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Abstract  
The article deals with the qualitative and quantitative comparative analysis of the results of 

numerical modeling of mathematical models of cyber-physical biosensor systems on 

rectangular and hexagonal lattices using lattice differential equations. The main focus is on the 

mathematical description of the discrete population dynamics and the dynamic logic of the 

studied models. The lattice differential equations with delay are proposed to simulate antigen-

antibody interaction within rectangular and hexagonal biopixels. Appropriate spatial operators 

have been used to model the interaction between biopixels similar to the phenomenon of 

diffusion. The paper presents the results of numerical simulations in the form of phase plane 

images and lattice images of the probability of antigen to antibody binding in the biopixels of 

cyber-physical biosensor systems for antibody populations relative to antigen populations. The 

obtained experimental results make it possible to carry out a qualitative and quantitative 

comparative analysis of the stability of mathematical models of cyber-physical immunosensory 

systems on hexagonal and rectangular lattices using lattice differential equations. It is 

concluded that at a constant delay [0, 0.25) value for the model on the hexagonal lattice and [0, 

0.22) when using a rectangular lattice, respectively, the solutions of the mathematical models 

studied tend to non-identical endemic states, which in this case are stable foci. The results of 

the phase diagrams of antigen populations, antibodies and lattice images of the likelihood of 

antigen binding to antibodies in the biopixels of cyber-physical biosensor systems conclude 

that at a constant delay value 0.25 (in the case of a hexagonal lattice) and 0.23 (in the case of a 

rectangular lattice), Hopf bifurcation occurs and all subsequent trajectories correspond to stable 

boundary cycles for all pixels. The obtained experimental results make it possible to perform a 

qualitative and quantitative comparative analysis of the stability of mathematical models of 

cyber-physical biosensor systems on hexagonal and rectangular lattices using lattice 

differential equations. 
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1. Introduction 

Problem statement. Nowadays, the concept of creating cyber-physical systems (CPS) for various 

spheres of technology interaction with human activity is actively developing. CPS are considered as 

intelligent systems, in which external devices, processors, physical objects, network equipment are 

integrated. The main purpose of CPS creation is to monitor the behavior of physical objects as 

components of such systems in real time. These are systems in which cybernetic means (measuring, 

computing, control, executive, communication) interact with physical processes in arbitrary objects [1]. 

Analysis of known research results. Cyber-physics of the system are identified with the manifestation 

of the fourth industrial revolution that is taking place in the modern world [2]. Thus, there is also the 
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physical possibility of using Internet of Things (IoT) technologies where signals from sensors and 

measuring instruments need to be used. Thus, more publications are emerging in the literature [3], which 

attract attention to modern concepts and offer new innovative solutions. A. Plattser proposed an 

approach based on «dynamic logic», where cyber-physical systems are described and analyzed [4], [5]. 

In these works, there are hybrid programs (HP) in a simple programming language with simple 

semantics. HP allow the programmer to access directly the real values of variables representing real 

values and determine their dynamics. 

A model of an immunosensor is proposed based on a system of differential equations with time delay 

on a hexagonal lattice. The presented main result consists of conditions of local asymptotic stability of 

an endemic state. To obtain this result, the method of Lyapunov functionals is used. It combines the 

general approach to constructing Lyapunov functionals for predator-prey models and differential 

equations with time delay on a hexagonal lattice. A numerical example shows the influence of time 

delays on stability, namely, the transition from a stable focus to a limit cycle through a Hopf bifurcation 

occurs [6]. In the work [7] it is considered the delayed antibody-antigen competition model for two-

dimensional array of biopixels. Stability research uses approach of Lyapunov functions [8-10]. 

Numerical simulations are used in order to investigate qualitative behavior when changing the value of 

time delay and diffusion. It was shown that when increasing the value of time delay, we transit from 

steady state through Hopf bifurcation, increasing period and finally to chaotic behavior. The increase of 

diffusion causes an appearance of chaotic solutions also [11-12]. 

The goal of the work. Perform qualitative and quantitative comparative analysis of results of 

numerical modeling of mathematical models of cyber-physical biosensory systems on rectangular and 

hexagonal lattice using lattice differential equations. The investigated models have the capabilities to 

control and calculate signals of object control in various branches of the national economy, in particular 

in medicine and fully reveal their potential in the development of cyber-physical biosensor systems. 

Setting objectives. When analyzing the results of numerical modeling of mathematical models of 

cyber-physical biosensory systems on a rectangular and hexagonal lattice using lattice differential 

equations, it is necessary to take into account spatial-temporal properties of devices in which they are 

used. With respect to spatial organization, the models examined should be based on certain discrete 

structures, which will take into account the interaction of biosensor pixels. In continuous space, models 

must describe processes known as population dynamics. That is why the problem is the analysis of the 

results of numerical modeling of mathematical models of cyber-physical biosensory systems on a 

rectangular and hexagonal lattice using lattice differential equations. 

Results of the research. With the increasing pace of life and the need for more accurate methods of 

monitoring different parameters, interest in biosensors is growing in science and industry. Biosensors 

are alternatives to known measurement methods characterized by poor selectivity, high cost, poor 

stability, slow response and can often only be performed by highly trained personnel. This is a new 

generation of sensors that use a biological material in the design that provides very high selectivity and 

allows fast and simple measurements [13].   

Cellular biosensors can be used to quantify body infection by certain electrochemical or optical 

phenomena [14]. describes a cell biosensor that uses electrochemical impedance spectroscopy. This 

biosensor is designed to count human CD4 + cells. The probing region of this biosensor includes 

electrode pixels, each of which is compared to the size of the CD4 + cell that is entangled by the 

electrode pixels. They find themselves by observing informative changes per pixel. The «On» or «Off» 

state of the electrode pixel indicates that one CD4 + cell is detected. Thus, in order to calculate the CD4 

+ cells, it is necessary to sum the electrode pixels in the «On» state.  

This general approach to quantitative cell detection is used to model imunosensornea of a system 

that is based on the phenomenon of fluorescence. Immunosensor [15] is a subgroup of biosensors in 

which an immunochemical reaction is associated with a transducer. The principle of operation of all 

immunosensors is specific molecular recognition of antigens by antibodies to form a stable complex. 

2. Cyber-physical biosensor system (CPBSS) 

The definition of the term «Cyber-Physical Sensor System (CPSS)» is given in [16]. This definition 

was introduced for industrial applications of sensors. The common definition of CPSS provides for «a 



higher degree of combination, distribution of the system, use of built-in systems in the field of 

automation and compliance with existing standards». The approach was used to characterize CPBSS 

(see Fig. 1), which allows to perform its numerical simulation. 

According to [16], definitions and schemes for the CPBSS are used to define the CPBSS. CPBSS 

converts physically measured immunological indicators into digital information, which allows to carry 

out signal processing in time using certain algorithms. Also interact with your internal data, own 

capabilities, requirements, and internal tasks in terms of propagating to the same or higher level of the 

hierarchy. 

CPBSS (external rectangle in Fig. 1) is based on the concept of cyber-physical system (CPS) taking 

into account the peculiarities of intelligent immunosensor. With additional skills (dashed line in Fig. 1), 

the sensor expands to CPBSS. This provides more diagnostic information about the object of research. 

 
Figure 1: Functional scheme of CPВSS 

CPBSS refers to highly intellectual of information systems. They use an accessible set of interfaces 

that provide fast and reliable status information and internal system data that should be available to other 

СPS. According to [16] the CPBSS as a self-organizing system, requires comprehensive knowledge of 

its own dynamic structure and infrastructure of the common system. For this purpose, it is necessary to 

define types of imunosensory devices, taking into account their functional application. For example, 



immunosensors can be used to assess critical conditions in cardiovascular disease, insulin values in 

blood glucose measurement, and quantify certain Pharmactic compounds. 

Work [16] proposes a common structure for the CPBSS. When this scheme is used in the case of 

biosensors, three directions of viocremes can be used: general information on the immunosensor; 

measurements of immunological indicators and skills, conversion of units and calibration; interaction 

with other immunosensors. Thus, certain methods for describing the immunosensor are contemplated. 

CPBSS research uses the R programming language Despite the wide variety of programming languages 

used in CPS development (Assembly, C, C++, D, Java, JavaScript, Python, Ada, etc. [17]), R is now 

widely used in many machine learning and data visualization industries. 

3. Continuous dynamics of studied CPBSS. 

A mathematical description is used for the continuous dynamics of the studied CPBSS using 

differential equations with lag. 

3.1. A mathematical model of CPBSS on a hexagonal lattice with used lattice 
differential equations with lag 

The CPBSS model based on hexagonal lattice from used lattice differential equations is considered. 

At that, cubic coordinate system [18] is used for numbering of biopixelive (𝑖, 𝑗, 𝑘), 𝑖, 𝑗, 𝑘 = −𝑁,𝑁̅̅ ̅̅ ̅̅ ̅̅ , 𝑖 +
𝑗 + 𝑘 = 0

Lets denote 𝑉𝑖,𝑗,𝑘(𝑡) as antigen concentration, 𝐹𝑖,𝑗,𝑘(𝑡) - the antibody concentration in the biopixels 

(𝑖, 𝑗, 𝑘);   𝑖, 𝑗, 𝑘 = −𝑁,𝑁̅̅ ̅̅ ̅̅ ̅̅ , 𝑖 + 𝑗 + 𝑘 = 0. 

The model is based on such biological assumptions for an arbitrary biopixel (𝑖, 𝑗, 𝑘). 
1. Antigens are detected, bind, and finally neutralized by antibodies with some probability velocity 

ϒ > 0. 

2. It is assumed that when colonies of antibodies are absent, colonies of antigens are regulated by a 

logistic equation with a delay: 

𝑉𝑖,𝑗,𝑘(𝑛 + 1) = (1 + 𝛽 − 𝛿𝑣𝑉𝑖,𝑗,𝑘(𝑛 − 𝑟))𝑉𝑖,𝑗,𝑘(𝑛),  (1) 

where 𝛽 and 𝛿𝑣 – positive numbers, and 𝑟 > 0 mean latency of the negative responce of the antigens’ 

colonies. 

3. The fertility rate 𝛽 > 0 for the antigen population is introduced. 

4. Antigens are neutralized by antibodies at a certain probability rate ϒ > 0. 

5. The population of antigens tries to reach a certain limit of saturation with a speed 𝛿𝑣 > 0. 

6. The diffusion of antigens from six adjacent pixels is considered   (𝑖 + 1, 𝑗, 𝑘 − 1),
(𝑖 + 1, 𝑗 − 1, 𝑘), (𝑖, 𝑗 − 1, 𝑘 + 1), (𝑖 − 1, 𝑗, 𝑘 + 1), (𝑖 − 1, 𝑗 + 1, 𝑘) and (𝑖, 𝑗 + 1, 𝑘 − 1) (Figure 2) with 

diffusion speed 𝐷∆−2 , where 𝐷 > 0 – coefficient of diffusion; ∆> 0 – distance between two adjacent 

pixels. 

7. The constant mortality of antibodies 𝜇𝑓 > 0 is introduced. 

8. As a result of the immune response the antibody density increases with a probabilistic velocity 

𝜂ϒ. 

9. The antibody population is approaching a certain level of saturation with a speed 𝛿𝑓 > 0. 

10. The immune response occurs with some constant delay in a time τ> 0. 



 
Figure 2: Hexagonal lattice, which binds six neighboring pixels in the model of the biopixels using the 

cubic coordinates:1, 3, 5, 8, 9, 11 – (
𝐷

∆−2
𝑉𝑖,𝑗,𝑘(𝑡)) ; 2 – (

𝐷

∆−2
𝑉𝑖+1,𝑗,𝑘−1(𝑡)) ; 4 – (

𝐷

∆−2
𝑉𝑖+1,𝑗−1,𝑘(𝑡)); 6 –

(
𝐷

∆−2
𝑉𝑖,𝑗−1,𝑘+1(𝑡)) ; 7 - (

𝐷

∆−2
𝑉𝑖−1,𝑗,𝑘+1(𝑡)); 10 -(

𝐷

∆−2
𝑉𝑖−1,𝑗+1,𝑘(𝑡)); 12 (

𝐷

∆−2
𝑉𝑖,𝑗+1,𝑘−1(𝑡))


On this basis we consider a very simple construction of the late antigen-antibody model for the 

hexagonal biopixel array, which is based on the known Marchuk model [19-21] and uses the spatial 

operator 𝑆̂ proposed in [22]. 

 
𝑑𝑉𝑖,𝑗,𝑘(𝑡)

𝑑𝑡
= (𝛽 − 𝛾 𝐹𝑖,𝑗,𝑘(𝑡 − 𝜏) − 𝛿𝑣𝑉𝑖,𝑗,𝑘(𝑡 − 𝜏)) 𝑉𝑖,𝑗,𝑘(𝑡) + 𝑆̂{𝑉𝑖,𝑗,𝑘} 

𝑑𝐹𝑖,𝑗,𝑘(𝑡)

𝑑𝑡
= (−𝜇𝑓 + 𝜂𝛾 𝑉𝑖,𝑗,𝑘(𝑡 − 𝜏) − 𝛿𝑓𝐹𝑖,𝑗,𝑘(𝑡))𝐹𝑖,𝑗,𝑘(𝑡)  (1) 

 

 

The model (1) is defined by the initial functions (2): 

 

 

 

𝑉𝑖,𝑗,𝑘(𝑡) = 𝑉𝑖,𝑗,𝑘
0 (𝑡) ≥ 0, 𝐹𝑖,𝑗,𝑘(𝑡) = 𝐹𝑖,𝑗,𝑘

0 (𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0), 

𝑉𝑖,𝑗,𝑘(0), 𝐹𝑖,𝑗,𝑘(0) > 0. 
 

 

 

(2) 

For the hexagonal array, discrete diffusion is used for the spatial operator. 

 

𝑆̂{𝑉𝑖,𝑗,𝑘} = {
𝐷Δ−2[𝑉𝑖+1,𝑗,𝑘−1 + 𝑉𝑖+1,𝑗−1,𝑘 + 𝑉𝑖,𝑗−1,𝑘+1 + 𝑉𝑖−1,𝑗,𝑘+1 + 𝑉𝑖−1,𝑗+1,𝑘 + 𝑉𝑖,𝑗+1,𝑘 − 6𝑛𝑉𝑖,𝑗,𝑘]

𝑖, 𝑗, 𝑘 ∈ −𝑁 + 1,𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 1, 𝑖 + 𝑗 + 𝑘 = 0
 

 

Each colony is exposed to antigens produced in six adjacent biopixels, which are separated by equal 

distances Δ. 

3.2. A mathematical model of CPBSS on a rectangular lattice with used lattice 
differential equations with lag  

The mathematical model of CPBSS on a rectangular lattice with used lattice differential equations 

with delay is considered in [23] is as follows: 
𝑑𝑉𝑖,𝑗(𝑡)

𝑑𝑡
= (𝛽 − 𝛾 𝐹𝑖,𝑗(𝑡 − 𝜏) − 𝛿𝑣𝑉𝑖,𝑗(𝑡 − 𝜏))𝑉𝑖,𝑗(𝑡) + 𝑆̂{𝑉𝑖,𝑗} 



𝑑𝐹𝑖,𝑗(𝑡)

𝑑𝑡
= (−𝜇𝑓 + 𝜂𝛾 𝑉𝑖,𝑗(𝑡 − 𝜏) − 𝛿𝑓𝐹𝑖,𝑗(𝑡)) 𝐹𝑖,𝑗(𝑡) 

The names and numerical values of the corresponding model values (4) are given above. Model (4) is 

defined by initial functions (5): 

𝑉𝑖,𝑗(𝑡) = 𝑉𝑖,𝑗
0 (𝑡) ≥ 0, 𝐹𝑖,𝑗(𝑡) = 𝐹𝑖,𝑗

0 (𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0), 

𝑉𝑖,𝑗(0), 𝐹𝑖,𝑗(0) > 0. 

 

For a square array  𝑁 ⨯ 𝑁  the following discrete diffusion is used for a spatial operator 𝑆̂{𝑉𝑖,𝑗}. 

𝑆̂{𝑉𝑖,𝑗} =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝐷Δ−2[𝑉1,2 + 𝑉2,1 + 𝑉𝑖,𝑗−1 − 2𝑛𝑉1,1]  𝑖, 𝑗 = 1

𝐷Δ−2[𝑉2,𝑗 + 𝑉1,𝑗−1 + 𝑉1,𝑗+1+ + 𝑉𝑖,𝑗+1 − 3𝑛𝑉𝑖,𝑗]  𝑖 = 1, 𝑗 ∈ 2, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐷Δ−2[𝑉1,𝑁−1 + 𝑉2,𝑁 − 2𝑛𝑉1,𝑁]  𝑖, 𝑗 ∈ 2, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐷Δ−2[𝑉𝑖−1,𝑁 + 𝑉𝑖+1,𝑁 + 𝑉𝑖,𝑁−1 − 3𝑛𝑉𝑖,𝑁]  𝑖 ∈ 2, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑗 = 𝑁

𝐷Δ−2[𝑉𝑁−1,𝑁 + 𝑉𝑁,𝑁−1 − 2𝑛𝑉𝑁,𝑁]  𝑖 = 𝑁, 𝑗 = 𝑁

𝐷Δ−2[𝑉𝑁−1,𝑗 + 𝑉𝑁,𝑗−1 + 𝑉𝑁,𝑗+1 + 𝑉𝑖,𝑗+1 − 3𝑛𝑉𝑁,𝑗]  𝑖 = 𝑁, 𝑗 ∈ 2,𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐷Δ−2[𝑉𝑁−1,1 + 𝑉𝑁,2 − 2𝑛𝑉𝑁,1]  𝑖 = 𝑁, 𝑗 = 1

DΔ−2[𝑉𝑖−1,1 + 𝑉1+1,1 + 𝑉𝑖,2 − 3𝑛𝑉𝑖,1]  𝑖 ∈ 2, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑗 = 1

𝐷Δ−2[𝑉𝑖−1,𝑗 + 𝑉𝑖+1,𝑗 + 𝑉𝑖,𝑗−1 + 𝑉𝑖,𝑗+1 − 4𝑛𝑉𝑖,𝑗]  𝑖, 𝑗 ∈ 2, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

Each colony is exposed to antigens produced in four adjacent biopixels. Two colonies are considered in 

each direction, which are separated by equal distances ∆. 

4. Dynamic logical simulation of CPBSS using the example of a mathematical 
model of CPBSS on a hexagonal lattice with used lattice differential 
equations with lag  

In order to model the dynamic logic of the studied CPBSS, the syntax proposed by A. Platzer for the 

common CPS is used [4]. For modelling CPS the programming language of hybrid programs (HP) is 

used, because it has more features than differential equations. The first level of HP are dynamic 

programs that are defined by the following grammar 

𝑎 ∷= 𝑉𝑖,𝑗,𝑘(𝑛 + 1) = 𝑉𝑖,𝑗,𝑘(𝑛)𝑒𝑥𝑝{𝛽 − ϒ𝐹𝑖,𝑗,𝑘(𝑛 − 𝑟) − 𝛿𝑣𝑉𝑖,𝑗,𝑘(𝑛 − 𝑟)} + 𝑆̂{𝑉𝑖,𝑗,𝑘(𝑛)}, 

𝐹𝑖,𝑗,𝑘(𝑛 + 1) = 𝐹𝑖,𝑗,𝑘(𝑛)𝑒𝑥𝑝 {−𝑓 + 𝜂ϒ𝑉𝑖,𝑗,𝑘(𝑛 − 𝑟) − 𝛿𝑓𝐹𝑖,𝑗,𝑘(𝑛)}&Ф𝑡.  (7) 

where Ф𝑡 is an evolutionary domain constraint in the form of a formula for the logic of the first order 

of real arithmetic 

Ф𝑡 ≝ 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑗,𝑘(𝑛) ≤ 𝑉𝑚𝑎𝑥 

∧ 𝐹𝑚𝑖𝑛 ≤ 𝐹𝑖,𝑗,𝑘(𝑛) ≤ 𝐹
𝑚𝑎𝑥 ∧ 𝑖, 𝑗, 𝑘 = −𝑁,𝑁̅̅ ̅̅ ̅̅ ̅̅ ∧ 𝑛 > 0, 𝑖 + 𝑗 + 𝑘 = 0  (8) 

The functioning of the biopixel (𝑖 + 𝑗 + 𝑘) is determined by two states, with respect to fluorescence. 

Namely, 𝑠𝑓𝑙   is a state of fluorescence and 𝑠𝑛𝑜𝑛 𝑓𝑙 is one of the non-fluorescence states. The use of the 

first order of semantics of logic and the satisfaction ratio 𝑠| = 𝐿 for the first-order formula 𝐿 of real 

arithmetic and state 𝑠 can be determined for some pixels (𝑖, 𝑗, 𝑘);   𝑖, 𝑗, 𝑘 = −𝑁,𝑁̅̅ ̅̅ ̅̅ ̅̅ , 𝑖 + 𝑗 + 𝑘 = 0 states 

𝑠𝑓𝑙  and 𝑠𝑛𝑜𝑛 𝑓𝑙  as 

𝑠𝑓𝑙| = 𝑘𝑓𝑙𝑉𝑖,𝑗,𝑘(𝑛)𝐹𝑖,𝑗,𝑘(𝑛) ≥ 𝜃𝑓𝑙, 

𝑠𝑛𝑜𝑛 𝑓𝑙| = 𝑘𝑓𝑙𝑉𝑖,𝑗,𝑘(𝑛)𝐹𝑖,𝑗,𝑘(𝑛) < 𝜃𝑓𝑙. (9) 

Discrete changes occur in computer programs when they accept new values for variables. This 

situation occurs when a fluorescence phenomenon occurs in a pixel (𝑖, 𝑗, 𝑘);   𝑖, 𝑗, 𝑘 = −𝑁,𝑁̅̅ ̅̅ ̅̅ ̅̅ , 𝑖 + 𝑗 +
𝑘 = 0. The state 𝑠𝑓𝑙,𝑖,𝑗,𝑘 ≔ 1  is assigned a value of 1 to the variable 𝑠𝑓𝑙,𝑖,𝑗,𝑘 . This leads to a discrete, 

jump-like change, as the value 𝑠𝑓𝑙,𝑖,𝑗,𝑘 does not change smoothly, but rapidly when it suddenly changes 

from 1 to 𝑠𝑓𝑙,𝑖,𝑗,𝑘 , causing a discrete jump of values 𝑠𝑓𝑙,𝑖,𝑗,𝑘 . In this way, we obtain a discrete model of 

change 𝑠𝑓𝑙,𝑖,𝑗,𝑘 ≔ 1, except for the model of change. 



 

5. Results of numerical simulation of the mathematical model of CPBSS  

Numerical experiments based on computer simulation were carried out taking into account an 

integer natural number N that characterizes the number of pixels in the hexagonal lattice. The model 

(1)–(3) 𝑁 = 4 and values of 𝛽 = 2𝑚𝑖𝑛1, ϒ= 2
𝑚𝑙

𝑚𝑖𝑛∙𝑚𝑘𝑔
, 

𝑓
= 1𝑚𝑖𝑛1, 𝜂 =

0.8

ϒ
, 𝛿𝑣 = 0.5

𝑚𝑙

𝑚𝑖𝑛∙𝑚𝑘𝑔
, 𝛿𝑓 =

0.5
𝑚𝑙

𝑚𝑖𝑛∙𝑚𝑘𝑔
, 𝐷 = 0.2

𝑛𝑚2

𝑚𝑖𝑛
, Δ= 0.3𝑛𝑚. 

5.1. Results of numerical simulation of the mathematical model of CPBSS on 
hexagonal lattice with used lattice differential equations with lag 

The long-term behavior of the model (1)–(3) at 𝜏 = 0.05, 𝜏 = 0.25, 𝜏 = 0.287, with a set of 

parameter values as shown above (Fig. 3 (a–c)) was analyzed. We observe qualitative changes in the 

behavior of biopixelive and CPBSS models on the hexagonal lattice as a whole. 

 
a) 

 
b) 



 
c) 

Figure 3: Results of numerical simulation  system (1) at а) – 𝜏 = 0.05, b) – 𝜏 = 0.25, c) – 𝜏 = 0.287.  
Image of phase planes in coordinates  kjikji FV ,,,, ,  for a pixel )0,0,0(  and its six adjacent pixels. Marking: 

 – indicates initial state, ○ – identical steady state, ● – nonidentical steady state  
 

Figures 4 (a) and 5 (a) show the results of numerical modeling of grating images of antigens and 

antibodies, respectively, in pixels of system (1)-(3) at 𝜏 = 0.05, which corresponds to a stable focus. 

With 𝜏 = 0.25 a less pronounced (Fig. 4(b) and Fig. 5 (b)), and with 𝜏 = 0.287 (c) a more pronounced 

running wave of antibodies, which is presented in Figures 4 (c) and 5 (c). 

   
а) 

   
b) 

   
c) 

Figure 4: Lattice images of antigens in system pixels (1) at 𝜏 = 0.05 (а), 𝜏 = 0.25 (b), 𝜏 = 0.287(c) 



   
а) 

   
b) 

   
c) 

Figure 5: Lattice images of antibodies in system pixels (1) at 𝜏 = 0.05 (а), 𝜏 = 0.25 (b), 𝜏 = 0.287(c) 
 

For the computer simulation of the CPBSS model under study, lattice graphs were used, showing for 

each pixel the probability of antigens contacting antibodies as 𝑉𝑖,𝑗,𝑘х𝐹𝑖,𝑗,𝑘 in 𝜏 = 0.05, 𝜏 = 0.25, 𝜏 =

0.287, which are shown in Figure 6 (a–c). 

 

   
а) 

   
 

b) 



   
c) 

Figure 6: Lattice images of the probability of antigen binding to antibodies in system pixels (1) at  
𝜏 = 0.05 (а); 𝜏 = 0.25 (b); 𝜏 = 0.287 (c) 
 

By analyzing phase diagrams of antigen populations, antibodies (Fig. 3 a) and lattice images of the 

probability of antigen-antibody linkages in CPBSS biopixels (Fig. 6 a), it can be concluded that in 𝜏 =
0.05 solving the system (1) tends to be identical to the endemic state, which in this case is a sustained 

focus. Such dependencies are observed for all biopixelives of the CPBSS model on the hexagonal lattice 

using lattice differential equations with lag at 𝜏 ∈ [0,0.25) (Fig. 3 a, 4 a). By analyzing phase diagrams 

of antigen populations, from the antibodies (Fig. 3 b) lattice images of the probability of antigen-

antibody links in CPBSS biopixels (Fig. 6 b), it can be concluded that in the emerging Hopf bifurcation 

and all further paths correspond to stable limit cycles for all points (Fig. 3 b, 6 b). To theorize the 

occurrence of Hopf bifurcation, it is necessary to calculate a suitable pair of purely imaginary solutions 

to the characteristic equation of the linearized system (1). Numerical simulation results are consistent 

with theoretical results based on Hopf bifurcation theorem [24]. At the same time, the solution of the 

system (1) seeks a stable limit cycle with two local extremes (one local maximum and one local 

minimum) in the cycle. 

5.2. Results of numerical simulation of the mathematical model of CPBSS on 
a rectangular lattice with used lattice differential equations with lag 

Computer simulations were implemented for different values. The long-term behavior of the model 

(4)–(6) is analyzed at 𝜏 = 0.05, 𝜏 = 0.22, 𝜏 = 0.23, 𝜏 = 0.2865 with a set of parameter values, which 

are presented above (Fig. 3–10). We see qualitative changes in the behavior of biopixelive and CPBSS 

models in general. 

   

a) 

   

b) 
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d) 
Figure 7: The phase plane plots of the system (3) or antibody populations 𝐹𝑖,𝑗, relative to populations 

of antigens 𝑉𝑖,𝑗, as a result of numerical simulations at 𝜏 = 0.05 (а), 𝜏 = 0.22 (b), 𝜏 = 0.23 (c), 𝜏 =

0.2865 (d). Marking:  – indicates initial state, ○ – identical steady state, ● – nonidentical steady state  
 

Figures 8, 9 show the result of computer modeling of the discrete dynamics of the CPBSS in the 

form of lattice images of antigens and antibodies in the pixels of the system under study. 

These images are the first step in investigating the dynamic logic of a cyber-physical biosensor 

system on a rectangular lattice using lattice differential equations with a delay. 
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Figure 8: Lattice images of antigens in system pixels (1) at 𝜏 = 0.05 (а), 𝜏 = 0.22 (b), 𝜏 = 0.23(c), 𝜏 =
0.2865(d) 
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d) 

Figure 9: Lattice images of antibodies in system pixels (1) at 𝜏 = 0.05 (а), 𝜏 = 0.22 (b), 𝜏 = 0.23(c), 
𝜏 = 0.2865(d) 

 

Figures 8 (a) and 9 (a) show the results of numerical modeling of grating images of antigens and 

antibodies in pixels of system (1) at 𝜏 = 0.05, which corresponds to a stable focus. At 𝜏 = 0.22 it is 

less pronounced (Fig. 8 (b) and Fig. 9 (b)), and at 𝜏 = 0.23, 𝜏 = 0.2865 it is more pronounced running 

wave of antibodies, which is presented in Figures 8 (c, d) and 9 (c, d) 

Lattice graphs were used as the next step in the numerical simulation of CPBSS on a rectangular 

lattice. First, the corresponding graphs are constructed, on which for each pixel the probability of 

antigens contact with antibodies 𝑉𝑖,𝑗,𝑘х𝐹𝑖,𝑗,𝑘, as in 𝜏 = 0.05, 𝜏 = 0.22, 𝜏 = 0.23, 𝜏 = 0.2865 are shown 

in Figure 10 (a–d). 
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d) 

Figure 10: Lattice images of the probability of antigen binding to antibodies in system pixels (4) at 𝜏 =
0.05 (а), 𝜏 = 0.22 (b), 𝜏 = 0.23 (c), 𝜏 = 0.2865 (d) 

 

By analyzing phase diagrams of antigen populations from antibodies (Fig. 3 a), it can be concluded 

that when 𝜏 = 0.05 the system (4) is solved, it tends to be identical to the endemic state, which in this 

case is a steady focus. Changing the value changes the qualitative behavior of pixels and the entire 

immunosensor. For example, [0,0.22] paths corresponding to a stable node for all points are observed 

(Fig. 3 (a, b)). 

At a value close to 0.23 min., Hopf bifurcation occurs and further paths correspond to stable elipse-

shaped limit cycles for all points (Fig. 3 (c)). For values   0.2865  we observe chaotic behavior relative 

to (Fig. 3 (d)). 

5.3. Qualitative and quantitative comparative analysis of results of 
numerical simulation of mathematical models of cyberphysical biosensory 
systems on hexagonal and rectangular lattice using lattice differential 
equations 

By comparing the results of numerical modeling of the studied mathematical models of 

cyberphysical biosensory systems in the form of phase diagrams of antigen populations, by antibodies 

(Fig. 3 a, 7 a) and lattice images of the probability of antigen connections to antibodies in CPBSS 

biopixels (Fig. 6 a, 10 a), it can be concluded that in   0,05 the solution of the system (1) and (4) are 

resistant to non-endemic states. A similar relationship is observed for all biopixelives of the CPBSS 

model on the hexagonal lattice at τ  [0, 0.25) (Fig. 3 a, 6 a), and in the case of using a rectangular 

lattice identical, the endemic state was observed at   [0, 0.22 ] (Fig. 7 a, 10 a).  

According to the obtained results of phase diagrams of antigen populations, according to antibodies 

(Fig. 3 b) and lattice images of the probability of antigens binding to antibodies in CPBSS biopixels, it 

can be concluded that in τ  0,25 (in the case of hexagonal grating (Fig. 3 b, 4 b)) and 0.23 (in the case 

of rectangular grating) (Fig. 7 b, 10 b)) Hopf bifurcation occurs and all further paths correspond to 

steady limit cycles for all points (Fig. 3 b, 6 b, 7 b, 10 b). As the results of the numerical analysis showed, 

the probabilities of antigen-antibody connections in the biopixels of the models under study vary 

according to the laws of discrete dynamics. Analyzing the obtained results, it was concluded that when 

the value changes qualitatively the behavior of biopixelive and CPBSS changes. 

6. Conclusions 

In the work we carried out qualitative and quantitative comparative analysis of models of CPBSS on 

rectangular and hexagonal lattice using lattice differential equations, for which purpose the general 

scheme of cyber-physical and sensory system proposed in the work was used [16]. The basic model was 

modified taking into account the features of biosensors, which are considered in the form of biopixel 

arrays. Each biopixel is seen as a cyber-physical system in order to account for the continuous dynamics 

of the immunological response. Lattice images in biopixels change according to the laws of discrete 

dynamics. The developed models take into account the interaction of biopixelive with each other by 



diffusion of antigens. The mathematical description of CPBSS contains the discrete population 

dynamics, which is combined with dynamic logic, which is used for discrete events. The work uses a 

class of lattice differential equations with time lag, which model the interaction of antigens and 

antibodies in biopixels. Spatial operators model diffusion type interaction between biopixels. Dynamic 

mathematical modeling is not enough to simulate discrete dynamics in biosensors. To address this 

disadvantage, the dynamic logic syntax that has been proposed for cyber-physical Platzer systems has 

been used to describe the discrete states of biopixel as a result of fluorescence. The results of the 

numerical simulation obtained in the work allow to analyze the stability and compare the studied models 

taking into account the time delay. 

7. References 

[1] E. A. Lee, “Cyber physical systems: Design challenges,” Center for Hybrid and Embedded 

Software Systems, EECS University of California, Berkeley, CA 94720, USA, Tech. Rep. 

UCB/EECS-2008-8, 2008, p. 10. doi: 10.1109/ISORC.2008.25. 

[2] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture for industry 4.0-based 

manufacturing systems,” Manufacturing Letters, 3(2015) 18–23. 

doi:10.1016/j.mfglet.2014.12.001. 

[3] K.-D. Kim and P. R. Kumar, “Cyber–physical systems: A perspective at the centennial,” 

Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, 2012, pp. 1287–1308. doi: 

10.1109/jproc.2012.2189792. 

[4] A. Platzer, “Differential dynamic logic for hybrid systems.,” J. Autom. Reas., vol. 41, no. 2, 2008, 

pp. 143–189. doi:10.1007/s10817-008-9103-8.  

[5] A. Platzer, Logical Foundations of Cyber-Physical Systems. Springer International Publishing, 

2018. doi: 10.1007/978- 3-319-63588-0. 

[6] V.Martsenyuk, A.Sverstiuk, I. Gvozdetska, Using Differential Equations with Time Delay on a 

Hexagonal Lattice for Modeling Immunosensors, Cybernetics and Systems Analysis, 2019, 55(4), 

pp. 625–637. doi:10.1007/s10559-019-00171-2. 

[7] V. Martsenyuk , A. Klos-Witkowska, A. Sverstiuk, Stability Investigation of Biosensor Model 

Based on Finite Lattice Difference Equations, Springer Proceedings in Mathematics and Statistics, 

2020, 312, pp. 297–321. doi:10.1007/978-3-030-35502-9_13. 
[8] V. Martsenyuk, Construction and study of stability of an antitumoral immunity model, Cybernetics 

and Systems Analysis, 40(5), (2004), pp. 778–783. doi:10.1007/s10559-005-0017-8. 

[9]  A. Nakonechnyj, V. Marzenyuk, Problems of controllability for differential Gompertzian 

dynamics equations, Kibernetika i Sistemnyj Analiz, 2004, 40(2), pp. 123–133. 

[10]  Martsenyuk, V.P., On stability of immune protection model taking into account damage of target 

organ: The degenerate Liapunov functionals method, Cybernetics and Systems Analysis, 2004, (1), 

pp. 126–136. doi:10.1023/B:CASA.0000028109.69242.38 

[11] V. Martsenyuk, A. Sverstiuk, O. Bahrii-Zaiats, Yu. Rudyak, B. Shelestovsky, Software complex 

in the study of the mathematical model of cyber-physical systems, ICT&ES 2nd International 

Workshop Information-Communication Technologies & Embedded Systems, 12 November, 2020 

Mykolaiv, Ukraine. p. 87-97. 

[12]  V.Martsenyuk, A.Klos-Witkowska, A.Sverstiuk, O.Bahrii-Zaiats, M.Bernas, K.Witos, Intelligent 

Big Data system based on scientific machine learning of cyber-physical systems of medical and 

biological processes, in: The Fourth International Workshop on Computer Modeling and Intelligent 

Systems (CMIS-2021). 27 of April 2021, Zaporizhzhia, Ukraine. pp. 34-48. 

doi:10.32782/cmis/2864-4. 

[13] V. Martsenyuk, I. Andrushchak, P. Zinko, A. Sverstiuk, On Application of Latticed Differential 

Equations with a Delay for Immunosensor Modeling, Journal of Automation and Information 

Sciences (2018) 55-65. doi: 10.1615/JAutomatInfScien.v50.i6.50. 

[14] X. Jiang and M. G. Spencer, Electrochemical impedance biosensor with electrode pixels for precise 

counting of CD4+ cells: A microchip for quantitative diagnosis of HIV infec- tion status of AIDS 

patients, Biosensors and Bioelectronics,  2010; 25(7): 1622–1628. doi:10.1016/j.bios.2009.11.024.  

https://doi.org/10.1007/978-3-030-35502-9_13
https://doi.org/10.%201016/j.bios.2009.11.024


[15] P. B. Luppa, L. J. Sokoll, and D. W. Chan, Immunosensors- principles and applications to clinical 

chemistry, Clinica Chimica Acta, 2001, vol. 314, no. 1, pp. 1–26. doi:10.1016/S0009-

8981(01)00629-5.  

[16] C. Berger, A. Hees, S. Braunreuther, and G. Reinhart, “Characterization of cyber-physical sensor 

systems,” Procedia CIRP, 2016, vol. 41, pp. 638–643. doi: 10.1016/j.procir.2015. 12.019.  

[17] P. Soulier, D. Li, J. R. Williams, “A survey of language- based approaches to cyber-physical and 

embedded system development,” Tsinghua Science and Technology, vol. 20, no. 2, pp. 130–141, 

2015. doi: 10.1109/TST.2015.7085626. 

[18] Internet resource: https://www.redblobgames.com/grids/hexagons/. 

[19] C. C. McCluskey, “Complete global stability for an SIR epidemic model with delay — distributed 

or discrete,” Nonlinear Analysis: Real World Applications, 2010, vol. 11, no. 1, pp. 55–59. 

doi:10.1016/j.nonrwa.2008.10.014.  

[20] A. Nakonechny and V. Marzeniuk, “Uncertainties in medical processes control,” Lecture Notes in 

Economics and Mathematical Systems, 2006, vol. 581, pp. 185–192. doi:10.1007/3-540-35262-

7_11. 

[21] V. Marzeniuk, “Taking into account delay in the problem of immune protection of organism,” 

Nonlinear Analysis: Real World Applications, 2001, vol. 2, no. 4, pp. 483–496. 

doi.org/10.1016/S1468-1218(01)00005-0. 

[22] A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L. S. Tsim- ring, and J. Hasty, “A sensing array 

of radically coupled genetic ‘biopixels’,” Nature, 2011, vol. 481, no. 7379, pp. 39–44. 

doi:10.1038/nature10722. 

[23] V. Martsenyuk, A. Klos-Witkowska, A. Sverstiuk, Stability, bifurcation and transition to chaos in 

a model of immunosensor based on lattice differential equations with delay, Electronic Journal of 

Qualitative Theory of Differential Equations, 2018(27), р. 1-31. doi:10.14232/ejqtde.2018.1.27. 

[24] . Hofbauer, G. Iooss, A Hopf bifurcation theorem for difference equations approximating a 

differential equation, Monatshefte fur Mathematik, 1984, Vol. 98(2), p. 99-113. doi: 

10.1007/BF01637279. 

https://www.redblobgames.com/grids/hexagons/

