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Abstract
Declarative process discovery algorithms aim to identify a subset of relationships between process’
activities (“constraints") that implicitly define the acceptable behavior of a process given a bag of its
execution traces. Declarative process models have proven effective in dealing with loosely-structured
processes and complex domains. This paper proposes a declarative approach to mine constraints over a
set of process variants that satisfy user-defined optimization criteria and preferences. We implement the
approach using Answer Set Programming, a declarative paradigm developed in logic programming and
non-monotonic reasoning.
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Process Discovery (PD), one of the main Process Mining tasks, is concerned with algorithmically
finding (“mining") a model for an unknown process by using its execution traces as input [1].
There exist multiple process modeling languages to define process models. However, one can
identify two main categories of process models: procedural (or imperative) and declarative.
Procedural approaches are most suited to stable, well-established processes, while they are
lackluster when applied to complex or poorly specified, loosely-structured ones [2]. Procedural
models attempt to describe the desired behavior of the process explicitly. For example, the most
common formalism to define procedural process models is the Petri net - an automaton-like
computational model whose accepted language should be the set of possible process traces. On
the other hand, declarative models implicitly describe a process by a set of constraints process’
traces must not violate to be considered compliant. That is, while procedural models attempt
to describe processes explicitly, declarative models shrink the space of allowed behavior the
process can exhibit [2].

One of the most common modeling languages for expressing declarative process models is
Declare [2], a collection of constraint templates whose semantics is rooted in linear temporal
logic over finite traces (LTL𝑓 ; [3, 4]). Declare templates enforce temporal conditions between
process’ activities; “instantiations” of templates (e.g., the “binding” of specific activities to the
template’s parameters) are called constraints. A Declare model, also called a “map”, consists of
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a set of Declare constraints. Classic process discovery techniques for Declare maps perform
two steps [5]: a generation phase that finds candidate constraints to include in the model and a
pruning phase that considers quality measures such as support, confidence, and interest factor
of the candidate constraints [6]. In general, due to the exponential number of candidate models,
it is infeasible to fully explore the generation phase’s search space, even limiting its scope to
constraints above a fixed support threshold. Hence, currently available tools to mine Declare
maps [7, 8] let users choose a subset of templates to be mined or a subset of activities to mine.
The output Declare map can be later repaired (e.g., relaxing, removing constraints from the
model) or enhanced (e.g., adding constraints to adapt to a new log of traces) as customary
in Process Mining. The declarativeness of the Declare modeling language allows analysists
to inspect or even modify models manually [9]. Although efficient implementations of the
pruning phase partially address issues like removing vacuously satisfied, subsumed, redundant
or conflicting constraints [10, 11], Declare maps often require post-processing steps to ensure
desired properties.

One might wonder whether a software system could assist the analyst while performing PD
of Declare maps by singling out a subset of the mined patterns satisfying some user-specified
criteria. To this end, several possible selection criteria and optimality conditions are already
available in the literature [6, 10]. However, the last word on the expected results should always
be in the hands of the analyst, that ideally would love to be left free of defining, trying, and
finally choosing the most appropriate specification for the constraints to be mined. Thus, we
expect such a system to benefit the analyst [12]. Having this in mind, we observe that we can
model the problem of mining Declare maps as a combinatorial optimization problem, where the
optimization criteria should be selected, specified, and combined by the analyst.

These kind of tasks are suitable for being solved in a declarative way by resorting to Answer
Set Programming (ASP; [13]). ASP is a fully-declarative problem-solving paradigm developed
in logic programming and non-monotonic reasoning. Indeed, ASP proved to be a viable solution
for representing and solving many classes of combinatorial optimization problems since ASP
features both a standardized first-order language with declarative semantics [14] and efficient
implementations [15]. The practical applicability of ASP is evident in the effective development
of several academic and industrial applications [16]. The idea of resorting to ASP for solving
problems related to process mining is not entirely new. Recently, Chiarello and co-authors [17]
proposed tackling the tasks of conformance checking of Declare maps and generating logs
compliant to Declare maps using Answer Set Programming. Their approach models the LTL𝑓

formulae definitions of Declare constraints via deterministic finite automa [3]. Hence, confor-
mance checking amounts to simulating the automata runs over the log’s traces. Similarly, the
generation of compliant traces amounts to searching for a string accepted by all (the automata
corresponding to) Declare constraints in the model - or rejected by at least one of the constraints
in the case of non-compliant traces.

Going forward in this direction, we aim at implementing a versatile system for mining Declare
maps via ASP. Users can express their optimization criteria, preferences, and domain knowledge
through logic programs, and the system will compute - for a given input log - the optimal
constraints to include in the model to meet users’ specifications. The main language feature
for expressing optimization problems via ASP is the weak constraint. Weak constraints assign
a cost to each answer set, on multiple priority levels. Stacking weak constraints on different



priority levels allows users to express complex preference criteria. ASP systems optimize weak
constraints in a multi-level fashion, in decreasing order of priority level. This approach is meant
to prune the space of possible Declare candidate maps by exploiting the user’s preferences
as an objective function. The approach is suited to integrate well-known vacuity-detection
techniques [10] and constraints subsumption hierarchies [11] to prune the search space and
will allow analysts to include domain knowledge to guide the mining while reducing the need
for post-processing of mined maps.

Prototype development status and future work. We report that we have developed a
prototype system implementing the proposed approach. In particular, the systems encodes
an input XES log into a set of ASP facts and uses a logic program to compute which Declare
constraints hold on the log’s simple traces. This information is exploited to extract the safe
model, the set of Declare constraints that are satisfied by every trace in the log. User-defined
criteria are then used to extend the safe model with Declare constraints that are not safe. As
outlined previously, users can write logic programs - featuring weak constraints - to express
their preferences. Examples of easily-expressible criteria include stating that certain traces in
the log should be rejected (or accepted) and that certain constraint types should be preferred
(or completely avoided) between some activities. As previously stated, the user can compose
these criteria and assign them different priorities. These preferences are taken into account
when extending the safe model with unsafe constraints. Thus user’s specifications become
the reason to include unsafe behavior in the model. The optimal answer sets obtained as a
result are interpreted as Declare maps, for the sake of integration with existing Declare toolsets.
Furthermore, since the input to the optimization logic program is a set of facts, any existing
mining tool can substitute the mining module in the proposed framework.

Preliminary results on standard logs seem encouraging in terms of performance and flexibility.
The time to obtain optimal pattern sets is in the order of minutes on a common laptop. We plan
to perform thorough experiments on benchmark logs to outline the strengths and weaknesses
of our proposal. Ongoing and future development efforts are devoted to supporting different
optimization criteria and to including redundancy detection in the mining phase. We will
also investigate the opportunity of supporting “heterogeneous models” combining constraints
expressed via multiple formalisms (i.e., not only expressed in pure ASP or Declare, for example
we could target DCR Graphs [18]), subject to shared, user-defined optimization criteria.
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