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Abstract
In this short paper, we propose a method based on Statistical Model Checking to formally verify the
prediction accuracy of surrogate models of Cyber-Physical Systems learned from simulation data. We
show how surrogate models, trained with any desired Machine Learning algorithm and certified via our
approach, can aid simulation-based formal verification techniques by greatly reducing the overall total
number of model simulations needed. Our preliminary experimental evaluation over a Modelica model
of a water pumping system shows that the proposed approach is viable in real-world scenarios.
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1. Introduction

The task of formally verifying properties of Cyber-Physical Systems (CPSs) is a crucial one in
systems engineering. Unfortunately, real-world CPSs can often be analysed only by simulation,
as they are either too complex to make symbolic analyses feasible, or are protected by intellectual
property, thus only treated as black-boxes. Simulation-based verification methods, however,
suffer from the fact that the number of simulations to perform, i.e., the number of operational
scenarios to consider, is typically so large that its full exploration is impossible or infeasible
[1, 2]. In [3], we proposed an approach to verify properties of CPSs using Statistical Model
Checking (SMC) in a fully simulation-based fashion. Such an approach exploits 𝒜𝒜 [4], a Monte
Carlo sequential estimation algorithm, to produce a statistically accurate estimation of the
expected value of simulation outputs. Although promising, such a method needs a large number
of simulations (hence, long computation times) to produce accurate estimates. In this short
paper, we propose a method to formally certify a surrogate model 𝑀 , i.e., an approximation of
the system under verification learned from simulation data via SMC so that the property can
be statistically verified over 𝑀 using the approach from [3] with formal guarantees over the
result. Preliminary experimental results show that the whole process of learning, certifying and
verifying the surrogate model requires drastically fewer simulations than our previous fully
simulation-based verification approach while guaranteeing, under fair assumptions over the
surrogate model prediction accuracy, the same statistical guarantees.
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2. Related Works

In this paper, we extend [3] by investigating new computational methods based on surrogate
models and Statistical Model Checking (SMC) to verify safety-/mission-critical Cyber-Physical
Systems [5] such as, e.g., smart grids [6, 7, 8, 9], automotive systems [10, 11, 12] and biological
systems [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. The limitations deriving from well-known
formal approaches such as numerical techniques, logics or automata [25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35] require the usage of SMC as enabling strategy to make the verification feasible
for industrial practice. SMC is Monte Carlo-based technique that relies on Hypothesis Testing
[36, 37, 38], Estimation [7, 39, 40, 4], and Bayesian analysis [41, 42] to sample new operational
scenarios until statistical assurances on desired safety properties are provided. In such a way,
we can counteract typical limitations such as the huge number of operational scenarios, namely
scenario explosion [1, 43, 44, 45, 46, 47] or the system’s complexity to evaluate quantitative and
quantitative properties of interest. The literature (see, e.g., [48, 49]) presents several simulation-
based tools [50, 51, 52, 53, 54] that need specific system modelling through some kind of
structure (e.g., Discrete Time Markov Chain, Continuous Time Markov Chain [55, 56], Probabilistic
Timed Automata [57]) to generate on demand all needed trajectories for the verification. To
the best of our knowledge, no existing approaches and tools integrate a surrogate model as a
system approximation to carry out verification activities. The formal certification of surrogate
models falls within the field of Probably Accurately Correct (PAC) function learning, which
has been studied extensively in the last decades (see, e.g., [58, 59]). Existing methods (see,
e.g., [60, 61, 62, 63]), however, do not aim at minimising the total number of function samples
(i.e., simulations) and take a pre-defined number of samples derived from theoretical statistical
bounds such as the Chernoff-Hoeffding Bound [64]. Finally, [65] proposes a method to perform
Statistical Model Checking of CPSs using surrogate models and conformal inference. While
such a method shares a similar goal with ours, it suffers from a combinatorial explosion in high
dimensions as it tries to learn accurate surrogate models in subregions of the input space. Our
approach, on the other side, leaves the burden of sampling the input space to the 𝒜𝒜 algorithm,
which, in turn, guarantees the accuracy of the estimation while minimising the number of
samples, independently of the input dimension.

3. Estimation-based Verification of Cyber-Physical Systems via
Statistical Model Checking

In this section, we summarise the work done in [3] on the verification of Cyber-Physical
Systems via Statistical Model Checking and numerical simulation. The proposed approach aims
at establishing if the expected value of a given KPI exceeds or not a user-defined threshold.
We exploited an optimal (𝜀, 𝛿)-approximation algorithm that provides an estimate �̂� of the
desired expected value 𝜇 in which the accuracy has a (multiplicative) relative error of at most
𝜀 with probability at most 1 − 𝛿. Such an algorithm guarantees the usage of the minimum
number of required samples up to a constant factor. It avoids computing the expected value
over the (possibly infinite) complete set of all relevant operational scenarios. We developed
a message-passing based parallel implementation of the optimal Approximation Algorithm



(𝒜𝒜) [4] described by 1 orchestrator and 𝑛 workers. Each worker produces new samples via
numerical simulation of a given simulable model of a CPS, whereas the orchestrator updates
the 𝒜𝒜 algorithms as soon as a new sample is available and handles all new inputs needed
by each worker. We evaluated the viability of the approach on the Pumping System (PS), a
Modelica system deployed via the Modelica Standard Library. PS is a pumping control system
for drinking water described by an ingoing source pumped by a pump into a tank and outgoing
sink water that models the users. The control component outputs the pump engine’s rotational
speed to regulate the tank’s water level so that the system can keep the water level around 2.2
meters. In our experimental evaluation, we used the Mean Relative Absolute Error (MRAE) of
the water level w.r.t. a reference value as the KPI and compared the computational performance
of our method with several values for 𝜀 and 𝛿.

4. Formal Certification of Surrogate Models

This section describes our surrogate-based approach to reduce the number of simulations needed
to perform the verification task described in Section 3. Let 𝑊 be a set of scenarios in which the
system under verification operates and 𝑝(𝑤) be the probability density of scenario 𝑤 ∈ 𝑊 . Let
𝑆 be the function that computes the KPI value (a real number) for a given scenario by simulating
the model of the system. Given 𝜀 and 𝛿 in (0, 1], our goal is to compute an (𝜀, 𝛿)-approximation
�̂� of the expected value of the KPI, in order to statistically verify whether 𝜇 is lower than or
equal to a given threshold 𝑃 . We assume the availability of a surrogate model 𝑀 of 𝑆, i.e.,
a real function that approximates 𝑆 over its whole domain. Many techniques exist to learn
such a surrogate model in a simulation-efficient way; in this context, we are only interested
in the model itself and the number of pairs ⟨𝑤, 𝑆(𝑤)⟩, say 𝑁𝑡𝑟𝑎𝑖𝑛, used to train it. Our goal
is to formally certify 𝑀 and its prediction performance in such a way that it can be used
instead of 𝑆 to prove that 𝜇 ≤ 𝑃 by computing its expected value 𝜇𝑀 over 𝑊 . We define
the Relative Absolute Error of 𝑀 w.r.t. 𝑆 for a given 𝑤 ∈ 𝑊 as 𝑟(𝑤) = |𝑀(𝑤)−𝑆(𝑤)|

𝑆(𝑤)+𝜁 , where
𝜁 is a small constant used to avoid division by zero. As the expected value of 𝑟(𝑤) over 𝑊 is
𝜌 =

∫︀
𝑤 𝑟(𝑤)𝑝(𝑤)𝑑𝑤, it is easy to show that 𝜇(1 − 𝜌) ≤ 𝜇𝑀 ≤ 𝜇(1 − 𝜌). However, neither

𝜇𝑀 nor 𝜌 can be computed exactly in finite time (unless with very strict assumptions over 𝑀 ),
as the number of operational scenarios is infinite. Hence, we use 𝒜𝒜 twice to compute two
approximations of such values. First, we compute an (𝜀𝑐𝑒𝑟𝑡, 𝛿𝑐𝑒𝑟𝑡)-approximation �̂� of 𝜌, for
𝜀𝑐𝑒𝑟𝑡 and 𝛿𝑐𝑒𝑟𝑡 in (0, 1] provided by the user. Intuitively, such parameters will determine the
statistical accuracy in the estimation of the expected relative absolute error of the surrogate,
so they will influence the final error bounds over the estimation of 𝜇. Once �̂� is obtained, we
compute an (𝛼, 𝛽)-approximation �̂�𝑀 of 𝜇𝑀 , choosing 𝛼 and 𝛽 in (0, 1] such that

𝜀 ≥ 𝜀′ =
1

2

(︂
2𝛼+ �̂�

(︂
1− 𝛼

1 + 𝜀𝑐𝑒𝑟𝑡
+

1 + 𝛼

1− 𝜀𝑐𝑒𝑟𝑡

)︂)︂
(1)

and 1 − 𝛿 ≤ (1− 𝛿𝑐𝑒𝑟𝑡) (1− 𝛽). It is easy to prove (we omit the proof for brevity) that
(1− 𝜀)𝜇 ≤ (1− 𝜀′)𝜇 ≤ 𝜇�̂� ≤ (1 + 𝜀′)𝜇 ≤ (1 + 𝜀)𝜇, so �̂�𝑀 is an (𝜀, 𝛿)-approximation of
𝜇. This proves that the surrogate model can be safely used to solve the verification problem.
Finally, we note, from eq. (1), that 𝜀′ tend to �̂� as 𝜀𝑐𝑒𝑟𝑡 and 𝛼 tends to 0. This indicates that, no



matter the statistical errors employed in the formal certification of the surrogate model and for
the estimation of its expected value, the final error bound 𝜀 over 𝜇 cannot be stricter than the
prediction accuracy �̂� of the surrogate model. So, our method fails when �̂� > 𝜀, reporting to the
user that the surrogate model is not accurate enough for the verification task.

5. Experimental Evaluation

We evaluated the proposed approach through a comparison with the strategy presented in [3].
Along the same lines, we compared average values of 𝑛 = 10 experiments for 𝜀 = 𝛿 = 0.02
using the two approaches. The fully simulation-based method required, on average, around
6 hours and 60610.3 simulations to produce an (𝜀, 𝛿)-approximation of the expected value
of the KPI (see Section 3) �̂� equal to 0.147. We trained a Support Vector Regressor (SVR)
surrogate model using a dataset of 𝑁𝑡𝑟𝑎𝑖𝑛 = 1000 simulation samples (sampled uniformly at
random). On average the training phase required almost 6 minutes for simulations and 10
seconds for fitting the SVR model. For the formal certification phase, we chose 𝜀𝑐𝑒𝑟𝑡 = 0.05 and
𝛿𝑐𝑒𝑟𝑡 = 0.0049; the surrogate model certification with 𝒜𝒜 required on average 4471 samples
and 26 minutes to produce an estimation �̂� of the model relative absolute error 𝜌 equal to 0.0114.
We chose 𝛼 = 0.006 and 𝛽 = 0.01 for the estimation of the expected value of the surrogate
prediction to get an 𝜀′ ≈ 0.018 < 𝜀 (according to eq. (1)) and 𝛿′ = 0.0149 < 𝛿. The 𝒜𝒜 run on
the surrogate model took, on average, 82162.8 prediction samples and 4 seconds, yielding an
estimate �̂�𝑀 equal to 0.148. Hence, the total time required by the proposed surrogate-based
approach was, on average, almost 32 minutes, i.e., a reduction of approximately 91% w.r.t. the
fully simulation-based approach.

6. Conclusions

In this short paper, we introduced an approach based on Statistical Model Checking to the
formal certification of surrogate models of Cyber-Physical Systems. Our approach exploits the
𝒜𝒜 SMC algorithm to verify the accuracy of the surrogate model while minimising the total
number of model simulations needed. We showed how such certification enables the adoption
of surrogate models to formally verify properties of CPSs and demonstrates the performance
improvement over our previous fully simulation-based method on a real-world case study. In
future work, we plan to extend the proposed method to deal with more complex verification
problems and evaluate it on higher-dimensional problems.
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