma-
nipulations, functions, and the organization of the run
function. Identifying the logic used to derive a feature is
far from trivial, even with the best developer tools.

2.3. Difficulty in tracing data lineage
At six features, tracing lineage of inputs to a data trans-
form is not particularly difficult. At 1000+ data trans-
forms, however, this is a challenging task. At Stitch Fix,
there are chains of transformation that span over four-
teen such functions, with the average transformation
chain length just over five.

In order to add a new data transform, a developer
has to make a decision as to where to put it. It could
be at the end of the run function, or ideally near some
logical grouping of transforms. However there is no
forcing function for a developer to do so, which inevitably
leads to critical transform code spread throughout the
entire codebase. A "spaghetti" codebase like this results in
slow and frustrating debug cycles, requiring the cognitive
burden of internalizing a mental map of computation in
order to identify and fix problems. Ability to debug is
then heavily correlated with tenure on the team!

2.4. Integration testing requires
calculating all data transforms

While feature generating scripts such as Listing 1 are
initially quick to execute, they grow into a large monolith.
In order to test the integration of a new feature, one has
to run the entire script. As the script inevitably grows

42



with the increasing complexity of a problem space, it
takes longer to run, and thus longer to iterate on, fix
bugs, and improve.

2.5. Code Reuse & Duplication
Because transform logic is not well encapsulated, code
reuse is difficult to achieve outside of the current context
of the script. Good software engineering practices advise
consistently refactoring code for reuse, however this is
easy to skip. It is simpler for a data scientist to instead
find the relevant code and cut & paste it to their new
context, especially when they are scarce for time. Left
unchecked, this behavior creates more monolithic scripts
and propagates the problem.

3. Related tooling
In industry, there are a few tools that come to mind when
discussing some of the pain points above.

3.1. Lineage/Data Catalogs
OpenLineage[7] is an framework for data lineage collec-
tion and analysis. It aims to provide an open standard to
enable disjoint tools to emit lineage metadata that can
then be centrally tracked and curated. It requires a oner
to implement the standard, as well as maintain infras-
tructure to collect the emitted lineage metadata. It is
designed for tracking materialization of whole data sets.
It cannot track lineage at a columnar level.

Data catalogs like Datahub[8] and Amundsen[9], are
systems of record with which one can emit and store
lineage and other metadata (e.g. for GDPR purposes).
They require one to explicitly integrate with their APIs
to capture this information. They are only as useful as the
information provided to them, so a developer needs to ex-
plicitly consider integration as part of their development
workflow.

3.2. Data Quality
When one thinks about data transformations and test-
ing data, one often thinks of Pandera[10], Deequ[11], or
Great Expectations[12].

Pandera is a stateless lightweight API for performing
data validation on Pandas dataframes (i.e. in memory
tables). Its focus is to provide a quick mechanism to define
expectations in code to create robust data processing
pipelines. It has a small python dependency footprint so
is easy to install and embed within a pipeline, enabling
it to live close to transform logic.

Deequ is a stateful, heavy-weight framework, that re-
quires peripheral services to operate. It is built on top
of Apache Spark and aims to define "unit tests for data"

that help validate data quality expectations over large
datasets. After a dataset has been constructed, the user
defines expectations over that data, that are then checked
via execution on Apache Spark.

Great Expectations, like Deequ, is also a heavy-weight
framework, but is more broadly applicable to python.
It allows one to validate, document, and profile data to
ensure data quality. It follows a similar implementation
pattern to Deequ, as one needs to explicitly integrate it
after dataset construction into a dataflow.

None of the frameworks are meant to be run like unit
tests, and thus are not designed for testing transform
logic.

As for the user experience, one has to explicitly add
data quality test(s) into a dataflow. Determining how
to add tests, when to add tests, and how to maintain
them as dataflows evolve causes extra burden on the
dataflow developer. For example, it is possible to change
data transform logic and forget to update data quality
expectations if they are defined in separate steps of the
dataflow, located in a different file in the code base, or
stored externally in a datastore. Analogously, if a data
quality check fails, it can be similarly difficult to deter-
mine what source code generated the data, if one does
not link the data quality test appropriately via naming
or documentation.

3.3. Orchestration Frameworks
Similar in approach to Hamilton are orchestration frame-
works [13, 14, 15, 16]. They too model their operations
via a DAG, however their focus is modeling a user’s end
to end workflow at a macro-level. Specifically, they model
discrete steps at each of which an artifact is created and
data is materialized. For example, in one step, raw data
is ingested and transformed and saved as a table, and in
a subsequent step, a machine learning model is trained
on that data and that model is saved.

These frameworks also do not try to address any soft-
ware engineering pain points a data transformation de-
veloper might have.

4. Hamilton Framework
The Hamilton framework alleviates the pain points de-
scribed in Section 2 through three distinct concepts:

• Hamilton functions: the low-level unit of work
developers use to encode dataflow components.

• Function DAG: The representation of the dataflow’s
dependency structure, built by combining func-
tion definitions.

• Driver code: the code used to execute Hamilton
functions by specifying the functions used to
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build the DAG, the inputs to execution, and the
parts of the DAG to run.

For those eager to see a simple Hello World we direct
readers to Listing 5 in the Appendix.

4.1. Hamilton Functions
Hamilton functions force a novel programming paradigm
on the user. Like regular Python functions, they encapsu-
late computational logic. However, the user is not respon-
sible for invoking functions and assigning the results to
a variable. Instead, this is encoded in the structure of
the function itself in a declarative manner. The function
name serves to specify, or declare, the intended output
variable, and the function input parameters (as well as
their type-annotations) map to expected input variables,
i.e. declared dependencies. In the context of creating
a dataframe, the function name serves as the intended
output column name, and the function input parameters
serve as the expected input columns/values. Type annota-
tions on the function and the variables are required by
the Hamilton Framework.

Note (1), Hamilton can be used to model any python
object creation. For the remainder of this paper, we will
stick to the context of creating pandas dataframes. Note
(2), if Hamilton functions have wildly different python
dependency requirements, using Hamilton is still possi-
ble, one would just partition DAG execution into multiple
steps matching the different python dependency require-
ments.

1# rather than
2df[’acquisition_cost’] = df[’spend’] / df[’signups’]
3

4# a user would instead write
5def acquisition_cost(
6 signups: pd.Series, spend: pd.Series) -> pd.

Series:
7 """Example showing a simple Hamilton function"""
8 return spend / signups

Listing 2: the core Hamilton programming paradigm
with dataframes

Listing 2 shows an example of the Hamilton paradigm
and what it is replacing. Hamilton’s breakdown of the
example function’s components is demonstrated in Table
1. By defining functions in this manner, the developer
specifies their intended dataflow. This method of writing
Python functions has a variety of implications:

4.1.1. Verbosity

This approach increases the lines of code required to
describe simple operations. However, the benefits out-
weigh the cost. Inputs are clearly specified, and logic is
automatically encapsulated in named functions.

4.1.2. Unit Testing

As Hamilton functions contain well encapsulated logic
and clearly specify inputs, all data transform code is unit
testable!

4.1.3. Code readability and documentation

1. Encapsulating feature logic in functions implies
a natural location for documentation (namely the
Python docstring).

2. Coupling the name of the function with a reusable
downstream artifact forces more meaningful nam-
ing. It is trivial to determine the definition of a
feature and locate its usage. One needs to sim-
ply search the code base for a function with that
name or which has that as an input parameter.

4.1.4. Vector friendly computation

In the case of creating dataframes, the Hamilton program-
ming paradigm pushes a user to write a function to create
a single column, with inputs as columns as well. This nat-
urally leads the developer to write logic that can utilize
vector computation, which often speeds up execution.

4.1.5. Functions as the core interface

Python functions have well defined boundaries; inputs
go in, and one output comes out. They can be serialized,
inspected, and executed. Therefore, functions are used as
a universal interface and building block for both the user
experience and the framework. A user does not need to
implement nor understand a special interface to use the
core Hamilton features. Similarly, the framework, with-
out knowing the exact shape of the function beforehand,
has a clear object with which to work with, where it can
wrap a user’s functions to inject operational concerns via
decorators (see 4.2), or at run time (see 4.3.3).

4.2. Advanced Hamilton Functions
In an effort to encapsulate operational concerns and re-
duce repetitive function logic, Hamilton comes with a
variety of decorators. Decorators primarily fulfill one of
the following purposes:

1. Determining whether a function should exist. if
else blocks are dropped in favor of readable anno-
tations (e.g. @config in listing 4).

2. Parameterizing function creation. A single func-
tion can create multiple nodes.

3. Simplifying function logic by promoting reuse.
Syntactic sugar can help reduce verbosity and re-
peated code (e.g. @extract_columns in listing
4.
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Table 1
How functions become nodes in a the DAG using the function defined in Listing 2 as an example.

Function Name acquisition_cost Node name
Type-hints pd.Series Node input & output types

Parameter Names signups, spend Upstream dependencies
Documentation Example showing a simple hamilton function Node Documentation
Function Body return spend/signups Node Definition

4. Modeling operational concerns in a modular man-
ner. For example, adding metadata for GDPR pur-
poses, or specifying run time data expectations.

Hamilton decorators are extensible and can also be
layered to enable highly expressive functions.

Note, as functions are the core interface (see 4.1.5), the
abstraction provided by Hamilton’s decorator system en-
ables, a platform team for example, a clear and decoupled
way to plug into the user’s function writing experience,
while providing a clear way to manage and service their
decorator implementations. Done correctly, user func-
tion definitions remains static to platform changes.

With respect to data ecosystems, we will explain two
relevant Hamilton decorators: @check_output() and
@tag(). We direct readers to the Hamilton documenta-
tion [2] for more information on other decorators.

4.2.1. @check_output

In machine learning (ML) dataflows, data quality issues
are a common cause of model problems. It is a best prac-
tice to setup data expectations to mitigate these prob-
lems. However, as explained in section 3.2, one needs
to additionally integrate such a concern into a dataflow
explicitly. With Hamilton, integrating data quality expec-
tations are less burdensome, as this takes the form of a
lightweight Python decorator @check_output(), with
which one can simply annotate their Hamilton functions.
Doing so enables transform logic and data expectations
to be co-located, without cluttering the user’s dataflow.
There is no need to maintain separate code bases and data
stores, or manually integrate checks as an explicit step
of a dataflow. Therefore maintenance and operational
costs are low for adding runtime data quality checks to a
dataflow.

At DAG construction time, Hamilton automatically
adds nodes to the DAG to check the output of the dec-
orated function. At run time, after executing the user
function, Hamilton validates the provided expectations,
surfacing data quality errors to the dataflow developer
via logging, or stopping execution altogether if desired.
See listing 4 for an example of usage.

4.2.2. @tag

As data systems and environments change over time,
different metadata needs arise. Rather than requiring
explicit integrations with metadata systems, or enforcing
a specific schema, Hamilton enables a lightweight way to
annotate functions with such concerns. @tag() takes in
string key value pairs, and is thus amenable to annotat-
ing functions with anything relevant to your particular
data ecosystem. E.g. ownership, source table names,
GDPR concerns, project names, etc. These tags are then
attached to nodes in the DAG, which then can be used as
a basis for querying for nodes, or asking graph questions
of the DAG. See listing 4 for an example of usage.

4.3. The Function DAG
The function DAG is the framework’s representation of
the nodes that should be executed and the dependencies
between them.

4.3.1. Node Creation

Hamilton resolves the mapping of functions (e.g. listing
2) to nodes. In the case of Hamilton functions annotated
with one or more decorators, a resolution step occurs to
determine how many nodes to create (e.g. in case of a
parameterized function), and what the nodes should be
named. Functions beginning with _ are presumed to be
helper functions and thus excluded from inclusion in the
DAG.

4.3.2. Constructing the DAG

Hamilton compiles the DAG from a list of Python mod-
ules containing Hamilton functions and optional con-
figuration. It collects the relevant functions to create
nodes, determines node dependencies, and assigns edges
between them. Any dependency that does not map to a
known node is marked as a required input for execution.

4.3.3. Walking the DAG

Given desired outputs, a topological sorting of the DAG is
performed to determine the execution order. As the DAG
is walked, additional operational concerns are injected,
e.g. checking inputs and matching against function input
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types, delegating function computation, and constructing
the final object returned from execution.

4.4. Driver Code
Driver code steers execution of the Function DAG, pro-
viding a convenient abstraction layer. Thus the developer
never has to interact with the DAG itself, and instead
utilizes the driver to run and manage their dataflow. It
handles the following:

4.4.1. DAG Instantiation

The Driver directs construction of the Function DAG.
Creation of the driver is as simple as the following:

1from hamilton import driver
2from funcs import spend_forecast, spend_data_loader
3

4config={...}
5modules = [spend_data_loader, spend_forecast]
6dr = driver.Driver(config, *modules, adapter=...)

Listing 3: Sample Driver code to instantiate a DAG

The call to instantiate the driver accepts a config ar-
gument. This takes the form of a dictionary with string
keys and Python objects as values, that serves two pur-
poses: (1) it helps determine the shape of the DAG when
coupled with appropriate decorators (section 4.2); (2) it
sets inputs that a user wants to be invariant between
DAG execution runs. Meanwhile, the adapter argument
(optional) controls execution (such as delegating to Dask),
and determines the object type returned from DAG exe-
cution.

4.4.2. DAG Execution

The driver has two primary methods:

1. execute(outputs_wanted, inputs,
overrides) executes the DAG, computing only
what is required to create the output, and returns
a python object, e.g. a Pandas dataframe.

2. visualize_execution(outputs_wanted,
inputs, ...) visualizes the parts of the DAG
required for execution.

Note that the developer can pass parameters to the DAG
through two Python dictionaries: inputs and overrid-
es. Inputs specifies runtime inputs to the DAG, provid-
ing requisite dependencies that are not satisfied by exist-
ing nodes. Overrides enables the developer to bypass
execution of specified nodes, effectively short-circuiting
their computation. Hamilton will forego computation
of any upstream node depended on solely by overrid-
den nodes. By offering these parametrization capabili-
ties, Hamilton enables precise control over the dataflow’s
structure and execution.

B

spend_b

signups

acquisition_cost

UD: dates

actuals

spend

Figure 1: Example rendering produced by running
visualize_execution() on an instantiated DAG, if one
was interested in computing spend_b from Listing 1 as imple-
mented in Hamilton in Listing 4. Hamilton makes it straight-
forward to determine what is required to compute a feature.
UD refers to user defined input. Note: for diagram legi-
bility, we omitted displaying the validation nodes that the
@check_output() decorator would add to the DAG.

1# in a module, e.g. my_functions.py
2

3@tag(source="prod.denormalized", owner="team:DE")
4@extract_columns(’year’, ’week’, ’spend’, ’signups’,

’A’, ’B’, ’C’)
5def actuals(dates: ’a_date_type’) -> pd.DataFrame:
6 return loader.load_actuals(dates)
7

8@check_output(data_type=np.float64, allow_nans=False)
9def weights() -> pd.Series:

10 return loader.get_weights()
11

12@config.when(region=’UK’)
13def holidays__uk(year: pd.Series, week: pd.Series) ->

pd.Series:
14 return is_uk_holiday(year, week)
15

16@config.when(region=’US’)
17def holidays__us(year: pd.Series, week: pd.Series) ->

pd.Series:
18 return is_holiday(year, week)
19

20def avg_3wk_spend(spend: pd.Series) -> pd.Series:
21 return spend.rolling(3).mean()
22

23def acquisition_cost(spend: pd.Series, signups: pd.
Series) -> pd.Series:

24 return spend / signups
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25

26def spend_shift_3weeks(spend: pd.Series) -> pd.Series
:

27 return spend.shift(3)
28

29def special_feature1(A: pd.Series, B: pd.Series, C:
pd.Series, weights: pd.Series) -> pd.Series:

30 """Some documentation explaining what this is"""
31 return (A - B + C) * weights
32

33@check_output(data_type=np.float64, range=(0.0,
100.0), allow_nans=False)

34def spend_b(acquisition_cost: pd.Series, B: pd.Series
) -> pd.Series:

35 """documentation to explain this function"""
36 return acquisition_cost * B
37

38## In a separate script/module, e.g. run.py,
39## code to create and execute the DAG
40from hamilton import driver
41import my_functions
42

43config = {...} # configuration
44modules = [my_functions] # modules to crawl
45dr = driver.Driver(config, *modules)
46df = dr.execute([’year’, ’week’, ’holidays’, ’

acquisition_cost’, ...]) # materialize
47save_df(df, "some_location") # save result

Listing 4: Hamilton version of the earlier example script
in Listing 1, with four decorators used to show
example usage.

4.5. Benefits of Hamilton
With respect to a data scientist’s workflow, we have found
the following benefits when using Hamilton.

4.5.1. Incremental Development

Rather than requiring execution of a monolithic script,
Hamilton pushes the dataflow creator towards incremen-
tal, test-driven, development. As dataflows are composed
of discrete, unit-testable components, modifications to
produce new data can be started locally by conducting
test-driven development on the function itself. As node
execution only requires running upstream dependencies,
integrating with the full dataflow is straightforward. The
developer need only request computation of the new
node via the Hamilton driver to integration test the new
addition.

4.5.2. Debugging

Hamilton makes debugging dataflows simpler by provid-
ing a standard methodical approach. One can isolate bugs
by determining the erroneous output, finding the same-
name function definition, debugging that logic, and if
no error is found, repeat tracing through each upstream
dependency. Standard debugging procedures (such as

code-diffing, breakpoints, and bisection) gain in value
due to Hamilton’s logical mapping of code to produced
data. For example, to debug spend_b from our contrived
example (listing 1), it is straightforward to visualize it’s
execution path, Figure 1, and thus determine what needs
to be debugged.

4.5.3. Documentation

The confluence of:

• using function documentation strings
• one-to-one mapping of outputs to functions
• the ability to visualize the DAG and execution

paths
• the @tag() decorator for adding extra metadata

enables a clear and straightforward means to document
transform logic in a standardized way. The function doc-
umentation string is perfect for long form explanations,
and can be exposed via tooling such as sphinx[17]. The
mapping of function names to outputs ensures that func-
tion names and input parameters are meaningful while
also enabling one to quickly locate the definition of an
output. The ability to visualize the DAG and execution
paths helps provide a big picture mental model for those
learning the code base. The @tag() decorator makes it
easy to add additional metadata concerns, without clut-
tering the transform logic itself.

4.5.4. Central Definition Store

A common problem for machine learning practitioners is
that of leveraging other’s work. Most industry solutions
target materialized data, e.g. [18], rather than the code
itself. As the code in Hamilton maps directly to outputs,
module organization is highly incentivized. Curating all
modules into a single repository (as the FED team did
at Stitch Fix) provides a straightforward approach for a
team to refer to and reuse work.

4.5.5. Transparent Scaling

Most distributed computation frameworks follow a lazy
execution model e.g. Dask, Ray, and Spark. They build a
DAG of the computation required prior to distributing ex-
ecution. As Hamilton’s Function DAG is structured using
the same approach, it can provide a layer of indirection
between dataflow definition and method of execution. In
practice, this means that most Hamilton Functions do
not need modification to run on these distributed compu-
tation systems, unless the data type they operate over is
not supported by that system. For example, both Spark
and Dask implement the Pandas dataframe API, so a user
would not have to change their Pandas code to scale to
a Dask or Spark cluster, other than changing how they
load data for execution.
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4.5.6. Source Code Based Lineage

The declarative nature of Hamilton enables an entire end
to end ML workflow to be modeled. Column level lin-
eage from source, to machine learning feature, to model
that consumes it, generally requires additional integra-
tion work to ensure it’s emission and storage, e.g. with
Amundsen. With Hamilton, no such integration or sys-
tem is required. The declarative functions can model
this entire process with any tooling that is python based,
as the function source code becomes the source of truth.
To build a standalone lightweight lineage system, one
need to only pair the function definitions, driver code
and configuration, with a source code version control
system (e.g. git) to snapshot the code (e.g. git commit)
when an artifact is created, to enable reconstruction of
the DAG for lineage querying purposes.

4.5.7. Lineage for Data Privacy/Provenance
Concerns

Hamilton unlocks the ability to provide fine grained lin-
eage of computation. With the growth of privacy con-
cerns and data regulation, organizations need to know
what data comes in, where it goes, and how it is used.
Hamilton functions can be marked (via @tag() with
privacy or regulation concerns, e.g. that it contains Per-
sonally Identifiable Information (PII), enabling one to
easily surface answers to questions of data usage and
data impact from the structure of the DAG.

5. Evaluation

5.1. Adoption
To enjoy the benefits of Hamilton, one must use the
paradigm. For existing systems, this means a migration
needs to occur, which has been the largest friction point
to adopting Hamilton. Internally, teams with active fea-
ture development for time-series forecasting have been
the most prolific adopters, as they are the willing to pay
the migration/adoption cost to reap the paradigm’s bene-
fits. Externally (since October 2021), at minimum, teams
using Pandas and wanting to improve software engineer-
ing hygiene have been Hamilton’s best adopters.

5.2. Quantitative assessment
A quantitative assessment of Hamilton’s benefits to a
team is challenging, as one would have to construct a
tightly controlled experiment, e.g. like [19]. In an indus-
try environment, however, it is hard to secure resourcing
for such an endeavor. That said, anecdotally, for the FED
team, a monthly feature engineering task of adding and
adjusting data transformations for model fitting used to

take a whole day for a team member to complete prior to
Hamilton. After Hamilton, this task takes no more than
two hours, which represents a 4x improvement!

5.3. Qualitative assessment
The initial success criteria for the Hamilton project were
all qualitative measures. Namely, that a core data sci-
ence team adopted the tooling, enjoyed using it, and
were able to deliver on their business objectives. On all
accounts, Hamilton delivered successfully, without any
detractors. Since then, two and a half years in production
have passed and the same qualitative measures still hold.
The team manages over 4000 data transforms, which
represents almost a decade of work, written by at least
fifteen different team members.

6. Summary
Hamilton is a novel dataflow framework that makes data
transformation engineering in Python straightforward.
By representing dataflows as a series of simple Python
functions, Hamilton produces code that is easy to read
and decoupled from execution. This results in trans-
form logic that is always unit testable and documenta-
tion friendly, provides lineage out of the box, enables
lightweight run time data quality checks, and unlocks
fast iteration and debug cycles. It has enabled the FED
team at Stitch Fix to scale, managing over 4000 data trans-
forms that create features for time-series modeling.

In addition, Hamilton provides a layer of indirection
that transparently scales computation onto various dis-
tributed computation frameworks (such as Ray, Spark,
and Dask) as materialization is decoupled from function
transform definitions. This opens the door for exciting
future work.

7. Future Work
Here we highlight three avenues of future work. For
more, see open issues in Hamilton’s github repository.

7.1. Source code based data governance
With Hamilton, one can encode a rich repository of
metadata (see section 4.5.7) into the source code directly.
Because source code is required to perform data trans-
formations, keeping transform logic synchronized with
tags, data quality checks, and documentation is a simpler
proposition than having that metadata in separate inde-
pendent steps of a dataflow or separate systems. There-
fore the source code itself could conceivably be used as a
reliable base for data governance.
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However, how to expose this information for consump-
tion requires more thought. Does one build directly on
top of the source code? Or does one emit this information
to an existing system, such as a data catalog? For the
former, a new system would need to be built. For the
latter, one could integrate a continuous integration sys-
tem that publishes changes when source code is snapshot
(i.e. committed), or augment the Hamilton driver/DAG
walking methodology to emit this information at DAG
instantiation/execution time.

Similarly, data access/use policies could also be a target
for source code based governance. By tagging functions
that ingest data sources with appropriate data policies,
one could, prior to DAG execution, walk the DAG to
ensure the requesting user and requested DAG execution
meets the policy requirements for those data sources.

7.2. Compiling to an orchestration
framework

A common problem with ML tooling is choosing an or-
chestration system. This is a big decision, because com-
panies rarely change this infrastructure. As Hamilton
functions do not define or set materialization concerns,
it cannot be used in place of an orchestration framework
such as Airflow[15], where computation is split into dis-
crete steps and materialized to a data store in between
steps. If one were to provide node groupings and a ma-
terialization function, then it would be straightforward
to compile the Hamilton Function DAG into any exist-
ing framework. Programmatically defining orchestration
would also unlock the possibility for low cost infrastruc-
ture migrations, while avoiding vendor lock in.

7.3. Modeling your entire data warehouse
independently of materialization
concerns

Common industry data tools and orchestration frame-
works leak materialization concerns into the user experi-
ence. For example, using SQL, the end user has to think
in tables. This naturally cascades to how data is mate-
rialized and transferred between workflows. What if,
instead, one could model the dependencies of one’s data
transforms, independently of how and where the data is
stored? The declarative nature of Hamilton unlocks this
possibility.
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A. A full Hamilton Hello World
Example

1## --- in my_functions.py
2import pandas as pd
3

4def avg_3wk_spend(spend: pd.Series) -> pd.Series:
5 """Rolling 3 week average spend."""
6 return spend.rolling(3).mean()
7

8

9def spend_per_signup(spend: pd.Series, signups: pd.
Series) -> pd.Series:

10 """The cost per signup in relation to spend."""
11 return spend / signups
12

13

14def spend_mean(spend: pd.Series) -> float:
15 """Shows function creating a scalar. In this case

it computes the mean of the entire column."""
16 return spend.mean()
17

18

19def spend_zero_mean(spend: pd.Series, spend_mean:
float) -> pd.Series:

20 """Shows function that takes a scalar. In this
case to zero mean spend."""

21 return spend - spend_mean
22

23

24def spend_std_dev(spend: pd.Series) -> float:
25 """Function that computes the standard deviation

of the spend column."""
26 return spend.std()
27

28

29def spend_zero_mean_unit_variance(spend_zero_mean: pd
.Series, spend_std_dev: float) -> pd.Series:

30 """Function showing one way to make spend have
zero mean and unit variance."""

31 return spend_zero_mean / spend_std_dev
32

33## in run.py
34import pandas as pd
35from hamilton import driver
36import my_functions # we import user functions here
37

38initial_columns = { # load from actuals or wherever
-- this is our initial data we use as input.

39 # Note: these values don’t have to be all series,
they could be scalar.

40 ’signups’: pd.Series([1, 10, 50, 100, 200, 400]),
41 ’spend’: pd.Series([10, 10, 20, 40, 40, 50]),
42}
43# instantiate the DAG - multiple modules can be

passed
44dr = driver.Driver(initial_columns, my_functions)
45# we need to specify what we want in the final

dataframe
46output_columns = [
47 ’spend’,
48 ’signups’,
49 ’avg_3wk_spend’,
50 ’spend_per_signup’,
51 ’spend_zero_mean_unit_variance’
52]
53# by default execution returns a dataframe
54df = dr.execute(output_columns)
55print(df.to_string())
56

57# To visualize do ‘pip install sf-hamilton[
visualization]‘ if you want these to work

58dr.visualize_execution(output_columns, ’./my_dag.dot’
, {})

59dr.display_all_functions(’./my_full_dag.dot’)

Listing 5: A full hello world example.
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