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Abstract
Throughout the coronavirus disease 2019 (COVID-19) pandemic, decision makers have relied on forecasting models to
determine and implement non-pharmaceutical interventions (NPI). In building the forecasting models, continuously updated
datasets from various stakeholders including developers, analysts, and testers are required to provide precise predictions.
Here we report the design of a scalable pipeline which serves as a data synchronization to support inter-country top-down
spatiotemporal observations and forecasting models of COVID-19, named the where2test, for Germany, Czechia and Poland.
We have built an operational data store (ODS) using PostgreSQL to continuously consolidate datasets from multiple data
sources, perform collaborative work, facilitate high performance data analysis, and trace changes. The ODS has been built not
only to store the COVID-19 data from Germany, Czechia, and Poland but also other areas. Employing the dimensional fact
model, a schema of metadata is capable of synchronizing the various structures of data from those regions, and is scalable
to the entire world. Next, the ODS is populated using batch Extract, Transfer, and Load (ETL) jobs. The SQL queries are
subsequently created to reduce the need for pre-processing data for users. The data can then support not only forecasting
using a version-controlled Arima-Holt model and other analyses to support decision making, but also risk calculator and
optimisation apps [1, 2]. The data synchronization runs at a daily interval, which is displayed at https://www.where2test.de.

1. Introduction
In building forecasting models of COVID-19, many re-
searchers employ the training datasets provided by each
country’s representative institutions, e.g., Robert Koch
Institute in Germany. The publicly accessible COVID-
19 data provided in raw textual format, such as CSV,
JSON, and XML are downloaded and analysed by the
researchers employing either statistical or machine learn-
ing approaches. However, the data are unwell struc-
tured and require heavy pre-processing as well as in-
gestion activities for further analysis. This method is
inherently inefficient due to identical and manual paral-
lel pre-processing of the RKI data (using e.g. python or
R scripts) performed by each researcher. This reduces
the efficiency of each and everyone’s work as all have to
spend hours and days in pre-processing data before com-
ing to modeling and forecasting. Advanced computing
infrastructures and novel software pipelines are crucial
tools to synchronize the data structures which originate
from various sources and to extremely reduce heavy pre-
processing [3]. They serve as essential prerequisites to
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realise the data surveillance and outbreak response man-
agement, which have been implemented in fighting other
endemic diseases [4, 5, 6, 7].

To date, the data management have been applied in
controlling the outbreak of COVID-19 [8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Most of them pro-
vide maps and the prevalent data in the following re-
gional level: (i) National level, e.g., COVID-19 data of
World wide [10], Europe [11, 12, 13], and Latin Amer-
ica [14]; (ii) State and county levels, e.g., the COVID-19
data warehouse for Italy [15], COVID-19 dashboard for
UK [17], the COVID-19 dashboard for Maryland [18],
and for Germany [19].; (iii) County level, e.g., Dresden,
Germany [20]. More completed version is provided by
the John Hopkins University [21], which serves the dash-
board and the prevalent data for each regional level in
the USA as well as for most of countries around the
world. Likewise, the similar method in the presence
of semi-automatic validation strategy was conducted to
check the data quality of daily updated numbers with
governmental/official data sources [22]. However, most
of dashboards and data warehouses have not provided
the features to let the users perform an inter-country
top-down spatiotemporal observation, i.e., observing the
inter-country prevalence and simultaneously being able
to observe to the microscopic level (nation → state →
county → municipality). The features could provide in-
sights, for example, to study COVID-19 border dynam-
ics which have been so far attracted considerable atten-
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tions [23, 24, 25, 26]. Moreover, they are lack of fore-
casting features, which play a key role in predicting the
future prevalence as well as determining non pharma-
ceutical interventions (NPI). A tremendous number of
forecasting models, e.g., agent-base [27], machine learn-
ing [28, 29], combination model [30, 31], compartment
model [32, 33, 34, 35, 36], time series [37, 38, 39, 40, 41, 42,
43] have employed government datasets to provide essen-
tial inputs for public decisions. However, most of datasets
that were used in those studies are limited to the specific
time window which are likely to produce different results
when the datasets are updated. Establishing a system of
daily-updated-datasets assisted forecasts, therefore, is an
alternative to improve their consistency and precision.

In this paper, we address the aforementioned issues
by proposing the design of a scalable pipeline which
allow us to perform the top-down spatiotemporal obser-
vation among Germany, Czechia, and Poland as well as
to perform daily forecasts. The method of the pipeline
which consists of extraction of various data sources and
the ODS is described in subsec 2.1. More specifically,
we will describe the dimensional fact database model
and a daily migration process which underline the data
synchronization between various data sources and our
database server. We employ the dimensional fact model
due to more flexibility and versatility in building spa-
tiotemporal aggregation functions than the nanocubes
model [44, 45]. Next, in subsec 2.2 we will describe the
time-series forecasting models which are supported by
the presence of the ODS. Furthermore, the automatic
system of daily forecasts owing to the presence of the
pipeline will be laid out in this sub section. In Sec. 3, we
will describe facilities that have been established due to
the presence of the ODS. In order to demonstrate the
inter-country top-down spatiotemporal observations, an
analysis will begin from the macroscopic scale in which
the study of the virus spread across the national borders
is described in subsec 3.1. Herein we consider the border
among Germany, Czechia and Poland as a study case.
In subsec 3.2, we explore more microscopic level by ap-
plying a daily-updated-datasets assisted forecast for the
prevalence in the state of Saxony, Germany. Last but
not least, in subsec 3.3, most microscopic level that we
will demonstrate is a superspreading event at a slaugh-
ter house in Gütersloh, Lower Saxony, Germany. As the
COVID-19 situation begins to enter an endemic phase,
a study of superspreading event will provide essential
information to trace the COVID-19 transmission after a
mass event.

Figure 1: (a) A workflow of data pipeline Hospitals, retire-
ment houses, and schools of Germany, Czechia and Poland
update the data of COVID-19 cases, vaccines and tests to the
representative government institutions. A daily automatic ETL
step is performed to synchronize the data sources and central
database of CASUS. A daily and weekly automatic forecast
employing, e.g. Arima-Holt model, is applied to provide rapid
predictions. The predictions and the actual data are shown
in the where2test website; (b) The scalable dimensional fact
model. Datavalues and datavalue types represent measures,
while region types and timeperiod types represent spatial and
temporal dimensions, respectively.

2. Methods

2.1. Data Pipeline
Fig. 1a shows a workflow of the data pipeline. The hos-
pitals, retirement houses and schools register the daily
number of the COVID-19 cases and vaccines to the rep-
resentative government. In order to consolidate these
data, the relational database is built based on dimen-
sional fact model [46]. Having established the relational
database, the daily automatic extract, transfer and load
(ETL) step is performed to migrate and integrate the data
sources to the PostgreSQL database of CASUS HZDR
(see Suplementary materials 7.1). Next, we create SQL
inquiries-based views to be analysed by our researchers
using the forecast and machine learning methods. The
tested and completed analysis methods are set in the
master stage and the other tested methods are set in the

65



develop stage. Only the forecasting method in the master
stage is integrated in the automatic pipeline.

The dimensional fact model is shown in Fig. 1b. The
model consists of three main concepts: (i) Facts, that
refer to a subject of study (e.g., the study of infected,
dead, recovered, hospitalised, test and vaccinated cases
due to COVID-19); (ii) Measures, that refer to the quan-
titative data of the concept (i). The measured data are
stored in the table of datavalues. The tables of datavalues
contain the number of infected, dead, recovered, hospi-
talised, test, and vaccinated cases due to COVID-19 in
a given time and place. To date, the schema consists of
three datavalues, i.e., datavalues of Germany, Czechia
and Poland; (iii) Dimensions, that refer to temporal and
spatial attributes. As the measured data are provided in a
given time and place, the table of time period types and
regions is necessary. The former stores the type of time
period which consists of day and week data type; and the
latter stores the necessary information of regions which
consist of the name, abbreviation, ID of regions, ID of
region type, geometry and population. The table of re-
gions depends on the table of region types. The regions
are categorised based on their sizes. The order of as-
cending sizes starts from municipality, county, state and
nation. For Germany, the order of region type starts from
Gemeinde, Kreise and Bundesland. Similar to Germany,
Poland consist of Gmina, Powiat, and Wojewodztwo. Dif-
ferent from Germany and Poland, Czechia consist of 4
level, Obec, Orp, Okres and Kraj. The spatial and tempo-
ral attributes are connected by means of hierarchies to
represent a -to-one relationship between them. The table
of mapping_types contains the hierarchical type of the
spatial attributes, e.g., for Germany (Gemeinde to Kreise,
Kreise to Bundesland), for Czechia (Obec to Orp, Orp to
Okres and Okres to Kraj), and Poland (Gmina to Powiat
and Powiat to Wojewodztwo). Next, a many-to-one re-
lationship between those spatial hierarchies are stored
in the table of mapping_regions. Moreover, the table of
timeperiod_types consists of the hierarchical type of the
temporal attributes.

Aggregation functions are applicable on the measures
along the temporal and spatial dimensions. For the for-
mer dimension, the weekly data are cumulative 7–day
data. For example, a 7–day case reported on 13.03.2022 is
an accumulation of the daily case for 07-13.03.2022. More-
over, for the latter dimension, county data are cumulative-
municipality data. Not only accumulating the data from
the municipality to a county level, in the presence of
mapping regions table, it is possible to accumulate the
data from the county to the state level as well as the state
to the nation level. This allows us to scale the pipeline
to other areas provided that the data of municipality are
available from the sources.

2.2. Forecasts
We employ auto regression integrated moving average
(ARIMA) and Holt’s linear trend models to forecast the
infected, test, and hospitalised data of COVID-19 for
Saxony (Germany), Czechia, and Poland. The ARIMA
model has been successfully employed in predicting other
endemic diseases [47, 48, 49, 50]. The model features
suitable prediction based on time analysis series which
is capable of providing short horizon forecast for most
COVID-19 cases around the world [38, 39, 40, 41, 42, 43].
To make the model consistent and avoid overfitting, the
order parameter of the ARIMA model is fixed instead of
using the auto ARIMA model. The ARIMA is improved
by employing the Holt’s linear trend model [51]. The
Holt’s model uses the exponential smoothing method to
compute the weighted average of the past observation
data [52]. The forecasts from the Holt’s linear model have
a trend, so the damped parameter is turned on to avoid
this trend [53, 54, 52]. A self-defined mix function is used
to compute the probability parameter m to combine the
forecasts from two models and minimize the error. The
Box-Cox transformation is used to normalize the input
data [55, 52].

Our model provides a weekly forecast at first. In order
to improve the daily variation and provide more real-
time forecasts, we have built a daily forecast model. As
the daily data have a clear weekly variation, the sea-
sonal parameters are added to the model; and seasonal
ARIMA (SARIMA) and Holt-Winters’ seasonal model are
employed for the daily forecasts [56, 51, 57]. Similar to
the ARIMA model, the seasonal ARIMA model uses the
fixed order and seasonal parameters. After comparing
the errors from multiple methods, the additive method is
selected for the Holt-Winters’ seasonal model. The mix
function is also used for the daily forecasts to combine
the forecasts from two models and improve the forecast-
ing accuracy. For study cases of (S)Arima-Holt model,
in Sec. 3.2, we will provide the number of infections for
Saxony, Germany. In addition to (S)ARIMA-Holt model,
we employ outlier detection to identify and quantify Su-
perspreading events. As suggested in [35], we identify
and quantify superspreading events by using time se-
ries analysis based outlier detection methods. The rate
of newly infected is modeled by an appropriate model,
which could be something as simple as a rolling average
to more elaborate ones as SIR-based models. The residues
of the reported cases is used to identify outliers. At the
same time, the residues can be used to quantify the size
of a superspreading event.

3. Results
The presence of the pipeline has allowed us to provide
following facilities: (i) The released data hub for dead and

66



infected cases of all counties and states in Germany [58],
which allows a collaboration between CASUS research
staffs and other external collaborators. The post-processing
data serve as the clean data of daily infected and dead
cases for county and state levels. In addition, we have
also pre-processed the vaccination and hospitalization
data for the county and municipal levels; (ii) The daily
updated value of background risk for optimisation [1]
and risk calculator apps [2], which defines the chance of
an average person who lives in the focal area, and car-
ries out daily activities, will be infected over a one week
period; (iii) Blog posts which update current COVID-19
situations in Germany. An interesting example of the
posts would be the relation between the vaccination rate
and the 7-day incidence in all states of Germany [59];
(iv) Forecast- and model-based analysis. We explore the
study cases mentioned in Sec. 1, and begin by investi-
gating of the virus spread across the national borders of
Germany, Czechia, and Poland.

3.1. Analysis of the virus spread across
the national borders

COVID-19 spread among people. Therefore, human mo-
bility is one of the most important factors defining the
trend of spatiotemporal spreading of the virus. Under-
standing human mobility allows us to predict the spa-
tiotemporal character of spread, evaluate the government
steps restrictions, and provide effective non-pharmaceutical
interventions. Primarily due to the heterogeneity of the
sources and the interest scope of the particular research
groups and communities, most of the COVID-19 research
stays within the boundaries of one country. While most
human mobility happens in the extent of one country or
region, notably in Europe, the national border’s mitigat-
ing effect is generally diminishing. To study the impact
of the national border, several research papers [60, 61] ap-
plied various methodologies of geostatistics and geospa-
tial modeling. More thorough quantification of the effect
of border presence and international mobility on the epi-
demy requires a data storage integrating heterogeneous
datasets across more countries.

The presented ODS infrastructure offers a possibility
to study the spatiotemporal character of the virus spread
on more levels, considering the effect of the national
border. First, for our case study comprising the coun-
tries of Germany, Poland, and Czechia, we explored the
correlation of new cases in the region, the distance and
the border presence. We observed that the neighbour
regions tend to have similar incidence values in the ab-
sence of barrier in the form of a national border among
them. This step followed the research of McMahon et al.
[62], which showed a strong spatial autocorrelation of
incidence values in the USA.

Further, we calculated the average time-lagged pair-

Figure 2: Difference in the pair-wise correlations for regions
within a 100 kilometer radius inside and outside the country.
The red color represents the regions with the strongest dif-
ference, indicating the spread of the virus across the national
borders.

wise correlations for each region considering the regions
in the radius of 100 kilometers, (i) within the same coun-
try, (ii) outside this country. The difference of these val-
ues can be seen in Fig. 2. The bigger difference represents
regions where the incidence correlates much better than
the regions within the same country, indicating a strong
national border effect on the virus spread.

In the next step [63], we quantified the mitigation effect
of the national border in more detail. We picked the state
of Saxony in Germany and the neighboring regions in
Czechia. For both countries, we collected and integrated
the incidence data on the level of single municipalities.
For each municipality, we constructed a local regression
model which estimated the effect of three parameters, (i)
border presence, (ii) municipality size, and (iii) temporal
distance from other municipalities, on the spread of the
virus. Based on this model, we identified very small-
scale areas susceptible to a more intensive inter-national
spread of the COVID-19.

The top-down approach we selected for the study on
the national border effect is possible thanks to the scala-
bility of the implemented dimensional-fact model. This
principle allows the ODS to comprise various adminis-
trative levels and combine various relevant topics within
the perspective of spacetime.

3.2. Weekly and daily forecast of
Arima-Holt and Sarima-Holt

For the case study, we provide a short-time forecast of 7-
day incidence up to 4 horizons performed on 13-04-2022
using Arima-Holt model for Saxony, Germany. We used
a training dataset of 13-04-2022 version which consists of
the historical weekly data of Saxony and its counties from
01-03-2020 to 10-04-2022. The weekly data are automated-
daily-updated data which are aggregated on Sunday (see
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Figure 3: 7-day incidence of infected cases Jan - 8 May 2022
for Saxony, Germany. The black dots denote the historical
data, the blue line (—) denotes a line guidance for the historical
data, and the green (—), orange (—), and red line (—) denotes
the result of forecast using the Arima-Holt model performed
on 10-04-2022, 11-04-2022, and 13-04-2022, respectively. The
grey area shows the lower and upper limits of the forecast for
13-04-2022.

Sec. 2.1). Although we update the data daily, for the
case of Germany, the current and previous-day data are
unavailable. In addition, the previous third day data are
still to be updated from the source. When the forecast was
performed on Sunday 10-04-2022, the number of infection
on that day was less than the number of the same day
for the following-day version. As a result, this produces
inaccurate forecast (see Fig. 3). As the day elapsed, more
cases were automatically added and aggregated to the last
Sunday data. Consequently, the performed forecast on
13-04-2022 provides higher exponent than the one with
the dataset version of 10 and 11-04-2022. Moreover, the
dataset of Wednesday consists of relatively-stable version.
Therefore, the forecast is performed every Wednesday
due to the consistency of data source for the last Sunday.

Figure 4: Mean absolute percentage error of Arima-Holt
(weekly), Sarima-Holt in the presence of Box-cox transfor-
mation (daily_originT), and Sarima-Holt in the absence of
Box-cox transformation (daily_originF) for 1𝑡ℎ - 4𝑡ℎ horizon.

In order to check the four-horizon forecast, we com-
pare it to the weekly-historical data updated on 11-05-
2022. The latter consists of relatively stable data from
17-04-2022 to 08-05-2022. As shown in Fig. 3, the weekly-
historical data is surprisingly in quantitative agreement
with the four-horizon forecast. However, this agreement
occurs occasionally. When the forecast is performed in

a different day, a deviation from the actual data for the
following 4 horizons is likely to occur. Additional realisa-
tions of Arima-Holt forecast in Saxony and its counties,
therefore, were performed to improve statistics. The re-
alisations were performed every Wednesday from 05-01-
2022 to 18-05-2022 in which the version-control dataset
were employed as training and test datasets. An example
would be a realisation of the Forecast on 05-01-2022. We
used the weekly data version of 05-01-2022 as its training
dataset and the weekly data version of the following 1st,
2nd, 3rd and 4th week as its test datasets. For each region,
we then recorded a deviation of the forecast result from
the historical data and quantified it as mean absolute
percentage error (MAPE). As shown in Fig. 4, the weekly
Arima-Holt provides relatively low MAPE for the first
and second horizon. For the third and fourth horizon,
however, the range of MAPE tends to be wider than the
first and second.

Therefore, we performed the Sarima-Holt model to
improve the performance of forecast for the third and
fourth horizon. Owing to daily-updated data, the version-
control of daily data is employed as the seasonal pa-
rameters. In addition to the daily data, the Sarima-Holt
forecast was performed using the same version-control
weekly data employed to the Arima-Holt model. For the
daily data, we removed the current and two previous-
day data due to zero values for current and yesterday
data, and inconsistent data for the previous third day. We
then compared its performance in the presence and the
absence of the Box-Cox transformation (BCT) used to
normalize the input data. As shown in Fig. 4, the Sarima-
Holt model in the absence of the BCT provides lower
MAPE than either the Arima-Holt or the Sarima-Holt in
the presence of the BCT for not only the first and second
horizons, but also the third and four horizons.

3.3. Superspreading events
Superspreding events play an important role in the dis-
persion dynamics of COVID-19 [64]. However, one of
the most commonly used epidemiological model types,
the compartment models, are not able to accuratly cap-
ture these events [35, 65]. We are currently working on a
solution to the problem by using outlier detection meth-
ods on a county level. Many different methods exist and
they can produce more robust results, when more than
one timeseries is taken into account. A database as pre-
sented in this work is very advantageous, as it makes it
very convenient to query the reported infections from all
neighboring counties and use this additional data to more
robustly identify outliers, which might be superspread-
ing events. The largest confirmed superspreading to date
in Germany with 1766 infections happened in a meat pro-
cessing facility in the North Rhine-Westphalian district
of Gütersloh in June 2020. The facilities’ environmental
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conditions combined with relatively close physical dis-
tance between workers were likely the main reason for
efficient aerosol transmission [66]. We take this event as
an example to show the result of a Z-score based outlier
detection method (Fig. 5).

Figure 5: The official reported COVID-19 daily incidence
per 100.000 inhabitants in the district of Gütersloh. A super-
spreading event in a meat processing plant in June 2020 is
successfully identified by an outlier detection method based
on the Z-score (the black dot).

4. Discussions
Our analysis, implementing the pipeline in the presence
of dimensional fact model has allowed us to daily mi-
grate the data efficiently due to the functions of spa-
tiotemporal aggregation. To provide the weekly data of
counties, states, and nations, we only migrate the data of
daily municipalities/counties (depends on the data avail-
ability of each nation) to the database server which are
then aggregated to the higher spatiotemporal level. This
model provides more advantages than the nanocubes
model [44, 45]. For the nanocubes model, each spatial
(municipality, county, state and nation) and temporal
(daily and weekly) data are required to be migrated to
the database server. Consequently, this leads to a longer
migration process than the one performed using the di-
mensional fact model. Moreover, its spatiotemporal map-
ping enables us to perform an efficient table join among
national data which is confirmed by the application on
the Subsec. 3.1.

The presence of daily-updated data due to the presence
of the pipeline has allowed us to develop the Sarima-Holt
model. The model shows more robust prediction for
longer horizon than the Arima-Holt one. More specifi-
cally, the Sarima-Holt in the absence of the BCT outper-
forms the Arima-Holt model for the third and fourth hori-
zon. This performance is due to the seasonal-parameter
contribution to the model. As a result, the forecast tends
to better predict for the third and fourth horizon. In con-
tradiction, the Sarima-Holt in the presence of the BCT
provides lower performance than the absence one due to
less variation of the training data after BCT (see Fig. 7).

The Sarima-Holt model is trained by the daily data, and
the variation of the data could make the model more
sensitive to the infection change compared to the Arima-
Holt model trained by the weekly data. However, the
BCT reduces the variation of the daily data, and conse-
quently the daily forecasts perform worse than in the
absence of the BCT.

5. Conclusion
Our work has demonstrated the utility of the data pipeline
for top-down spatiotemporal analysis. We have first
shown the macroscopic analysis, in which the investi-
gation of the virus spread across the national border is
presented. At more microscopic level, we have demon-
strated data-driven approach due to the presence of the
pipeline which is applied to the prevalence of the county
region. The daily-updated data has improved the preci-
sion of the model for longer horizon. This data-driven
epidemic models provide more realistic forecast results
than either the parsimonious [34] or more number of
parameters with agent-based method [27] due to the us-
age of daily-updated data. This may contribute to public
health policy making, including contributing to public
health forecasting teams. Last but not least, exploring
to lower level of region, we have demonstrated that the
outlier model is applicable to capture the superspreading
event which occurred in 2020. These have shown that
our work is capable of performing top-down analysis as
well as rapid and precise forecasts due to the presence of
the pipeline.

6. Data sources
• COVID-19 data for Germany, Czechia and Poland.

– Robert Koch Institute
– Czech Ministry of Health
– Polish Ministry of Health
– Age-based hospitalisation of state level for

Germany (https://github.com/KITmetricsl
ab/hospitalization-nowcast-hub/blob/ma
in/data-truth/COVID-19/).

– Age-based and type-based doses of vaccine
for county level (https://github.com/rober
t-koch-institut/COVID-19-Impfungen_i
n_Deutschland/blob/master/Aktuell_De
utschland_Landkreise_COVID-19-Impfu
ngen.csv).

– COVID-19 infected, recovered, hospitalised
and dead cases of Dresden (http://daten.dr
esden.de/duva2ckan/files/de-sn-dresden
-corona_-_covid-19_-_fallzahlen_md1_d
resden_2020ff/content).
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– COVID-19 infected, dead, and test cases
of Czechia for Municipality level (https:
//onemocneni-aktualne.mzcr.cz/api/v2/c
ovid-19/).

– Age-based and gender-based infected and
dead cases for county level of Germany
(https://experience.arcgis.com/experience
/478220a4c454480e823b17327b2bf1d4).

– COVID-19 cases for municipality level of
Saxony, Germany (https://www.coronavi
rus.sachsen.de/corona-statistics/rest/inf
ectionOverview.jsp).

– COVID-19 cases for county level of Saxony,
Germany (https://media.githubuserconten
t.com/media/robert-koch-institut/SARS
-CoV-2_Infektionen_in_Deutschland/ma
ster/Aktuell_Deutschland_SarsCov2_Infe
ktionen.csv)

– COVID-19 infected, dead, and test cases
for county level of Poland (https://wojewo
dztwa-rcb-gis.hub.arcgis.com/pages/dane
-do-pobrania).

– COVID-19 vaccine for county level of Poland
(https://www.gov.pl/web/szczepimysie/ra
port-szczepien-przeciwko-covid-19).

– COVID-19 types in Sachsen (https://www.
coronavirus.sachsen.de/infektionsfaelle-i
n-sachsen-4151.html).

• Dictionaries of regions.

– Administrative areas in Germany (https:
//gdz.bkg.bund.de/index.php/default/digi
tale-geodaten/verwaltungsgebiete.html).

– Administrative areas in Poland (https://gi
s-support.pl/baza-wiedzy-2/dane-do-pob
rania/granice-administracyjne/)

– Administrative areas in Czechia (https://ge
oportal.cuzk.cz/(S(1nhx02lray0vkrhce1y2
d53d))/Default.aspx?mode=TextMeta&te
xt=dSady_RUIAN&side=dSady_RUIAN)

– Population numbers in Czech municipali-
ties (https://www.czso.cz/csu/czso/pocet
-obyvatel-v-obcich-k-112021)

– Postal codes in Germany (https://www.ge
onames.org/postal-codes/postleitzahle
n-deutschland.html)

– Population numbers in Poland (https://st
at.gov.pl/obszary-tematyczne/ludnosc/lu
dnosc/ludnosc-stan-i-struktura-ludnosc
i-oraz-ruch-naturalny-w-przekroju-teryt
orialnym-stan-w-dniu-30-06-2021,6,30.h
tml)

7. Supplementary information

7.1. Data workflow
We use https://www.talend.com/products/talend-open-
studio/ to perform data migration. The migration be-
tween the data sources and the PostgreSQL database of
CASUS HZDR has been performed as follows:

Figure 6: Data workflow of the ETL process (see texts for its
description).

1. Data acquisition
The data are automatically downloaded from sources 6.
They are subsequently stored on the repository
of where2test server. The downloaded data serve
as data inputs of a migration process.

2. Dictionaries and data augmentation
To integrate and further augment data from het-
erogeneous sources (various forms, schema, tem-
poral and spatial extent), we needed to prepare
a list of dictionaries. We formed a dictionary for
each spatial level in every country to cover all
regions in our datasets. Here we included the
unique region id, all alternative names, full names,
geometries, and population numbers. This con-
cept can be further extended to other values such
as socioeconomical parameters, and information
about the region. This way we are able to main-
tain the consistency in all datasets and enable
their integration process. The list of sources used
for building the dictionaries can be found in sec-
tion Data Sources 6.

3. Data cleaning
We migrate first timeperiod_types, region_types,
datavalues_types, and mapping_types. While
migrating the data to those tables, primary key
are automatically set by a transformator (The
script which migrates the data to the postgreSQL
database.). Next, the primary key of those tables
serves as the foreign key of other tables following
the table relation shown in Fig. 1b. An example
would be a table of regions which contains intrin-
sic ID set by representative governments. In order
to differentiate ID among Germany, Czechia and

70



Poland, we add ’DE’, ’CZ’, ’PL’, respectively, fol-
lowed by the intrinsic ID. For the table of regions,
the primary key of region_types serves as its
foreign key. The intrinsic IDs are categorised
based on the ID of region types. A specific ex-
ample would be Dresden, whose the intrinsic ID
14162. After cleaning processes, the intrinsic ID
will be DE 14162 and categorised to the state level
of Kreise.
Having migrated the data to the aforementioned
tables, the table of mapping_regions is occu-
pied by the spatial-relation data. It contains the
foreign key of the mapping type ID. An example
would be a county Dresden. Dresden are mapped
onto the state of Saxony and categorized to the
mapping type Kreis_To_Bundesland. Next, the
table of datavalues for nations is occupied by the
data input. The datavalues table consists of three
foreign keys which originate from the tables of
timeperiod_types, regions, datavalues_types.
In the presence of these foreign keys, a data merg-
ing process is feasible, which is described on the
following item.

4. Data merging In addition to the aforementioned
three-foreign keys, date is set as the fourth at-
tribute which allow us to perform data merging
through inner join of tables. The inner join is
employed to cleanly merge and avoid duplicated
data on the table of datavalues. For instance, daily
infected data of the lowest-level region for pe-
riod of date are migrated to the table of dataval-
ues_germany. When the data sources are up-
dated, they sometimes update the cases of the
elapsed date. Inner join method allows us to au-
tomatically update the value of the elapsed date
by the latest value. Moreover, when the new data
with the latest date are present from the source, it
allows automatic addition of the data to the table.

5. Data aggregation The presence of daily data of
the lowest regions allow us to perform both time
and spatial aggregations. Using functions, the
time aggregation from daily to weekly period is
feasible. Moreover, as mentioned on the Sec. 2,
the spatial aggregation from the low to the high
region level is allowable in the presence of the
mapping_regions table.

7.2. Additional forecasting results
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