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Abstract
In the present paper, we present a preliminary and ongoing work concerning the problem of generating
a suitable diagnostic report from radiology (x-ray) images. The task is tackled with a contrastive learning
approach, where radiology images and textual reports are embedded in a common space, with the goal
of getting similar (close in space) embeddings between a given image and the corresponding report.
Once the embeddings for an image and the corresponding textual report are generated (through suitable
fine-tuned models), we propose to feed them to a contrastive learning engine in such a way that image
and textual embeddings are pushed close in the embedding space if image and text are related, while they
are moved away otherwise. Preliminary analysis shows promising results in terms of effectiveness of the
contrastive learning approach, but also suggest relevant issues to be investigated such as the importance
of context and the role of suitable encoder/decoder modules to properly deal with the textual generation.
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1. Introduction

Healthcare data are intrinsically multimodal [1]; for each patient, clinicians collect different
types of information stored and, in the most of the cases, structured in a way we can directly
use them in a machine learning task. For instance, the data generated by the triage procedures
provide the most general information about patients (e.g. age, gender, blood pressure, etc.). In
addition, more detailed information is collected from specific tests and exams (e.g. x-ray images,
blood exam, etc.). This information is usually completed with written reports containing the
conclusions drawn by the physicians.

These kinds of data are provided through different modalities: structured information such
as EHR, time-series data as in ECGs, images in case of x-rays, CATs or PETs, and free text in
case of diagnostic reports. Consequently, the interest in jointly exploiting different modalities
for machine learning tasks in healthcare applications have been growing in the last years
[2, 3], due to both the recognition of the superiority of multimodal learning when different
modalities are available [4] and to the advancement of several techniques able to combine,
in a common space, the embeddings obtained from the different modalities (e.g. images and
text) [5, 6, 7]. In particular, the latest research focuses on two main categories of approaches
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which are currently explored: attention-based approaches, where attention or self-attention
mechanisms are exploited to relate images and text fragments [8, 9] and contrastive learning
approaches [10, 6, 11].

The attention-based approach is usually adopted in image-text matching problems related to
multimodal retrieval [12, 13] while, in the context of a task concerning text generation from
images (e.g., image captioning), we claim that a contrastive approach should be more natural.
In the present paper, we present a preliminary and ongoing work concerning the problem
of generating a suitable diagnostic report from radiology images. The task is tackled with a
contrastive learning approach, where radiology images and textual reports are embedded in a
common space, with the goal of getting similar (close in space) embeddings between a given
image and the corresponding report.

The general idea is to adopt a contrastive loss in such a way that, given a pair <image, text>,
the corresponding embeddings are pushed close in the embedding space if image and text are
related, while they are pushed away otherwise. Next sections will outlined the approach and
report some preliminary results.

2. Contrastive Learning

Contrastive Learning (CL) is a machine learning methodology where unlabeled sample data
are compared against each other, in order to teach a model which points are similar and which
are different. One of the most prominent application of this paradigm is the siamese network
model [14], where a pair of convolutional neural nets (CNN) are trained in order to learn a
proper similarity function for pair of images (e.g., in order to recognize a person in a database
of pictures of different people). Samples belonging to the same distribution are pushed towards
each other in the embedding space. In contrast, those belonging to different distributions are
moved away from each other.

In a CL setting, a way to obtain the desired goal is to train the model with the so called
contrastive loss. Suppose that 𝐺𝑊 is a parametric function (with set of parameters 𝑊 ) to be
learned. Let 𝑋1, 𝑋2 be two input points, 𝐷𝑊 (𝑋1, 𝑋2) a distance function (to be learned)
between input points, and 𝑦 ∈ {0, 1} a binary label such that 𝑦 = 0 if 𝑋1, 𝑋2 are deemed
similar and 𝑦 = 1 otherwise. Following LeCunn’s original formulation [15], eq 1 shows the
formula of the loss where: (𝑦,𝑋1, 𝑋2)

𝑖 is the 𝑖-th labeled sample pair, 𝑃 is the number of
training pairs, and 𝑚 > 0 is the so-called margin.
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For similar points (𝑦 = 0), the loss is given by their distance; on the contrary when two points
are dissimilar (𝑦 = 1) they contribute to the loss function only if their distance is within the
margin 𝑚. The main rational behind formula 1 is that we want to bring closer similar items,
and move away, in the embedding space, dissimilar items. The margin hyperparameter avoids
pushing away items that are already far enough.



Figure 1: Learning Architecture

In the present work, contrastive loss is used in a multimodal fashion. As mentioned above,
we consider the problem of generating suitable (diagnostic) reports associated with a radiology
image; in this preliminary work we just consider simple x-ray images. The general idea is the
following:

• produce an image embedding using a suitable CNN with the x-ray image as input;
• produce a text embedding using a suitable deep encoder with a free text diagnostic report

as input;
• learn a combined embedding model trained by means of contrastive loss, using as similar

pairs x-ray images and their corresponding reports, and as dissimilar pairs x-ray images
and unrelated reports

Next section will outline the proposed architecture.

3. Proposed Architecture

The learning part of the architecture we are proposing (for the training phase) is summarized
in figure 1. Following the general scheme introduced in the previous section, to produce x-ray
embeddings we adopted a particular CNN with the goal of extracting the most important
hidden features of an x-ray image; in particular we considered a pretrained version of CheXNet,
a 121-layer CNN trained on ChestX-ray14, one of the largest publicly available chest X-ray
dataset [16]. We then stacked a simple fully-connected neural net (FCNN) to generate the
embedding. The structure of such FCNN is reported in figure 2. Concerning text embeddings,
we used HuggingFace’s Encoder/Decoder model [17] pretrained on a bert2Bert task [18], and in
particular the Encoder model for textual embedding generation.

Once all the embeddings are obtained, we standardize them to avoid big differences in value
scale, and we generate a specific training set for the contrastive learning task (see next section).
During this step, CheXNet’s parameters are fine-tuned, while we freeze the EncoderDecoder’s



Figure 2: FCNN for x-ray embedding generation

Figure 3: Report Generation Architecture

parameters; the aim is to map images’ embedding in the textual embedding space, so we can
exploit the decoder part to generate images related reports. Figure 3 shows the report generation
part of the architecture. For generating the report of a given x-ray image, we submit the latter
to the fine-tuned version of the CheXNet+FCNN to generate the suitable embedding that we
assume to be close to the text corresponding to the diagnostic report. The embedding is then
fed to the decoder and the corresponding report is finally generated.

4. Experiments and preliminary results

To perform an experimental analysis of the approach, we considered a public dataset available
through the Open-i service of the National Library of Medicine, National Institutes of Health,
(Bethesda, MD, USA), and containing coupled elements of x-ray images and reports [19]. Images
in the dataset are grayscale DICOM images; a preprocessing step has been performed in
order to assure that every image is of the same size. We also perfomed image normalization.
Associated diagnostic reports are stored as XML files which contain different information; in
this work we are interested in the findings part of the report, a free text information representing
the diagnostic findings obtained by the radiologist after the inspection of the image. More
than one image can be associated with a given report; for the aim of this work we consider
them as independent images with the same diagnostic report. Figure 4 shows the histograms
correspoding to the number of reports with a given number of associated images. We can notice



Figure 4: Images associated to reports

that the majority of the reports have two associated images, that are front X-ray and lateral
X-ray. Some reports have no images associated, and we discarded them. We also discard images
having an empty findings part in the corresponding report. We finally performed further sanity
checks and text normalization, finally resulting in 3851 items represented as pairs <x-ray_image,
finding_text>. We performed the embedding generation of every image and text in each item
using the architecture of figure 1, and in particular the part upstream of the contrastive engine.
We get 3851 pairs <x-ray_embedding, finding_embedding >; we split this dataset of embedding
pairs into 80% for training and 20% for test. The training set has been used as input of the
contrastive engine of figure 1 for the fine tuning of the model. Early stopping has been used to
stop training, with a final validation loss of about 2𝑒−07.

The experimental analysis on the test set has been used to check the following issues:

• Embeddings quality
• Generated text quality

Concerning embedding quality we measured the the distance between the generated report



embedding, and the original ones. In particular, given an x-ray image, we use the architecture
of figure 3 to generate the corresponding predicted report; we then compared the predicted
report with the original one by measuring the L2 distance between the embeddings. Table 1
reports the average normalized distance obtained on the test set, as well as some confidence
intervals on such value The average quality of the embeddings is then quite promising, even if

AVG Distance Std_dev 95% CI 99% CI

0.21045 0.13991 0.21045 ± 0.00988 0.21045 ± 0.013

Table 1
Embedding distances on test set

not completely satisfactory. We think that more effort should be devoted to the exploitation of
multiple images associated to a given report, without considering them as independent.

Concerning the quality of generated reports, we found some problems with particular words
that can be generated out of context, because of embedding values close to the ones of more
suitable (in terms of context) words. This issue can be addressed in the encoder training which
is based on BERT: BERT is trained on a corpus of general purpose text, and not in a specific
field (e.g., radiology), thus our guess is that more specific contextual information should be
provided. We plan to investigate more on this issue and by trying different approaches such as:

• Inserting prior knowledge
• Using another Encoder/Decoder architecture, specific for the Medical field (e.g., MedBert

[20]).

5. Conclusions

We have presented a proposal for a multimodal learning architecture focusing on a contrastive
learning approach to the automated generation of radiology reports from x-ray images. The
work is very preliminary and the results obtained so far have evidenced some issues to focus on
for future works, among which the exploitation of multiple images for the same report, the use of
contextual knowledge in the textual encoder/decoder and the room for alternative architectural
modules. In particular, we think that a closer comparison with the CLIP architecture [6], a
multimodal architecture that shares several aspects with the issues discussed in the present
work, will be really beneficial for instantiating these ideas in the specific task of diagnostic
report generation from radiology images.
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