
Modeling Complex Structures in
Graph-FCA: Illustration on Natural Language Syntax
Sébastien Ferré1,∗, Peggy Cellier1

1Univ Rennes, INSA, CNRS, IRISA. Campus de Beaulieu, 35042 Rennes, France

Abstract
Graph-FCA is an extension of formal concept analysis for multi-relational data. In this paper, we discuss
the freedom of representation offered by Graph-FCA, in particular by its support of n-ary relations,
considering natural language syntax as a use case.

Keywords
Graph-FCA, Complex Data, Data Modeling, N-ary Relation

1. Introduction

Several extensions of formal concept analysis have been proposed to handle multi-relational data,
such as Relational Concept Analysis (RCA) [7] and Graph-FCA [4]. Graph-FCA adopts a graph
view of multi-relational data, seeing entities as nodes and relationships as directed edges between
nodes. Graph-FCA concept intents are therefore characterized and visualized as graph patterns.
Graph-FCA is the formal basis of concepts of neighbors, which have been applied to similarity
search in knowledge graphs [3], knowledge graph completion [5], and relation extraction [1].
A distinctive feature of Graph-FCA is to uniformly represent entity attributes, relations and

n-ary relations (𝑛 > 2) through the notion of hyper-edge, whereas RCA differentiates between
attributes and binary relations. N-ary relations offer a lot of freedom in the representation of
complex structures: e.g., a ternary relation can be represented directly by one ternary relation
or decomposed into three binary relations, whereas RCA has only the latter option [6].

Theobjectiveof thispaper is todemonstrateanddiscuss this freedomof representation inGraph-
FCA. At the same time, the input and output format of the Graph-FCA tool is explained through
concrete examples. As a use case, we have chosen to analyze syntactic descriptions of English
sentences with the goal to discover common syntactic patterns. Such descriptions are complex
because they combine: tokens, words, part-of-speech (POS) tags, parse trees, and the relative posi-
tionof tokens andphrases. An important lesson learned is that a naive representationof structures
may lead to uninteresting patterns, and that n-ary relations are useful to alleviate the problem.

Published in Pablo Cordero, Ondrej Kridlo (Eds.): The 16𝑡ℎ International Conference on Concept Lattices and Their
Applications, CLA 2022, Tallinn, Estonia, June 20–22, 2022, Proceedings, pp. 225–230.
∗Corresponding author.
Envelope-Open ferre@irisa.fr (S. Ferré); peggy.cellier@irisa.fr (P. Cellier)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEURWorkshop Proceedings (CEUR-WS.org)

mailto:ferre@irisa.fr
mailto:peggy.cellier@irisa.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2. Graph-FCA Theory

Graph-FCA defines a graph context as an incidence relation between tuples of objects and
attributes. A graph context is a triple 𝐾 = (𝑂,𝐴,𝐼 ), where 𝑂 is a set of objects (the nodes), 𝐴 is
a set of attributes (the hyper-edge labels), and 𝐼 ⊆𝑂∗×𝐴 is an incidence relation (the hyper-edges).
An hyper-edge ((𝑜1,…,𝑜𝑘),𝑎) ∈ 𝐼 can be seen as the logical atom 𝑎(𝑜1,…,𝑜𝑘) where attribute 𝑎 is
used as a predicate with arity 𝑘 (we use the atom notation for readability). Unary attributes (𝑘 =1)
are used to label nodes while binary attributes (𝑘 =2) are used to label edges.

In a graph concept, the extent is a set of 𝑛-tuples of objects, and the intent expresses what those
𝑛-tuples of objects have in common, where 𝑛 is the arity of the concept. Unary concepts (𝑛=1)
are about sets of objects, while other concepts (𝑛>1) are about relationships between objects. A
concept intent is a graph patternwith 𝑛 distinguished nodes, called a ProjectedGraph Pattern (PGP),
and it can be seen as conjunctive query. For example, the PGP [(𝑥,𝑦)←𝑝𝑎𝑟𝑒𝑛𝑡(𝑥,𝑧),𝑝𝑎𝑟𝑒𝑛𝑡(𝑦 ,𝑧)]
has three nodes 𝑥,𝑦 ,𝑧, two edges 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥,𝑧) and 𝑝𝑎𝑟𝑒𝑛𝑡(𝑦 ,𝑧), and two distinguished nodes 𝑥,𝑦.
It can be used as a definition of the ”sibling” relationship, i.e. the fact that 𝑥 and 𝑦 have a common
parent 𝑧. A core concept is a concept whose graph pattern cannot be “simplified”, i.e. is not
homomorphic to a smaller graph pattern. Unlike RCA, there is a concept lattice for each concept
arity rather than for each object type. Classical FCA is a special case of Graph-FCAwhere 𝑘 =1
(only unary attributes) and 𝑛=1 (only unary concepts).

3. Graph-FCA Implementation

AGraph-FCA tool, called gfca, is available as a web application, a web service and a source code
(visit https://bitbucket.org/sebferre/graph-fca/). It is implemented in about 3000 lines of OCaml,
and a general presentation is given in [4]. A reference manual details the command line options,
the input format, and the different output formats. The input format is inspired by 𝜆Prolog [2],
an extension of Prolog to 𝜆-terms that uses a currified notation for logical atoms. For example,
the atom 𝑐𝑎𝑝𝑖𝑡𝑎𝑙(𝐹 𝑟𝑎𝑛𝑐𝑒,𝑃𝑎𝑟 𝑖𝑠) is noted capital France Paris. More in general, an hyper-edge
𝑎(𝑜1,…,𝑜𝑘) is noted 𝑎 𝑜1 … 𝑜𝑘. The input format offers a system of macros (attribute definitions)
and syntactic sugar to allow for more concise notations of graph contexts.
The tool can output graph concepts (and optionally the graph context) in a textual format

close to the input format (option -txt), and/or in JSON (option -json), and/or a graphical format
using DOT and SVG (option -dot). Examples are shown below. There are several options to
control the display of concepts: e.g., -only-cores to only show core concepts; -ext to label
each unary concept by its extent (as a list of objects); -minsupp to only show the concepts with
minsupp objects in their extent.

4. Use Case: Modeling Complex Syntactic Structures

Syntactic structures offer an interesting use case for demonstrating and discussing the
representation of complex structures in Graph-FCA. To make the following illustrations fit in
the paper, we consider a small context made of only two short sentences: (1) “a black cat sits on
a mat”, and (2) “a dog barks at the red car”. To obtain syntactic information about those sentences,

https://bitbucket.org/sebferre/graph-fca/


Figure 1: Dependency/constituency tree of sentence “a black cat sits on a mat” (CoreNLP).

we apply CoreNLP (https://corenlp.run/) to each of them. Figure 1 shows the two different parse
trees returned by CoreNLP: the dependency tree that labels tokens with POS tags and links them
with dependencies; and the constituency tree that aggregates tokens into phrases, and recursively
phrases into larger phrases.

4.1. Labelled Directed Graphs

:-
X1 : [a, DT],
X2 : [black, JJ],
X3 : [cat, NN, det X1, amod X2],
X4 : [sits, VBZ, nsubj X3, obl X7],
X5 : [on, IN],
X6 : [a, DT],
X7 : [mat, NN, case X5, det X6].

Figure 2: Representation of the dependency tree of sentence “a black cat sits on a mat”, in graphical
notation (left) and in textual notation (right).

The dependency tree of a sentence is mathematically a labelled directed graph, with tokens as
nodes and dependencies as edges. Each node is labelled by a word (e.g., “cat”) and a POS tag (e.g.,
NN), and each edge is labelled by a dependency type (e.g., nsubj). A dependency tree therefore
admits an immediate representation as a graph context, with tokens as objects, words and POS
tags as unary attributes, and dependency types as binary attributes. Figure 2 (left) shows the
graphical notation of the first sentence in the gfca tool. Each box represents an object, with its
identifier at the top (e.g., X4, the 4th token), and its unary attributes at the bottom (e.g., sits, VBZ).
In gfca’s input format, the first sentence can be written as follows, as a set of edges: sits

X4, VBZ X4, nsubj X4 X3, cat X3, NN X3, det X3 X1…To enable a more compact notation, the
input format offers some syntactic sugar. Figure 2 (right) shows an object-centric notation, as an

https://corenlp.run/


Figure 3: Graph concepts of the dependency trees (minsupp=2).

alternative to the default edge-centric notation. Each line describes an object by listing all edges
starting at it. For instance, the set of edges cat X3, NN X3, det X3 X1, amod X3 X2 is compacted
into X3 : [cat, NN, det X1, amod X2] by factorizing on the first argument X3.
Figure 3 shows the 4 distinct graph patterns of concept intents. Several concepts may share

the same pattern, only differing by the distinguished nodes. Here, as in the rest of this paper,
we applied the options -only-cores -dot -minsupp 2 to get the graphical representation of
core patterns that occur at least twice. The 4 graph patterns can be read as follows: (Q1) a noun
(NN) with the specific determiner ’a’; (Q2) a noun with a determiner (det, DT); (Q3) a noun with
a determiner and an adjective modifier (amod, JJ); (Q4) a verb (VBZ) with, as a subject (nsubj),
a noun with determiner ’a’, and as an oblique complement (obl), a noun with a preposition (case,
IN) and a determiner. Q4 abstracts over the two sentences, showing what they have in common.
Q2 abstracts over all noun phrases, showing that all nouns have a determiner. Q1 and Q3 are
specializations of Q2, respectively with a specific determiner and an adjective.

4.2. Rooted Trees

The constituency tree ismathematically a rooted tree. It can be seen as a directed graphwith edges
from each phrase to its constituents. Compared to the dependency tree, the nodes represent not
only tokens but also phrases, and there is only one type of edge that represents a part-of hierarchy
over the nodes. The nodes are labelledwithwords and phrase types (e.g., S,NP). In ourGraph-FCA
representation, we choose to merge the atomic phrases and the tokens, and we introduce a binary
attribute part as an edge label. Figure 4 (left) shows the graphical notation for the first sentence
(X𝑖-𝑗 denotes the phrase spanning from token X𝑖 to X𝑗). Figure 5 shows the 7 found graph patterns,
among which patterns Q3, Q4, Q6 and Q7 respectively correspond to the four patterns found on
the dependency trees. The three other patterns have no other attribute than part. They only
reflect the structural shape of trees, and do not bring information on English syntax.
In order to avoid uninteresting patterns, all attributes should be meaningful for the domain.

It is therefore desirable to eliminate the part attribute, while retaining the tree structure. We
observe that, whenever there is an edge (part 𝑃𝑎𝑟𝑒𝑛𝑡 𝐶ℎ𝑖𝑙𝑑), e.g., part X1-7 X4-7, there is also
a unique edge (𝜎 𝐶ℎ𝑖𝑙𝑑) where 𝜎 is a phrase type, e.g., VP X4-7. A solution is therefore to merge
the two edges into a domain-specific edge (𝜎 𝑃𝑎𝑟𝑒𝑛𝑡 𝐶ℎ𝑖𝑙𝑑), e.g. VP X1-7 X4-7. Each unary
attribute 𝜎 is therefore lifted into a binary attribute that encodes for both the tree structure and



Figure 4: Representation of the constituency tree of the sentence “a black cat sits on a mat”, with the
part attribute (left) and without (right).

Figure 5: Graph concepts of the constituency trees (with the part attribute).

the phrase type. Figure 4 (right) shows the new representation for the first sentence. Note that
phrase types now appear as edge labels because they are now binary attributes. It can be verified
that only the four interesting graph patterns are now found (omitted for lack of space).

4.3. Constituency Trees: Handling Relative Positions

As one can see in the above figures, the previous representations adequately handle the part-of
aspect of constituency trees but not the relative positions of phrases, which is a key aspect of
syntax in general. For instance, in a noun phrase, the determiner comes first, not at an arbitrary
position, and the adjective comes before the noun. An effective way to handle relative positions
and ordering is to describe each phrase by its starting and ending position. In Graph-FCA terms,
we introduce new objects for the offset positions (I0..I7 for the first sentence), and two new
binary attributes start and end for linking phrases to their start/end positions. Position I𝑘 is



the position right after the 𝑘th token. For instance, the new edges for X1-3 are start X1-3 I0

and end X1-3 I3. However, like with part, the start and end attributes are purely structural,
and lead to uninteresting patterns saying that phrases end where other phrases start and the
like. We can eliminate them by observing that edges (start 𝑋 𝐼𝑠) and (end 𝑋 𝐼𝑒) come with one
and only one edge (𝜎 𝑋 ′ 𝑋). We can therefore merge them into a single quaternary edge (𝜎 𝑋 ′

𝐼𝑠 𝑋 𝐼𝑒) that expresses at the same time the phrase type, the tree structure, and the position in the
sentence. For instance, the description X1-7 : [NP I0 X1-3 I3, VP I3 X4-7 I7] says that phrase
X1-7 is composed by a NP from position 0 to 3, followed by a VP from position 3 to 7.

From there, we obtain the same four patterns, except that we now have additional information
about the relative position of constituents. The patterns show that all noun phrases start with
a determiner, and end with a noun. In some pattern, the determiner and the noun are adjacent
while in another pattern, there is a gap between the two.

To conclude, we note that the elimination of structural attributes implies an increase of the
arity of domain-specific attributes. In our example, the arity of phrase types goes from unary
to binary when eliminating part, and then to quaternary when eliminating start and end.
The ability of Graph-FCA to handle n-ary edges/attributes is here a key feature. Without them,
one would be forced to keep the structural attributes, and this would result in possibly many
uninteresting concepts and patterns.

Acknowledgments

This research is supported by ANR project SmartFCA (ANR-21-CE23-0023).

References

[1] Ayats, H., Cellier, P., Ferré, S.: Extracting relations in texts with concepts of neighbours. In:
Formal Concept Analysis. pp. 155–171. LNCS 12733, Springer (2021)

[2] Belleannée, C., Brisset, P., Ridoux, O.: A pragmatic reconstruction of 𝜆prolog. The Journal
of Logic Programming 41, 67–102 (1999)

[3] Ferré, S.: Answers partitioning and lazy joins for efficient query relaxation and application
to similarity search. In: Gangemi, A., et al. (eds.) The Semantic Web (ESWC). pp. 209–224.
LNCS 10843, Springer (2018)

[4] Ferré, S., Cellier, P.: Graph-FCA: An extension of formal concept analysis to knowledge
graphs. Discrete Applied Mathematics 273, 81–102 (2019)

[5] Ferré, S.: Application of concepts of neighbours to knowledge graph completion. Data
Science: Methods, Infrastructure, and Applications 4, 1–28 (2021)

[6] Keip, P., Ferré, S., Gutierrez, A., Huchard, M., Silvie, P., Martin, P.: Practical comparison of
FCA extensions to model indeterminate value of ternary data. In: Concept Lattices and their
Applications (CLA). vol. CEUR 2668, pp. 197–208 (2020)

[7] Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis:
mining concept lattices from multi-relational data. Annals of Mathematics and Artificial
Intelligence 67(1), 81–108 (2013)


	1 Introduction
	2 Graph-FCA Theory
	3 Graph-FCA Implementation
	4 Use Case: Modeling Complex Syntactic Structures
	4.1 Labelled Directed Graphs
	4.2 Rooted Trees
	4.3 Constituency Trees: Handling Relative Positions


