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Abstract
Domains such as business processes and workflows require working with multi-dimensional ordered

objects. There is a need to analyze this data for operational insights. For example, in business processes,

users are interested in clustering process traces to discover per-cluster process models that are less

complex. Such applications require the ability to measure the similarity between data objects. However,

measuring the similarity between sequence-based data is computationally expensive. We present an

intuitive and user-controlled approach to summarize sequence-based multi-dimensional data. Our

summarization schemes provide a trade-off between the quality and efficiency of analysis tasks. We also

derive an error model for summary-based similarity under an edit-distance constraint. Evaluation results

over real-world datasets show the effectiveness of our methods.

1. Introduction

Many application domains produce data in the form of multi-dimensional sequence of objects.

For example, in business processes, an underlying process model is represented as a directed

acyclic graph of activities, the traces generated from the execution of the model are regarded

as instances of the underlying model. Each trace consists of a sequence of activities sorted

by time, where each activity in the trace appears in the process model and may be repeated
1
.

Figure 1 shows an example of a loan application process model, along with a sequence of

activities—with multi-dimensional attributes—that represent a possible execution trace of the

model. For example, an activity can contain information about the responsible person and

department, the person who performs the activity, and the group to which she belongs. As an

example from another domain, Figure 2 shows a sample trace of a semiconductor manufacturing

workflow, where activities are sequenced and have multi-dimensional attributes, such as the

sector where the activity is performed and the person responsible for it.

There is a need to get operational insights from such datasets. For example, in business

process management, discovered models are often complex and difficult to comprehend [1],

so users cluster process traces and applying process discovery algorithms [2] on each cluster.

These latter models tend to be both less complex and more accurate since there is less diversity
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Timestamp,Responsible,Department,Trace,Resource,Activity,Group
09/22/15 10:16 AM,Resource21,General,Trace-11,Resource21,Record loan application,Group 1
09/26/15 08:10 AM,Resource21,General,Trace-11,Resource10,Request credit report,Group 4
10/01/15 03:05 PM,Resource21,General,Trace-11,Resource21,Review credit report,Group 1
10/15/15 10:00 AM,Resource21,General,Trace-11,Resource15,Verify employment,Group 2
10/20/15 12:30 PM, Resource21,General,Trace-11,Resource15,Review loan application,Group 1
10/31/15 04:30 PM,Resource21,General,Trace-11,Resource21,Send approval,Group 4

Figure 1: Loan application process and a
sample trace.

Activity Sector Responsible
Pull wafers CONTROL A

Record Wafer IDs / Attach Wafer ID Map CONTROL A
Initiator Coordination INIT ATTN A

lamp degas in chamber E METAL B
sputter etch in chamber D METAL B

low stress 10 kW TaN - Rs monitor METAL B
lamp degas in chamber E METAL B
sputter etch in chamber D METAL B

low stress 10 kW TaN METAL B
Wafer transport to 1-2 from 7-2 DIEL C

200C 1000W Lo OH  oxide DIEL C
transport from 1-2 to 5-2 DIEL C

Figure 2: Sample trace of a semiconductor
manufacturing workflow.

among the traces within a cluster. In another example, scientists are interested in querying the

provenance of workflow executions to look for executions similar to the one in their query.

Analyzing multi-dimensional sequence data poses a number of challenges. The first is

computational complexity. For example, using edit-distance to capture the similarity between

sequences [3] is computationally expensive since edit-distance is quadratic to the sequence

length and business processes sequences in can consist of hundreds of items. This is especially

challenging when dealing with large datasets and in applications such as traces clustering,

where a lot of similarity computations need to be calculated. This complexity can lead to delays

that affect interactive applications, such as similarity search, where users interact directly with

the application and expect results in a timely manner. The second challenge is to combine

multi-dimensional attributes of data with the sequential structure between data objects into

a unified approach. Edit-distance, for example, only considers the number of operations to

transform one trace into another.

We employ summarization schemes to enable efficient analysis of multi-dimensional data

under edit-distance constraints. We focus on analysis tasks that are based on edit-distance

because it is a widely used measure for similarity. Sections 2 and 3 introduce the key approach:

instead of performing the analysis on the original high-dimensional data, which is computa-

tionally expensive, we transform the data into a summary or embedding space that has fewer

dimensions, so that the same analysis can be computed more efficiently. Section 4 introduces

our topic-summarization schemes to incorporate the multi-dimensional attributes of data items

into the analysis and produce summaries that capture the semantics of process traces, while

enabling the flexible trade-off between quality and efficiency of analysis tasks on summaries.In

Section 5, we develop an error model for the edit-distance measure in the summary space to

provide some guarantees for the results of analysis tasks on summaries. Finally, Section 6 shows

the effectiveness of our summarization scheme on a number of datasets.

2. Trace Summarization Approach

We assume the existence of an original dataset that consists of a set of process traces or logs of

workflow executions. Running an analysis, which would typically be computationally expensive
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Figure 4: Topic-based representation of the
process in Figure 1.

due to the high-dimensionality of the data, provides results which are deemed as exact or

“ground truth" answer. As shown in Figure 3, our approach is to transform the original data into

a new summary space with fewer dimensions, thus avoiding the computationally expensive

analysis on original data. The output of any analysis in the summary space is an approximation

of the “ground truth". To show the practicality of our proposed approach, we need to address

the following challenges: (1) How to generate summaries of data in a controlled and intuitive

manner, and (2) Relate the approximate results on summaries to the results on original data?

To address these two challenges, we define sequential-order-preserving summarization and

introduce a summarization scheme that is intuitive and give users more control over the resulting

summaries. We also present an error model for summary-based similarity measure under edit-

distance constraint and show that it provides guarantees over the results of clustering and

similarity search tasks.

3. Definitions

A multidimensional set O is a set of objects O and a set of associated attributes A = (𝒜1,𝒜2, ...,
𝒜|A|): O = ⟨O,A⟩, each object 𝑜 ∈ O is defined as a tuple: 𝑜 = (𝒜1(𝑜),𝒜2(𝑜), ...,𝒜|A|(𝑜)), in

which each 𝑖-th dimension corresponds to the value of attribute 𝒜𝑖 of 𝑜, denoted as 𝒜𝑖(𝑜).
A Multidimensional Sequence p of size 𝑚 on a multidimensional set O is defined as an ordered

set of 𝑚 objects in O : p = (𝑝1, 𝑝2, ..., 𝑝𝑚), 𝑝𝑖 ∈ O, 1 ≤ 𝑖 ≤ 𝑚. We denote 𝜄p(𝑝) as the index,

or position, of an object 𝑝 in a sequence p. In the above definition, 𝜄p(𝑝𝑖) = 𝑖,∀1 ≤ 𝑖 ≤ 𝑚.

For example, Figure 2 presents a sequence of objects defined on a multidimensional set with

three attributes: Activity, Sector, and Responsible.

Our interest is in different forms of summarization of multidimensional sequences to improve

efficiency of sequence analysis. Before defining summarization of sequences, we define the

notion of many-to-one mapping of objects between multidimensional sets as an object mapping

function f from an original multidimensional set O to a summary set S , f : O → S , so that

for each 𝑝 ∈ O,∃!𝑠 ∈ S : 𝑠 = f (𝑝).

Definition 1. A f -summarization of a sequence p on O is defined as a summary sequence s
on S , denoted as s = f (p), where each object 𝑝 ∈ p is replaced by its many-to-one mapping f :
𝑠 = f (𝑝), while retaining the same index 𝜄s(𝑠) := 𝜄p(𝑝).

A summarization of a sequence is said to preserve the sequential relationship from the original

sequence if it satisfies the following definition:



Definition 2. A f -summarization of a sequence p, denoted as s = f (p), is a sequential preserving
summarization of p if: ∀𝑝, 𝑝′ ∈ p, if 𝜄p(𝑝) < 𝜄p(𝑝

′), then 𝜄s(𝑠) ≤ 𝜄s(𝑠
′), with 𝑠 = f (𝑝), 𝑠′ =

f (𝑝′).

By retaining the indices of objects in the original sequence, f -summarization (c.f, definition 1)

preserves sequential relationships, which is vital in improving the efficiency of sequence analysis.

Therefore, we define the notion of reduced f -summarization, in which adjacent duplicate objects

in the summary sequence are collapsed to reduce the size of a summarized sequence.

Definition 3. A reduced f -summarization of a sequence p on O is defined as a sequence s on S ,
denoted as s = f *(p), where each object 𝑝 ∈ p is replaced by its f -based mapping 𝑠 = f (𝑝) in s
and, ∀𝑝𝑖, 𝑝𝑖+1 ∈ p, 1 ≤ 𝑖 ≤ |p| − 1, if 𝑝𝑖 = 𝑝𝑖+1, then 𝜄s(𝑝𝑖) = 𝜄p(𝑝𝑖+1).

Theorem 1. A reduced f -summarization is sequence preserving.

Proof. Omitted due to space constraints. Available in [4].

4. Topic-Based Summarization

To incorporate the multidimensional attributes of a sequence’s data items, we begin by outlining

Attribute-based summarization as an f -summarization
2

where f is a mapping on O . This

scheme provides an intuitive way for users to choose attributes as a summarization criteria and

produces summaries that are easy to interpret. It does not give users control over the average

length of summarized sequences, which we refer to as resolution. This is because attribute

values are static and already defined with the original data.

Longer summarized sequences are more expensive to analyze, but attribute-based summariza-

tion offers little control in the sequence length. We seek a way for users to trade-off between

efficiency and accuracy of data analysis. For example, for similarity search, users might tolerate

false positives (e.g., 0.9 false positive rate) for faster response (e.g., results within 5 seconds).

We observe that business processes can often be represented by higher-level process models of

fewer dimensions. Figure 4 shows an example of a more abstract version of the process model

in Figure 1, where each activity corresponds to multiple activities in Figure 1.

We propose a topic-based summarization technique that captures the many-to-one mapping

from the original sequences to one with fewer dimensions, where each topic is an abstract

representation of a set of original dimensions. Since the topics are implicit from the original

sequences, we first perform dimensionality reduction on the original sequences to transform

the original dimensions to topics. Then, we define the notion of topic-based summarization

using the new representation.

Algorithm 1 highlights the main steps in the topic-based summarization process. Before

applying dimension reduction techniques to the original sequences (Line 3), it is important

to have an appropriate data representation for sequences (Line 2). We begin by selecting an

attribute of the original sequences and transform multidimensional sequences to the appropriate

attribute-based summarization. It is often intuitive to pick the attribute with the most number

2

Unless explicitly stated, a summarization will refer to reduced summarization.



Algorithm 1 Topic summarization process steps

1: procedure GenerateKTopicSummarization(S, 𝜅, O , 𝜆)

2: M = Generate_Vectors(S) (by Equation 1)

3: M′
, W = Dim_Reduction(M, 𝜅)

4: // Calculate pairwise similarities 𝜃(𝑎𝑖, 𝑎𝑗)
5: for each pair (𝑎𝑖, 𝑎𝑗) ∈ O do
6: 𝒮𝑖𝑗 = 𝐶𝑎𝑙𝑐𝑆𝑖𝑚(𝑎𝑖, 𝑎𝑗)

7: // Perform hierarchical clustering
8: ℋ = hierarchical_clustering(𝒮)
9: // Flatten the hierarchy ℋ

10: C = flatten_hierarchy(ℋ, 𝜅)
11: return C

of dimensions as this attribute likely captures the most essential information about the objects

in the original multidimensional set. For example, in Figure 2, Activity is the attribute with the

most number of dimensions and it is also the base attribute to represent sequences, while other

attributes, such as Sector and Responsible, provide supporting information for Activity.

We then represent each sequence p as a numeric vector (𝜗1, 𝜗2, ..., 𝜗|𝒜*|), where 𝒜*
is the

base attribute set that sequences are transformed to in the first step and |𝒜*| is the number of

dimensions on 𝒜*
. We measure 𝜗𝑖 for p in a way that captures both the local importance of

each dimension and its specificity to a sequence. To capture the local importance, we use the

frequency of the 𝑖-th dimension in p, denoted as tf𝑖p, that is defined by the number of items in

p whose values equal the 𝑖-th dimension of 𝒜*
, denoted as 𝑎𝑖. To capture the specificity, we

use the popularity of a dimension across all sequences: df𝑖 = |{p ∈ S|𝑎𝑖 ∈ p}|, where S is the

set of all sequences. Intuitively, the higher df𝑖 is, the more popular the 𝑖-th dimension is and

thus, the less specificity it is to a sequence. The formulation of 𝜗𝑖 is as follows:

𝜗𝑖 =

{︃
(1 + 𝑙𝑜𝑔(tf𝑖p))× 𝑙𝑜𝑔( |S|

df𝑖
) if 𝑎𝑖 ∈ p

0 otherwise

(1)

After representing sequences as vectors, the set of sequences S can be represented as a matrix

M, whose size is |S|×|𝒜*| where each row corresponds to a vector representation of a sequence

in S. With this matrix representation, we can apply off-the-shelf dimension reduction techniques

on M, such as non-negative matrix factorization (NMF), principle component analysis (PCA),

or singular value decomposition (SVD), among others (Line 3). The results of these techniques

can be presented as two matrices M′
and W. M, whose size equals |S| × 𝑘 with 𝑘 being the

number of new dimensions (i.e., 𝑘 = |S |), represents the original sequences on the summary

space. W, whose size equals |O|×𝑘, represents the original dimensions on the new dimensions,

or topics (i.e., each row is a vector representing the distribution of an original dimension over

the set of new dimensions).

After dimensionality reduction, we produce a many-to-one mapping from the original dimen-

sions to topics (Line 6). Two dimensions 𝑎𝑖, 𝑎𝑗 in the original space are likely to be in the same

topic if their corresponding vectors in W have high similarity (e.g., using Cosine similarity).

In addition, 𝑎𝑖 and 𝑎𝑗 are likely to be in the same topic if they frequently appear next to each

other in a sequence (i.e., they represent two closely related activities in the underlying process

model). From these insights, we model the problem of finding an optimal many-to-one mapping



from the original dimensions to topics as a constrained optimization problem:

argmax

f

𝜆 ·
∑︁

f (𝑎𝑖)=f (𝑎𝑗)

𝜃(𝑎𝑖, 𝑎𝑗) + (1− 𝜆) ·
∑︁

(𝑎𝑖,𝑎𝑗)

𝜔(𝑎𝑖, 𝑎𝑗)𝜃(𝑎𝑖, 𝑎𝑗)

subject to f : O → S

∀𝑎𝑖, 𝑎𝑗 ∈ O, if f (𝑎𝑖) ̸= f (𝑎𝑗), then 𝑎𝑖 ̸= 𝑎𝑗 .

|S | = 𝑘.

(2)

where 𝜃(𝑎𝑖, 𝑎𝑗) is the similarity between dimensions 𝑎𝑖 and 𝑎𝑗 based on their corresponding

representation in W, 𝜔(𝑎𝑖, 𝑎𝑗) is the number of times 𝑎𝑖 and 𝑎𝑗 are adjacent in input sequence

set S, and 𝜆 is used to bias towards similarity between dimensions or the number of adjacent

appearances. We now can formally define the notion of topic summarization as follows:

Definition 4. (𝑘-Topic Summarization) A 𝑘-topic summarization of sequences from original
multidimensional set O to a summary set S is defined as a reduced 𝑓 -summarization, where the
mapping f is the solution of the optimization problem defined in (2).

Finding an optimal k-topic summarization is NP-hard (a variant of the set partitioning

problem). We take a greedy heuristic approach similar to the agglomerative clustering algorithm

(Line 8). It starts by treating each original dimension as a singleton cluster, then merging nearby

pairs of dimensions until all clusters have been merged into a single cluster. This step creates

a hierarchy where each leaf node is a dimension and the root is the single cluster of the last

merge. Because we want a partition of disjoint 𝑘 clusters as the new dimensions, the next step

is to cut the hierarchy at some point to obtain the desirable number of clusters. To find the

cut (Line 10), we find the minimum similarity threshold so that the distance between any two

dimensions in the same cluster is no more than that threshold and there are at most 𝑘 clusters.

5. Error Model for Edit-Distance on Summaries

We seek to relate the approximate results of analysis tasks on the summary space to those on

the original space. Since a similarity measure underlies a lot of analysis tasks, such as similarity

search and traces clustering, we focus on the relationship between the similarity of sequences

on the summary space with that on the original space under edit-distance constraint: ed(p,q)
& ed(f (p), f (q)), where ed is the edit-distance function and f is a summarization function. We

select edit-distance as the similarity measure because it captures both the structural similarity

(i.e., whether two sequences consist of data items in similar order) and content-based similarity

(i.e., whether two sequences share similar set of data items) between sequences. Furthermore,

edit-distance’s results, presented as a chain of edit operators to transform a sequence to the

other, can be easily interpreted by users, which makes it widely popular in practice.

In terms of the relationship between ed(p,q) and ed(f (p), f (q)), we are interested in the

contractive property.

Definition 5. Given a summarization f , we said that the edit-distance measure satisfies the
contractive property on f if ed(p,q) ≥ ed(f (p), f (q)),∀p,q.

The contractive property guarantees that performing edit-distance based similarity search

on the summary space using f will yield results with 100% recall [5]. Specifically, given



a query sequence p and an edit-distance threshold 𝜒, the similarity search task needs to

find all sequences in the sequence set S that have edit-distance with p smaller or equal than

𝜒: S* = {q ∈ S|ed(p,q) ≤ 𝜒}. If the contractive property holds for a summarization

f , it is sufficient to find all sequences q that satisfy the threshold 𝜒 on the summary space:

S̄ = {q ∈ S|ed(f (p), f (q)) ≤ 𝜒}. Because if ed(p,q) ≤ 𝜒, then ed(f (p), f (q)) ≤ 𝜒; we can

guarantee that if q ∈ S*, then q ∈ S̄ (i.e., 100% recall).

While the contractive property does not hold in general for edit-distance between summarized

sequences, we show that it holds under certain circumstances. The first of which is when f is a

non-reduced many-to-one.

Theorem 2. If f is a non-reduced many-to-one summarization on O , as defined in definition 1,
then we have: ed(p,q) ≥ ed(f (p), f (q)), ∀p,q on O .

Proof. Omitted due to space constraints. Available in [4].

For reduced many-to-one summarization f , we are able to derive rules to indicate whether the

contractive property holds for edit-distance of a particular pair of sequences p,q.

Theorem 3. Given two sequences p,q in the original space O , if f is a reduced many-to-one
summarization on O , as defined in definition 3, then:

• IfΓp,q ≥ Λf (p),f (q), then we have ed(p,q) ≥ ed(f (p), f (q)); or edit-distance on summary
space by f satisfies the contractive property.

• IfΓf (p),f (q) > Λp,q, then we have ed(p,q) < ed(f (p), f (q)); or edit-distance on summary
space by f does not satisfy the contractive property.

where Λp,q = 𝑚𝑎𝑥(|p|, |q|) and Γp,q = ||p| − |q||, with |p| being the length of p.

Proof. Omitted due to space constraints. Available in [4].

While Theorem 3 does not cover all cases, we empirically show that the number of sequence

pairs whose edit-distances on reduced many-to-one summarization that violate the contractive

property is very small. Thus, it has a high recall for similarity search task.

6. Evaluation

We evaluate the effectiveness and efficiency of our summarization schemes on two analysis

tasks: trace similarity search and traces clustering.

Datasets: We use datasets from multiple domains: the Lithography dataset (596 traces with

1066 types of activities, each having multi-dimensional attributes) is from a real semiconductor

manufacturing process, the BPIC 2015 dataset (1199 traces with 289 activity types) is from a

building permit application process, and the BANK dataset (2000 traces with 113 activity types)

consists of synthetically generated logs from a large bank transaction process. Evaluations were

conducted on a 2.7GHz quad-core Intel Core i7 machine with 16GB of RAM
3
.

3

Results for BPIC experiments are available at [4]. The Lithography dataset is production dataset provided by

IBM and is private. Other datasets is available at https://data.4tu.nl/repository/collection:all.

https://data.4tu.nl/repository/collection:all


k=2 k=5 k=10 k=20 k=50 k=100

Topic 0.000% 0.003% 0.006% 0.007% 0.010% 0.014%
Random 0.002% 0.010% 0.007% 0.021% 0.027% 0.033%

Figure 5: Similarity false negatives: percentage of sequence pairs in the Lithography dataset where
edit-distance in the summary space violates the contractive property.

Summarization schemes: We compare results of analysis tasks using our proposed summa-

rization schemes (i.e., Topic and Attribute), Random summarization, which randomly maps

an original dimension to a new dimension in the summary space, and with the analysis results

on the original space. Although Random-based summaries lack interpretability, as shown

in [6], a random summarization scheme on sequence graph can yield good results. We vary

the number of dimensions 𝑘 in the summary space used by Random and Topic and vary the

attributes used by Attribute.

6.1. Evaluation Results on Similarity Tasks

The contractive property holds for most of the cases, as seen in Figure 5 which shows the

percentage of sequence pairs in the Lithography dataset, out of over 177,000 pairs, whose

edit-distances violate the contractive property in the summary space using 𝑇𝑜𝑝𝑖𝑐 and 𝑅𝑎𝑛𝑑𝑜𝑚
summarization over different number of summary dimensions 𝑘. Since the recall rate is high,

we focus on the false positive rate of the similarity search results.

Evaluation metrics: Given an edit distance threshold 𝜒, the false positive metric tells us that,

out of all sequence pairs that satisfy ed(f (p), f (q)) ≤ 𝜒 on the summary space, how many of

them actually satisfy the threshold in the original space: ed(p,q) ≤ 𝜒.

Effectiveness: Figure 6 shows the effectiveness of the summarization schemes on the similarity

search task for the Lithography, and BANK datasets
4
. The y-axis reports the false positive

results, while the x-axis corresponds to different edit-distance thresholds. As expected (Figure 6a,

6b, 6d, 6e), the higher the number of dimensions in the summary space (denoted by 𝑘), the

better the result (i.e., lower false positive rates). That is because, with more dimensions in the

summary space, summaries of sequences more resemble the original sequences. Thus, there is

little difference between edit-distances on the summary space and in the original space.

Comparing the summarization schemes on the same number of dimensions, Random out-

performs Topic (at the cost of interpretability and efficiency, as we will show later). For

Attribute (Figure 6c), since we cannot control the number of dimensions (as it depends on

the attribute data), the quality of the results also depend on the chosen attribute. Specifically,

the 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝐵𝑦5
attribute outperforms 𝑆𝑒𝑐𝑡𝑜𝑟 and 𝑇𝑜𝑜𝑙. This is in part because there are

more dimensions on 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝐵𝑦’s summary space, and thus the summaries on the 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝐵𝑦
space more resemble the original sequences. 𝑆𝑒𝑐𝑡𝑜𝑟 and 𝑇𝑜𝑜𝑙 produce similar results, since

similar 𝑇𝑜𝑜𝑙s are often used in the same 𝑆𝑒𝑐𝑡𝑜𝑟.

4

We only evaluate Attribute summarization on the Lithography dataset because this dataset’s attributes

provide better semantics compared with BANK.

5

Three main activity attributes are used on the Lithography data: 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝐵𝑦 represents the person in

charged of the activity; 𝑆𝑒𝑐𝑡𝑜𝑟 represents the area/department where the activity is taken, and 𝑇𝑜𝑜𝑙 represents the

tool used to perform the activity.
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Figure 6: False positive rates by different summarization schemes on similarity search task using the
Lithography, and BANK datasets.
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Figure 7: Efficiency comparison of processing time between Random and Topic summarizations using
the Lithography, and Bank datasets.

Efficiency: To evaluate the efficiency of the summarization schemes, we vary the number of

dimensions 𝑘 in the summary space and measure the time to calculate the edit-distance between

all pairs of sequences. We see in Figure 7, that for both Random and Topic, larger 𝑘, which

leads to longer longer sequences in the summary space, results in longer processing time. For

similar values of 𝑘, Topic outperforms Random, which verifies Topic’s ability to capture the

semantic relationship between the original dimensions, and thus significantly reduces the size

of sequences in the summary space, as well as the processing time. More importantly, even at

different values of 𝑘 where we observed similar effectiveness of results by Random and Topic

(e.g., 𝑘 = 2 with Random and 𝑘 = 10 with Topic on the Lithography dataset in Figure 6),

Topic is still much more efficient than Random.

6.2. Evaluation Results on Traces Clustering

Evaluation metrics: We evaluate the clustering results using process-specific metrics [3]:

weighted average conformance fitness, and weighted average structure complexity. While
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Approach
N=3 N=4 N=5

Arcs Places Trans. Arcs Places Trans. Arcs Places Trans.
Original ED 3930 1505 1964 3419 1328 1709 3508 1356 1753
Topic 3855 1474 1927 3261 1269 1630 2685 1061 1342
Random 3959 1500 1979 3733 1418 1866 3552 1351 1775
Sector 3697 1429 1848 3043 1195 1521 2775 1094 1387
Tool 3722 1441 1860 2792 1110 1396 2758 1104 1379
Tracked By 3482 1357 1741 2827 1121 1413 2650 1051 1325

Figure 9: Traces clustering results’ structural complexity com-
parison. (Green and red boxes denote best and worst results, res-
pectively.)

the process model’s conformance fitness quantifies the extent to which the discovered model

can accurately reproduce the recorded traces, the structure complexity quantifies whether the

clustering results produce process models that are simple and compact. Given a summarization

scheme, we first transform all sequences to the summary space, and then perform traces

clustering (using hierarchical clustering) with edit-distance as the similarity measure. Then,

a process model is generated for each cluster using the Heuristic mining algorithm [7] and

then converted to the Petri-Net model for conformance analysis. Given the Petri-net model,

we use two publicly available plugins from the ProM framework [8] for fitness and structural

complexity analysis: The Conformance Checker Plugin is used to measure the fitness of the

generated process models and the Petri-Net Complexity Analysis Plugin is used to analyze the

structural complexity of the process models. After fitness and complexity scores are calculated

for each cluster, the final scores are calculated as the average score over all clusters, weighted

by the cluster size.

Effectiveness of summarization schemes: Figure 8 highlights the conformance fitness of

the clustering results in the summary space by different summarization schemes
6

on the

Lithography dataset. Surprisingly, using summarization schemes not only helps improve

the efficiency of the clustering task (as we showed earlier in the efficiency evaluation), but also

helps produce clusters with process models of higher fitness, compared with the clustering

results in the original space. The trend is similar when varying the number of clusters 𝑁 . That

is because measuring trace similarity on the summary space helps remove noise that often

exists when measuring similarity using the original representation. Among summarization

schemes, Attribute helps produce clustering results of higher conformance fitness (especially

when using the 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝐵𝑦 attribute). That is because Attribute summarizations capture

better the semantic relationship between traces (e.g., traces are similar if the corresponding

sequences of 𝑆𝑒𝑐𝑡𝑜𝑟, 𝑇𝑜𝑜𝑙, or 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝐵𝑦 are similar).

In terms of the structural complexity (Figure 9), Attribute summarizations outperform

other summarization schemes, again due to its ability to capture semantic relationships between

traces, producing clusters whose process models capture traces with similar semantics, and

thereby having simpler model structures. On the other hand, Random , unable to capture the

semantic relationships between traces, is the worst performer.

6

We use 𝑘 = 2 for Random, and 𝑘 = 20 for Topic, as these are similarly effective for similarity search.



In both conformance fitness and structural complexity tests, Topic summarization approaches

Attribute. Unlike Attribute summarization, which does not give users control over the

resolution of the summaries, Topic summarization provides a qualitative advantage in offering

a tunable parameter, 𝑘, to trade-off between the effectiveness and efficiency in the analysis task.

7. Related Work

Subsequence mapping and sequence retrieval is an active area of research. One common approach

is to summarize original sequences using q-grams [9, 10] and measure the similarity between

two sets of q-grams. DRESS [9] uses the most frequent codewords as references to identify a set

candidate matches of a query. MinSearch [10] partitions strings into a hierarchy of substrings

and builds an index comprised of a set of hash tables, so that strings having common substrings

and thus small edit distance are grouped into the same hash table. These methods do not

preserve the sequential relationship between data items from the original sequences, and do

not consider sequences of multi-dimensional attributes of each data item.

Graph similarity and mining focuses on transforming the original graph – based on graph

substructures e.g. trees [11], branches [12] – to a compact representation before measuring sim-

ilarity. Recent techniques [13] make use of disjoint substructures of graphs to capture structural

differences between graphs. Theses graphs lose their representation and interpretability after

being transformed into substructure representation.

Embedding methods [14][15][16] improve efficiency of similarity search on complex data. Few

of the embedding approaches guarantee properties of similarity measure on the embedding space,

such as contractive property. For example, it may require that the similarity measure between

data on the embedding space to be from a specific family of measure (e.g., Minkowski metric).

Furthermore, techniques that transform original sequences into vector-based representation do

not maintain the sequential relationship between data items on the new representation.

There has been a significant amount of research on various topics related to graph summa-
rization. We refer the reader to the following surveys [17, 18]. OLAP [18] enables interpretable

summaries of original graph at various resolutions as aggregate graphs. Chen et al. [6] show

that random summaries are capable of mining frequent graph patterns and effectively reduce

the size of original graph. In this work, besides using explicit attributes, we leverage the implicit

topics as summarization criteria. We also show that, different from general graphs, random

summarization on sequences, although produces good effectiveness, suffers from efficiency.

Efforts to address scalability issues in business process analysis focuses either on process

model discovery of complex traces [19], or the use of vector space-based dimensional reduction

to improve the performance of traces clustering [20]. Our focus is on improving efficiency of

traces clustering and similarity search under edit-distance constraint.

8. Conclusions

We introduce a method to perform efficient analysis on sequence-based multi-dimensional data

using intuitive and user-controlled summarizations. We define a topic summarization scheme

that offer flexible trade-off between quality and efficiency of analysis tasks and derive an error



model for summary-based similarity under an edit-distance constraint. The approach was found

to be both effective and efficient based on evaluations on real-world process datasets.
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