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Abstract 
The result of the work is obtaining difference schemes for dynamic systems, which are 

described by systems of ordinary differential equations of the second order based on the 

classical methods of Bossak, Newmark and the generalized α-method. For the developed 

modifications of the methods, the corresponding software was developed in the MATLAB 

system of applied mathematics for conducting numerical experiments and testing methods.  
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1. Introduction 

The development of computational methods for modeling dynamic systems occupies a significant 
place in solving scientific and technical tasks in today's conditions. A number of requirements are put 
forward to such methods, in particular, the methods that are developed should be stable and those that 

obtain a numerical solution with minimal errors [1; 2]. The rapid development of computer technology 
makes it possible to apply these methods in practice. Therefore, the work will demonstrate a tool for 
obtaining basic mathematical dependencies based on classical methods for the analysis of nonlinear 
systems, for example, systems described by Cauchy problems for second-order ordinary differential 
equations. 

 

2. The main part of the article 

To analyze dynamic systems, let's take a classical nonlinear system in the form of a nonlinear 
oscillator [3]. The nonlinear oscillator should be viewed as a generalized model suitable for describing 
oscillatory phenomena in systems of different physical nature. 

A nonlinear oscillator is a system whose dynamics is described by a second-order differential 
equation of the general form [3; 4]: 
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𝑥 ′′ + 𝛿𝑥 ′ +𝑓(𝑥) = 0, (1) 

 

where 𝑥 – dynamic variable (or generalized coordinate), 𝑓(𝑥) – some non-linear function, 𝛿 – 
dissipation parameter. Depending on the different values of this parameter, different transformations of 

the phase portrait of the nonlinear oscillator occur. In order to form a complete view of the nonlinear 
oscillator near the catastrophe of the assembly, it is necessary to draw a function 𝑓(𝑥) species 
equality (1). In equation (1), the function 𝑓(𝑥) has the following form: 

 

𝑓(𝑥) = 𝑎̄𝑥 + 𝑏 + 𝑥3. (2) 
 

Equality (2) corresponds to an assembly type disaster. When varying parameter values 𝑎̄ and 𝑏 the 

behavior of the system will also change. Therefore, the second type of disaster is called an "assembly" 
disaster. In the behavior of the phase portrait curves, it is possible to observe both trajectories without 
a jump, with smooth development, and with a jump in development. 

The catastrophe theory explains the dependence of unstable forms of the phase portrait on the 
number of control parameters. Yes, if we have only one control parameter, we can observe a fold 
disaster. If we have two control parameters, as in our case 𝑎̄ і 𝑏, a build crash is observed. 

Based on equalities (1) and (2), we can form a complete view of the nonlinear oscillator near the 
assembly catastrophe: 
 

𝑥 ′′ + 𝛿𝑥 ′ + 𝑎̄𝑥 + 𝑏 + 𝑥3 = 0. (3) 
 
In equation (3) 𝛿 is dissipation parameter, 𝑎̄ and 𝑏 are control parameters [5; 6]. 

2.1. Newmark’s method 

The Newmark method is a numerical integration method for solving differential equations. It is 
widely used in the calculations of many engineering, technical, chemical problems for the numerical 
evaluation of dynamic characteristics. The method is named after a former professor of civil engineering 

at Illinois State University who developed it in 1959 for use in structural dynamics. 
To derive the formulas and analyze them, consider the Cauchy problem for an ordinary differential 

equation of the second order. Its mathematical representation has the form: 
 

𝑥 ′′ +𝑔𝑥 ′ + 𝑎𝑥 + 𝑏 + 𝑥3 = 0; 
𝑥(𝑡0) = 𝑥0,   𝑥

′(𝑡0) = 𝑥0
′ . 

 
 

 

𝑈𝑛+1 = 𝑈𝑛 +ℎ𝑉𝑛 +ℎ
2 (
1

2
− 𝛽)𝐴𝑛 + ℎ

2𝛽𝐴𝑛+1, 

𝑉𝑛+1 = 𝑉𝑛 + ℎ(1 − 𝛾)𝐴𝑛 + ℎ𝛾𝐴𝑛+1, 
𝐴𝑛+1 +𝑔𝑉𝑛+1 +𝑎𝑈𝑛+1 + 𝑏 +𝑈𝑛+1

3 = 0. 

(4) 

 
Since the system (4) is nonlinear, then the classical Seidel method can be used for its numerical 

solution. For this system, Seidel’s method will look like this: 
 

𝑈𝑛+1
(𝑘+1)

= 𝑈𝑛 + ℎ𝑉𝑛 + ℎ
2 (
1

2
− 𝛽)𝐴𝑛 + ℎ

2𝛽𝐴𝑛+1
(𝑘)

, 

𝑉𝑛+1
(𝑘+1)

= 𝑉𝑛 + ℎ(1 − 𝛾)𝐴𝑛 + ℎ𝛾𝐴𝑛+1
(𝑘)

, 

𝐴𝑛+1
(𝑘+1)

= −(𝑔𝑉𝑛+1
(𝑘+1)

+ 𝑎𝑈𝑛+1
(𝑘+1)

+ 𝑏 + (𝑈𝑛+1
(𝑘+1)

)
3
), 

𝑈0 = 𝑥0, 𝑉0 = 𝑥0
′ , 𝐴0 = −(𝑔𝑉0 + 𝑎𝑈0 +𝑏 + 𝑈0

3), 

(5) 



 
where 𝑘 is iteration number. 

The second version of Newmark's method can be presented in the following form: 
 

𝑈𝑛+1 = 𝑈𝑛 +ℎ𝑉𝑛 + ℎ
2 (
1

2
− 𝛽)𝐴𝑛 + ℎ

2𝛽𝐴𝑛+1, 

𝑉𝑛+1 = 𝑉𝑛 + ℎ(1 − 𝛾)𝐴𝑛 + ℎ𝛾𝐴𝑛+1, 
𝐴𝑛+1 = −(𝑔𝑉𝑛+1 + 𝑎𝑈𝑛+1 + 𝑏 + 𝑈𝑛+1

3 ). 
 
Then we will have 
 

𝑈𝑛+1 = 𝑈𝑛 +ℎ𝑉𝑛 −ℎ
2 (
1

2
− 𝛽) (𝑔𝑉𝑛 +𝑎𝑈𝑛 + 𝑏 +𝑈𝑛

3) − ℎ2𝛽(𝑔𝑉𝑛+1 + 𝑎𝑈𝑛+1 + 𝑏+ 𝑈𝑛+1
3 ), 

𝑉𝑛+1 = 𝑉𝑛 − ℎ(1 − 𝛾)(𝑔𝑉𝑛 +𝑎𝑈𝑛 + 𝑏 +𝑈𝑛
3) − ℎ𝛾(𝑔𝑉𝑛+1 + 𝑎𝑈𝑛+1 +𝑏 + 𝑈𝑛+1

3 ), 
 

So,  
 

𝑈𝑛+1(1 + ℎ
2𝑎𝛽) = 𝑈𝑛 + ℎ𝑉𝑛 − ℎ

2 (
1

2
− 𝛽)(𝑔𝑉𝑛 + 𝑎𝑈𝑛 +𝑏 + 𝑈𝑛

3) − ℎ2𝛽(𝑔𝑉𝑛+1 + 𝑏 +𝑈𝑛+1
3 ), 

𝑉𝑛+1(1 + 𝑔ℎ𝛾) = 𝑉𝑛 −ℎ(1− 𝛾)(𝑔𝑉𝑛 + 𝑎𝑈𝑛 +𝑏 + 𝑈𝑛
3) − ℎ𝛾(𝑎𝑈𝑛+1 +𝑏 + 𝑈𝑛+1

3 ). 
 
Finally, the formulas for mathematical calculation take the form: 
 

𝑈𝑛+1 =
𝑈𝑛 + ℎ𝑉𝑛 −ℎ

2 (
1
2
− 𝛽) (𝑔𝑉𝑛 +𝑎𝑈𝑛 + 𝑏 +𝑈𝑛

3) − ℎ2𝛽(𝑔𝑉𝑛+1 +𝑏 + 𝑈𝑛+1
3 ),

1 + ℎ2𝑎𝛽
 

𝑉𝑛+1 =
𝑉𝑛 − ℎ(1 − 𝛾)(𝑔𝑉𝑛 +𝑎𝑈𝑛 + 𝑏 +𝑈𝑛

3) − ℎ𝛾(𝑎𝑈𝑛+1 + 𝑏+ 𝑈𝑛+1
3 )

1 + 𝑔ℎ𝛾
. 

 
Values 𝑈𝑛+1 and 𝑉𝑛+1 are calculated using computational methods. For example, Seidel's method 

for this system of equations will have the form: 
 

𝑈𝑛+1
(𝑘+1)

=
𝑈𝑛 + ℎ𝑉𝑛 − ℎ

2 (
1
2
− 𝛽)(𝑔𝑉𝑛 + 𝑎𝑈𝑛 +𝑏 + 𝑈𝑛

3) − ℎ2𝛽 (𝑔𝑉𝑛+1
(𝑘)
+ 𝑏 + (𝑈𝑛+1

(𝑘) 
)
3
) ,

1 + ℎ2𝑎𝛽
 

𝑉𝑛+1
(𝑘+1)

=
𝑉𝑛 − ℎ(1− 𝛾)(𝑔𝑉𝑛 + 𝑎𝑈𝑛 +𝑏 + 𝑈𝑛

3) − ℎ𝛾 (𝑎𝑈𝑛+1
(𝑘+1)

+𝑏 + (𝑈𝑛+1
(𝑘+1) 

)
3
)

1 + 𝑔ℎ𝛾
. 

(6) 

 
The third version of the Newmark method looks like this: 

 

𝑉𝑛+1 =
𝑉𝑛 −ℎ(1− 𝛾)(𝑔𝑉𝑛 + 𝑎𝑈𝑛 +𝑏 + 𝑈𝑛

3) − ℎ𝛾(𝑎𝑈𝑛+1 +𝑏 + 𝑈𝑛+1
3 )

1 + 𝑔ℎ𝛾
; 

𝑈𝑛+1 =
𝑈𝑛 + ℎ𝑉𝑛 −ℎ

2 (
1
2
− 𝛽) (𝑔𝑉𝑛 +𝑎𝑈𝑛 + 𝑏 +𝑈𝑛

3) − ℎ2𝛽(𝑔𝑉𝑛+1 +𝑏 + 𝑈𝑛+1
3 ),

1 + ℎ2𝑎𝛽
. 

(7) 

 
It should be noted that in (7) the second equation is substituted into the first equation. Next is the 

value 𝑈𝑛+1, which is then substituted into the equation: 

 

𝑉𝑛+1 =
𝑉𝑛 − ℎ(1 − 𝛾)(𝑔𝑉𝑛 +𝑎𝑈𝑛 + 𝑏 +𝑈𝑛

3) − ℎ𝛾(𝑎𝑈𝑛+1 + 𝑏+ 𝑈𝑛+1
3 )

1 + 𝑔ℎ𝛾
. 

 
In this case, Seidel's method solves only one equation [7; 8]. 



2.2. Generalized 𝜶-method 

Formulas for solving a nonlinear oscillator near the assembly catastrophe using the generalized 𝛼-

method are derived similarly to Newmark's method. The difference is that the values of all variables at 
𝑛 + 1 time steps are taken as averages, taking into account the average theorem. 

The equality that we need to solve by the method of generalized α has the following form: 
 

𝑥 ′′ + 𝛿𝑥 ′ + 𝑎̄𝑥 + 𝑏 + 𝑥3 = 0. (8) 
 
In equation (8), 𝛿 is dissipation parameter, 𝑎 and 𝑏 control parameters. 

As before, let's mark 𝑥 ′′ = 𝑎, 𝑥 ′ = 𝑣, and let's complete the equality (8). Now let's write down the 
system of differential equations at 𝑛 + 1 instant of time according to the method of generalized 𝛼. 

 

{
 
 

 
 𝑣𝑛+1 = 𝑣𝑛 + (1 − 𝛾)𝛥𝑡 𝑎𝑛 + 𝛾𝛥𝑡 𝑎𝑛+1,

𝑥𝑛+1 = 𝑥𝑛 + 𝛥𝑡 𝑣𝑛 + (
1

2
− 𝛽)𝛥𝑡2𝑎𝑛 + 𝛽𝛥𝑡

2𝑎𝑛+1,

𝑎𝑛+1−𝛼𝑚 + 𝛿𝑣𝑛+1−𝛼𝑓 + 𝑎̄𝑥𝑛+1−𝛼𝑓 +𝑏 + 𝑥𝑛+1−𝛼𝑓
3 = 0,

 (9) 

 
where 𝑎𝑛+1−𝛼𝑚, 𝑣𝑛+1−𝛼𝑓 , 𝑥𝑛+1−𝛼𝑓 are equal to: 

 

𝑎𝑛+1−𝛼𝑚 = (1 −𝛼𝑚)𝑎𝑛+1 +𝛼𝑚𝑎𝑛,   𝑣𝑛+1−𝛼𝑓 = (1 −𝛼𝑓)𝑣𝑛+1 + 𝛼𝑓𝑣𝑛, 

𝑥𝑛+1−𝛼𝑓 = (1− 𝛼𝑓)𝑥𝑛+1 + 𝛼𝑓𝑥𝑛. 
(10) 

 
Moreover, the values of all constants are equal to: 

 

𝛾 =
1

2
− 𝛼𝑚 +𝛼𝑓, 𝛽 =

1

4
(1− 𝛼𝑚 + 𝛼𝑓)

2
, 𝛼𝑚 =

2𝜌∞ −1

𝜌∞+ 1
, 𝛼𝑓 =

𝜌∞
𝜌∞ +1

. 

 
With the condition that 0 ≤ 𝜌∞ ≤ 1. 

Let's rewrite (9) considering (10): 
 

{
 
 

 
 

𝑣𝑛+1 = 𝑣𝑛 + (1 − 𝛾)𝛥𝑡 𝑎𝑛 + 𝛾𝛥𝑡 𝑎𝑛+1

𝑥𝑛+1 = 𝑥𝑛 +𝛥𝑡𝑣𝑛 + (
1

2
− 𝛽)𝛥𝑡2𝑎𝑛 +𝛽𝛥𝑡

2𝑎𝑛+1

(1 − 𝛼𝑚)𝑎𝑛+1 + 𝛼𝑚𝑎𝑛 +𝛿(1− 𝛼𝑓)𝑣𝑛+1 + 𝛿𝛼𝑓𝑣𝑛 +

+𝑎̄(1 − 𝛼𝑓)𝑥𝑛+1 +𝛼𝑓𝑥𝑛 +𝑏 + (1− 𝛼𝑓)𝑥𝑛+1
3 + 𝛼𝑓𝑥𝑛

3 = 0

 (11) 

 
From equality (11) we see that 𝑥 is a vector, and therefore velocity and acceleration are also vectors. 

We obtained a closed system of 3𝑘 algebraic equations, with 3𝑘 unknowns. 
Everything that is on the 𝑛 + 1 step is unknown and it is necessary to look for their value. To do 

this, we move all variables 𝑛 + 1 steps to the left, and n steps to the right: 

 

{
 
 

 
 

𝛾𝛥𝑡 𝑎𝑛+1 − 𝑣𝑛+1 = −𝑣𝑛 − (1− 𝛾)𝛥𝑡𝑎𝑛

𝛽𝛥𝑡2𝑎𝑛+1 −𝑥𝑛+1 = −𝑥𝑛 − 𝛥𝑡𝑣𝑛 − (
1

2
− 𝛽)𝛥𝑡2𝑎𝑛

(1 − 𝛼𝑚)𝑎𝑛+1 + 𝛿(1 − 𝛼𝑓)𝑣𝑛+1 + 𝑎̄(1− 𝛼𝑓)𝑥𝑛+1 + (1 −𝛼𝑓)𝑥𝑛+1
3 =

= −𝛼𝑚𝑎𝑛 −𝛿𝛼𝑓𝑣𝑛 − 𝛼𝑓𝑥𝑛 − 𝑏 −𝛼𝑓𝑥𝑛
3

 (12) 

 
We see that equality (12) is written in vector form. Therefore, to simplify the notations, we introduce 

the vectors: 
 



𝐴𝑛+1 = −𝑣𝑛 − (1− 𝛾)𝛥𝑡 𝑎𝑛,   𝐵𝑛+1 = −𝑥𝑛 − 𝛥𝑡 v𝑛 − (
1

2
− 𝛽)𝛥𝑡2𝑎𝑛, 

𝐶𝑛+1 = −𝛼𝑚𝑎𝑛 −𝛿𝛼𝑓𝑣𝑛 − 𝛼𝑓𝑥𝑛 −𝑏 − 𝛼𝑓𝑥𝑛
3. 

 

{

𝛾𝛥𝑡 𝑎𝑛+1 −𝑣𝑛+1 = 𝐴𝑛+1
𝛽𝛥𝑡2𝑎𝑛+1 −𝑥𝑛+1 = 𝐵𝑛+1

(1 − 𝛼𝑚)𝑎𝑛+1 +𝛿(1− 𝛼𝑓)𝑣𝑛+1 + 𝑎̄(1 − 𝛼𝑓)𝑥𝑛+1 + (1− 𝛼𝑓)𝑥𝑛+1
3 = 𝐶𝑛+1

 (13) 

 

Next, we divide the first equality (13) by 𝛾𝛥𝑡, and the second equality – by 𝛽𝛥𝑡2 
 

{
 
 

 
 𝑎𝑛+1 −

1

𝛾𝛥𝑡
𝑣𝑛+1 =

1

𝛾𝛥𝑡
𝐴𝑛+1 ,

𝑎𝑛+1 −
1

𝛽𝛥𝑡2
𝑥𝑛+1 =

1

𝛽𝛥𝑡2
𝐵𝑛+1,

(1 − 𝛼𝑚)𝑎𝑛+1 + 𝛿(1 − 𝛼𝑓)𝑣𝑛+1 + 𝑎̄(1 − 𝛼𝑓)𝑥𝑛+1 + (1 −𝛼𝑓)𝑥𝑛+1
3 = 𝐶𝑛+1.

 (14) 

 
Now subtract the first from the second equality (14), and from the third the first multiplied by 

(1 − 𝛼𝑚).  
 

{
 

 
1

𝛾𝛥𝑡
𝑣𝑛+1 −

1

𝛽𝛥𝑡2
𝑥𝑛+1 =

1

𝛽𝛥𝑡2
𝐵𝑛+1 −

1

𝛾𝛥𝑡
𝐴𝑛+1,

(𝛿(1 − 𝛼𝑓) +
1 − 𝛼𝑚
𝛾𝛥𝑡

)𝑣𝑛+1 + 𝑎̄(1 − 𝛼𝑓)𝑥𝑛+1 + (1− 𝛼𝑓)𝑥𝑛+1
3 = 𝐶𝑛+1 −

1 − 𝛼𝑚
𝛾𝛥𝑡

𝐴𝑛+1.

 (15) 

 

For simplification, we introduce 𝐷 = (𝛿(1− 𝛼𝑓) + (1− 𝛼𝑚) (𝛾𝛥𝑡)⁄ ). Rewrite (15): 

 

{
 

 𝑣𝑛+1 −
𝛾

𝛽𝛥𝑡
𝑥𝑛+1 =

𝛾

𝛽𝛥𝑡
𝐵𝑛+1 −𝐴𝑛+1,

𝐷𝑣𝑛+1 + 𝑎̄(1 − 𝛼𝑓)𝑥𝑛+1 + (1 −𝛼𝑓)𝑥𝑛+1
3 = 𝐶𝑛+1 −

1 − 𝛼𝑚
𝛾𝛥𝑡

𝐴𝑛+1.
 (16) 

 
Next, we subtract the first multiplied by 𝐷 from the second equality (16). 

 

𝑎̄(1 − 𝛼𝑓)𝑥𝑛+1 +
𝛾

𝛽𝛥𝑡
𝐷𝑥𝑛+1 + (1 −𝛼𝑓)𝑥𝑛+1

3 = 

= 𝐶𝑛+1 −
1 −𝛼𝑚
𝛾𝛥𝑡

𝐴𝑛+1 + 𝐷𝐴𝑛+1 −
𝛾

𝛽𝛥𝑡
𝐷𝐵𝑛+1. 

(17) 

 
In order to avoid division by zero, let's multiply equality (17) by 𝛽𝛥𝑡: 

 

(𝑎̄𝛽𝛥𝑡(1− 𝛼𝑓) + 𝛾𝐷)𝑥𝑛+1 + (1− 𝛼𝑓)𝛽𝛥𝑡𝑥𝑛+1
3 = 

= 𝛽𝛥𝑡𝐶𝑛+1 − 𝛾𝐷𝐵𝑛+1 + (𝛽𝛥𝑡𝐷 −
1 −𝛼𝑚
𝛾

𝛽)𝐴𝑛+1. 
(18) 

 
From here we find 𝑥. From the first equality (16), we find 𝑣: 

 

𝑣𝑛+1 −
𝛾

𝛽Δ𝑡
𝑥𝑛+1 =

𝛾

𝛽Δ𝑡
𝐵𝑛+1 − 𝐴𝑛+1 ,   𝑣𝑛+1 =

𝛾(𝑥𝑛+1 +𝐵𝑛+1)

𝛽Δ𝑡
− 𝐴𝑛+1 . 

 
From the first equality (14), we find 𝑎: 

 



𝑎𝑛+1 −
1

𝛾Δ𝑡
𝑣𝑛+1 =

1

𝛾Δ𝑡
𝐴𝑛+1,   𝑎𝑛+1 =

𝑣𝑛+1 +𝐴𝑛+1
𝛾Δ𝑡

. 

 
Let's write down the obtained formulas of the generalized α method for solving a nonlinear oscillator 

near the assembly catastrophe: 
 

(𝑎̄𝛽𝛥𝑡(1− 𝛼𝑓) + 𝛾𝐷)𝑥𝑛+1 + (1− 𝛼𝑓)𝛽𝛥𝑡𝑥𝑛+1
3 − 

−𝛽𝛥𝑡𝐶𝑛+1 +𝛾𝐷𝐵𝑛+1 − (𝛽𝛥𝑡𝐷 −
1 − 𝛼𝑚
𝛾

𝛽)𝐴𝑛+1 = 0, 

𝑣𝑛+1 =
𝛾

𝛽𝛥𝑡
(𝑥𝑛+1 + 𝐵𝑛+1) − 𝐴𝑛+1,   𝑎𝑛+1 =

1

𝛾𝛥𝑡
(𝑣𝑛+1 + 𝐴𝑛+1). 

(19) 

 
The solution (19) will be a curve, any changes of which depend on the parameter values 𝛿, 𝑎̄ and 𝑏. 

Formulas (19) demonstrate formulas for solving a nonlinear oscillator near the assembly catastrophe by 
the generalized 𝛼-method. 

2.3. Bossak’s method 

Bossak’s method is a continuation of Newmark’s method. The derivation of the formulas for solving 
the nonlinear oscillator near the assembly catastrophe is carried out similarly to the Newmark’s method. 

The difference is that the values of the second derivatives at 𝑛 + 1 time steps are taken as averages 
(taking into account the average theorem). 

The equality that we need to solve by Bossak’s method has the form (3). Everything that is on the 

𝑛 + 1 step is unknown and it is necessary to find their value. To do this, we will transfer all the variables 
𝑛 + 1 steps to the left, and n steps to the right: 

 

{
 

 
𝛾𝛥𝑡 𝑎𝑛+1 − 𝑣𝑛+1 = −𝑣𝑛 − (1− 𝛾)𝛥𝑡𝑎𝑛

𝛽𝛥𝑡2𝑎𝑛+1 −𝑥𝑛+1 = −𝑥𝑛 − 𝛥𝑡𝑣𝑛 − (
1

2
− 𝛽)𝛥𝑡2𝑎𝑛

(1 − 𝛼)𝑎𝑛+1 + 𝛿𝑣𝑛+1 + 𝑎̄𝑥𝑛+1 + 𝑏 + 𝑥𝑛+1
3 = −𝛼𝑎𝑛

 (20) 

 
We see that the equalities in (20) are written in vector form. Therefore, to simplify the notations, we 

introduce the vectors 
 

𝐴𝑛+1 = −𝑣𝑛 − (1− 𝛾)𝛥𝑡 𝑎𝑛,   𝐵𝑛+1 = −𝑥𝑛 −𝛥𝑡v𝑛 − (
1

2
− 𝛽)𝛥𝑡2𝑎𝑛,   𝐶𝑛+1 = −𝛼𝑚𝑎𝑛. 

 

{

𝛾𝛥𝑡 𝑎𝑛+1 −𝑣𝑛+1 = 𝐴𝑛+1
𝛽𝛥𝑡2𝑎𝑛+1 −𝑥𝑛+1 = 𝐵𝑛+1

(1 − 𝛼)𝑎𝑛+1 +𝛿𝑣𝑛+1 + 𝑎̄𝑥𝑛+1 +𝑏 + 𝑥𝑛+1
3 = 𝐶𝑛+1

 (21) 

 

Next, we divide the first equality (21) by 𝛾𝛥𝑡, and the second equality – by 𝛽𝛥𝑡2. 
 

 

{
 
 

 
 𝑎𝑛+1 −

1

𝛾𝛥𝑡
𝑣𝑛+1 =

1

𝛾𝛥𝑡
𝐴𝑛+1

𝑎𝑛+1 −
1

𝛽𝛥𝑡2
𝑥𝑛+1 =

1

𝛽𝛥𝑡2
𝐵𝑛+1

(1 − 𝛼)𝑎𝑛+1 + 𝛿𝑣𝑛+1 + 𝑎̄𝑥𝑛+1 + 𝑏+ 𝑥𝑛+1
3 = 𝐶𝑛+1

 (22) 

 
Now subtract the first from the second equality (22), and subtract the first multiplied by (1 − 𝛼) 

from the third. 



 

{
 

 
1

𝛾𝛥𝑡
𝑣𝑛+1 −

1

𝛽𝛥𝑡2
𝑥𝑛+1 =

1

𝛽𝛥𝑡2
𝐵𝑛+1 −

1

𝛾𝛥𝑡
𝐴𝑛+1,

(𝛿 +
1 − 𝛼

𝛾𝛥𝑡
)𝑣𝑛+1 + 𝑎̄𝑥𝑛+1 + 𝑏 + 𝑥𝑛+1

3 = 𝐶𝑛+1 −
1 − 𝛼

𝛾𝛥𝑡
𝐴𝑛+1 .

 (23) 

 
For simplification, we introduce 𝐷 = (𝛿 + (1 − 𝛼) (𝛾𝛥𝑡)⁄ ). Rewrite (23): 

 

{
 

 𝑣𝑛+1 −
𝛾

𝛽𝛥𝑡
𝑥𝑛+1 =

𝛾

𝛽𝛥𝑡
𝐵𝑛+1 −𝐴𝑛+1

𝐷𝑣𝑛+1 + 𝑎̄𝑥𝑛+1 + 𝑏 + 𝑥𝑛+1
3 = 𝐶𝑛+1 −

1

𝛾𝛥𝑡
𝐴𝑛+1

 (24) 

 
Next, we subtract from the second equality (24) the first multiplied by 𝐷. 

 

𝑎̄𝑥𝑛+1 +𝑏 + 𝑥𝑛+1
3 +

𝛾

𝛽𝛥𝑡
𝐷𝑥𝑛+1 = 𝐶𝑛+1 −

1 − 𝛼

𝛾𝛥𝑡
𝐴𝑛+1 −

𝛾

𝛽𝛥𝑡
𝐷𝐵𝑛+1 +𝐷𝐴𝑛+1. (25) 

 
In order to avoid division by zero, let's multiply equality (25) by 𝛽Δ𝑡: 

 

𝛽Δ𝑡(𝑎̄𝑥𝑛+1 + 𝑏 + 𝑥𝑛+1
3 ) + 𝛾𝐷𝑥𝑛+1 = 𝛽Δ𝑡𝐶𝑛+1 −

(1− 𝛼)𝛽

𝛾
𝐴𝑛+1 −𝛾𝐷𝐵𝑛+1 + 𝐷𝐴𝑛+1. (26) 

 
From here we find 𝑥. From the first equality (24), we find 𝑣: 

 

𝑣𝑛+1 −
𝛾

𝛽𝛥𝑡
𝑥𝑛+1 =

𝛾

𝛽𝛥𝑡
𝐵𝑛+1 − 𝐴𝑛+1,   𝑣𝑛+1 =

𝛾(𝑥𝑛+1 + 𝐵𝑛+1)

𝛽𝛥𝑡
− 𝐴𝑛+1. 

 
We find 𝑎 from the first equality: 

 

𝑎𝑛+1 −
1

𝛾Δ𝑡
𝑣𝑛+1 =

1

𝛾Δ𝑡
𝐴𝑛+1,   𝑎𝑛+1 =

1

𝛾Δ𝑡
(𝑣𝑛+1 +𝐴𝑛+1). 

 
Let's write down the obtained formulas of Bossack’s method for solving a nonlinear oscillator near 

the assembly catastrophe: 
 

𝛽𝛥𝑡(𝑎̄𝑥𝑛+1 +𝑏 + 𝑥𝑛+1
3 ) + 𝛾𝐷𝑥𝑛+1 − 𝛽𝛥𝑡𝐶𝑛+1 + 

+
(1− 𝛼)𝛽

𝛾
𝐴𝑛+1 +𝛾𝐷𝐵𝑛+1 − 𝐷𝐴𝑛+1 = 0, 

𝑣𝑛+1 =
𝛾

𝛽𝛥𝑡
(𝑥𝑛+1 +𝐵𝑛+1) − 𝐴𝑛+1, 𝑎𝑛+1 =

1

𝛾𝛥𝑡
(𝑣𝑛+1 + 𝐴𝑛+1). 

(27) 

 
Solution (27) is represented as a curve. 

 

2.4. Programs and Calculation experiments 

The general structure of the developed software consists of modules, the names of which are shown 
in Figure 1. The software was developed in the computer mathematics environment MATLAB. 
 



 
Figure 1. Structure of Software of Modelling Dynamic Systems 
 

The developed fragment of the program in MATLAB, with the help of which the solution is found 

at each time step, has the following form: 
t(i+1) = t(i) + h; 

A_n = -v(i) - (1-gamma)*h*A(i); 

B_n = -x(i) - h*v(i) - (0.5-betta)*h^2*A(i); 

C_n = -al_m*A(i) - g*k2*v(i) - a*k2*x(i) - (k2*x(i))^3 - b; 

D   = betta*h^2*C_n - B_n*k1 - g*k3*h*(gamma*B_n - betta*h*A_n); 

 

A   = k3*betta*h^2; 

B   = 3*k2*k3^2*betta*h^2*x(i); 

C   = (3*k2^2*k3*x(i)^2+a*k3)*betta*h^2 + k1 + k3*g*gamma*h; 

x(i+1) = Newton (x(i)); 

v(i+1) = gamma/(betta*h) * (x(i+1) + B_n)-A_n; 

A(i+1) = 1/(gamma*h) * (v(i+1) + A_n); 

i = i+1; 

 
The obtained dependences of the methods for the considered dynamic systems were tested on 

different values of the initial conditions and model constants. Some of the results are shown in Figure 

2 and Figure 3. Initial Condition is 𝑥(0) = 1; 𝑣(0) = 2. 

  
Figure 2. Result of numeric solution for equation (3) with parameters: left – 𝑎 = 𝑏 = 𝑔 =  1; right – 
𝑎 =  3;  𝑏 =  20;  𝑔 =  4 
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Figure 3. Result of numeric solution for equation (3) with parameters 𝑎 =  0,5;  𝑏 =  1;  𝑔 =  0,2 

 
Classical methods (Euler’s method and Runge-Kutta method) gave less accurate results. 

3. General conclusions 

In the work, the main dependencies are obtained on the basis of the implicit methods of Newmark, 
Bossak and the generalized 𝛼-method for the example of a nonlinear oscillator near the assembly 

catastrophe. Curves of changes are plotted for different values of control parameters. The programs of 
implicit methods of Newmark, Bossack and the generalized α-method, Euler method and Runge-Kutta 
method with automatic step selection for the solution of a nonlinear oscillator near the assembly 

catastrophe are also implemented. Appropriate software for modeling deterministic nonlinear systems, 
which are described by Cauchy problems of the second order for ordinary differential equations, has 
been developed. 
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