
Multi-Models and Multi-Formulas Finite Model
Checking for Modal Logic Formulas Induction
Mauro Milella1, Giovanni Pagliarini1,2, Andrea Paradiso1 and Ionel Eduard Stan1,2,*

1ACLAI Lab., Dept. of Math. and Comp. Sci., University of Ferrara, Italy
2Dept. of Math., Phy., and Comp. Sci., University of Parma, Italy

Abstract
Modal symbolic learning is the subfield of artificial intelligence that brings together machine learning
and modal logic to design algorithms that extract modal logic theories from data. The generalization of
model checking to multi-models and multi-formulas is key for the entire inductive process (with modal
logics). We investigate such generalization by, first, pointing out the need for finite model checking in
automatic inductive reasoning, and, then, showing how to efficiently solve it. We release an open-source
implementation of our simulations.

Keywords
Modal Logic, Machine Learning, Modal Symbolic Learning, Model Checking

1. Introduction

Since the dawn of artificial intelligence (AI), there has been a fundamental separation between
two schools of thought: symbolic AI and non-symbolic AI (e.g., connectionist AI). Machine learning
(ML), that is, the subfield of AI that designs algorithms to build models from data, encompasses a
similar separation: in ML terms, symbolic learning is the process of learning a logical description
(e.g., a decision tree, or a rule-based classifier) that represents the theory underlying a certain
phenomenon, whereas non-symbolic learning is the process of learning a non-logical description
of the same theory (e.g., a deep neural network, or a naive Bayes classifier).

A recent trend in symbolic ML is modal symbolic learning, where the extracted logical
descriptions are based on custom-made modal logic (ML) formalisms (e.g., temporal or spatial
logics, depending on the data at hand). Note that, from the perspective of a logician, symbolic
machine learning can be seen as an induction problem, and it often requires checking the truth
of many logical formulas, which, in turn, is a well-known problem among ML theorists referred
to as model checking. Model checking is the problem of automatically verifying finite state
concurrent systems [1] and, usually, model checker algorithms exhaustively search through

OVERLAY 2022: 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 28, 2022, Udine, Italy
*Corresponding author.
$ mauro.milella@edu.unife.it (M. Milella); giovanni.pagliarini@unife.it (G. Pagliarini);
andrea.paradiso@edu.unife.it (A. Paradiso); ioneleduard.stan@unife.it (I. E. Stan)
� 0000-0001-7128-6745 (M. Milella); 0000-0002-8403-3250 (G. Pagliarini); 0000-0002-3614-2487 (A. Paradiso);
0000-0001-9260-102X (I. E. Stan)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mauro.milella@edu.unife.it
mailto:giovanni.pagliarini@unife.it
mailto:andrea.paradiso@edu.unife.it
mailto:ioneleduard.stan@unife.it
https://orcid.org/0000-0001-7128-6745
https://orcid.org/0000-0002-8403-3250
https://orcid.org/0000-0002-3614-2487
https://orcid.org/0000-0001-9260-102X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the finite state space of the system to assess whether some specification (i.e., property of the
system) is true or not.

In this work, we argue that model checking plays a crucial role in the induction of modal
formulas, and that an efficient model checking algorithm is essential for modal symbolic
learning methods. We show how to extend the typical model checking machinery to check
multiple formulas on multiple models, and experimentally show how memoization (i.e. storing
model checking results for later reuse) can be leveraged to drastically reduce model checking
computational time. Finally, we release an open-source implementation to reproduce the
experiments of this work.

2. Model Checking with Memoization for Modal Logic Formulas
Induction

Given a set of propositional letters𝒫 as the alphabet, the well-formed formulas of the propositional
modal logic (ML) are obtained by the following grammar:

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∨ 𝜙 | ♢𝜙,

where the remaining classic Boolean operators can be obtained as shortcuts. In what follows,
we use □𝜙 to denote ¬♢¬𝜙. The modality ♢ (resp., □) is usually referred to as it is possible that
(resp., it is necessary that). We refer to ℱ as the set of formulas produced by the above grammar,
and call the height of a formula the height of its syntax tree.

ML is paradigmatic of temporal, spatial, and spatio-temporal logics, and it is an extension
of propositional logic (PL). Its semantics is given in terms of Kripke models. A Kripke model
𝐾 = (𝑊,𝑅, 𝑉) is a Kripke frame (𝑊,𝑅) composed by a non-empty (possible infinite, but
countable) set of worlds 𝑊 (which contains a distinguished world 𝑤0, called initial world),
a binary accessibility relation 𝑅 ⊆ 𝑊 ×𝑊 , and a valuation function 𝑉 : 𝑃 → 2𝑊 , which
associates each world with the set of propositional letters that are true on it. The truth relation
𝐾,𝑤 ⊩ 𝜙, for a generic (Kripke) model 𝐾 , a world 𝑤 (in that model), and a formula 𝜙 (to be
interpreted on that model), is given by the following clauses:

𝐾,𝑤 ⊩ 𝑝 iff 𝑤 ∈ 𝑉 (𝑝);
𝐾,𝑤 ⊩ ¬𝜓 iff 𝐾,𝑤 ̸⊩ 𝜓 (i.e., it is not the case that 𝐾,𝑤 ⊩ 𝜓);
𝐾,𝑤 ⊩ 𝜓1 ∨ 𝜓2 iff 𝐾,𝑤 ⊩ 𝜓1 or 𝐾,𝑤 ⊩ 𝜓2;
𝐾,𝑤 ⊩ ♢𝜓 iff ∃𝑤′ s.t. 𝑤𝑅𝑤′ and 𝐾,𝑤′ ⊩ 𝜓.

In the following, we use 𝐾 ⊩ 𝜙 to denote 𝐾,𝑤0 ⊩ 𝜙. In modal symbolic learning, Kripke
models can be used to represent data such as time series, images, audio, videos, and graphs,
which, in the era of big data, accounts for 80% − 95% of the existing data [2]. This data is
commonly referred to as unstructured, as it does not have a well-studied data model, nor a
predefined structure, and it is typically counterposed to structured, tabular data, organized in
rows and columns, which is found in spreadsheets and relational databases.

Among the many interesting mathematical problems studied over the years in the field of ML

there is model checking [1]. Formally, the model checking problem is the problem of establishing

if 𝐾 ⊩ 𝜙, where 𝐾 is a Kripke model and 𝜙 is a formula of ML. Canonically, model checking is
the problem of verifying properties of modal temporal logics on infinite state, finitely represented,
abstract models (i.e., Kripke models) of concrete ones (e.g., reactive systems). Depending on
the logical formalism, model checking may not be a trivial task [3]. The common denominator
of the ML logical approaches (see, e.g., [4, 5, 6, 7, 8, 9, 10, 11, 12]) is that the kind of model
checking, which is key for the entire learning process, is in fact finite, which, to some extent,
trivializes the problem itself (in general, it becomes PTIME). Nevertheless, the model checking
problem still raises some difficulties, and leaves room for algorithmic optimizations. Finite
model checking a single ML formula on a single model can be achieved by simply adapting the
well-known Emerson-Clarke algorithm for checking CTL* formulas [13]. This procedure relies
on a memoization schema where a structure ℋ : ℱ → 2𝑊 is filled, in a bottom-up fashion,
with the truth values of all subformulas on all worlds.

In real-world contexts, it is common to check many formulas on many Kripke models. In
fact, modal symbolic learning is an inductive statistical process, that learns a general theory,
seen as multiple ML formulas, from datasets of Kripke models. This sets the stage for the more
general problem of finite model checking of multiple models against multiple formulas. Let
𝒦 = {𝐾1, . . . ,𝐾𝑚} be a collection of 𝑚 Kripke models and Φ = {𝜙1, . . . , 𝜙𝑛} be a collection
of 𝑛 ML formulas, then the multi-models and multi-formulas finite model checking problem
is the problem of deciding, for all 𝐾 ∈ 𝒦 and for all 𝜙 ∈ Φ, if 𝐾 ⊩ 𝜙. The straightforward
approach involves calling the single model checking procedure 𝑚 · 𝑛 times; however, the
memoization results generated by a single call can be reused for a later call on the same model.
In fact, the memoization structure for a single model can be shared for checking all formulas;
ideally, this reduces the overall computational load, but it requires more memory accesses
which, in turn, introduce overhead. This tradeoff can be mitigated by only sharing memoized
(sub)formulas with height no greater than a fixed parameter ℎ𝑠ℎ𝑎𝑟𝑒𝑑, leveraging the fact that
shorter (sub)formulas are more likely to be checked in the future.

We prove and quantify the benefits of a shared memoization structure in an experimental
setting. The 𝑚 Kripke models are generated by fixing the same Kripke frame with 20 worlds,
randomly generated using the Fan-in/Fan-out method from [14], and by assigning to each
world a random subset of true propositional letters. The 𝑛 formulas are, first, generated as
formulas of a fixed height ℎmax using a random procedure. On top of this, a pruning strategy
is adopted for reducing each formula: in a top-down fashion, each node of the syntax tree
is cut with probability 𝑝𝑟 and substituted with a random propositional letter. As a result, all
formulas have maximum height ℎmax, and are generally smaller in size with greater values of
𝑝𝑟. We fix an alphabet size of |𝒫| = 16 and 𝑚 = 50 models. Different parametrizations are
used for ℎmax and 𝑝𝑟. For each parametrization, 𝑛 = 1000 · ℎmax formulas are checked on all
models using the non-shared memoization approach and the shared memoization approach with
different values of ℎ𝑠ℎ𝑎𝑟𝑒𝑑, with ℎ𝑠ℎ𝑎𝑟𝑒𝑑 ≤ ℎmax. We let ℎmax ∈ {1, 2, 4, 8}, 𝑝𝑟 ∈ {0.2, 0.5},
and ℎ𝑠ℎ𝑎𝑟𝑒𝑑 ∈ {0, 1, 2, 4, 8}; note that when ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 0, only the results for the propositional
letters are shared, and when ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = ℎmax, those for all subformulas are shared.

The cumulative times of the different approaches are illustrated in Fig. 1. It can be observed
that sharing at least the propositional letters is beneficial in all cases; in other words, the
shared memoization approach improves over the non-shared one. When comparing different

0 200 400 600 800 1000

𝑖-th formula

0.0

0.2

0.4

0.6
C

um
ul

at
iv

e
tim

e
(𝑠

) non-shared
ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 0

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 1

(a) ℎ𝑚𝑎𝑥 = 1

0 500 1000 1500 2000

𝑖-th formula

0.0

0.5

1.0

1.5

2.0

C
um

ul
at

iv
e

tim
e

(𝑠
) non-shared

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 0

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 1

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 2

(b) ℎ𝑚𝑎𝑥 = 2

0 1000 2000 3000 4000

𝑖-th formula

0

2

4

6

C
um

ul
at

iv
e

tim
e

(𝑠
) non-shared

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 0

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 1

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 2

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 4

(c) ℎ𝑚𝑎𝑥 = 4

0 2000 4000 6000 8000

𝑖-th formula

0

5

10

15

C
um

ul
at

iv
e

tim
e

(𝑠
) non-shared

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 0

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 1

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 2

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 4

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 8

(d) ℎ𝑚𝑎𝑥 = 8

Figure 1: Results of the multi-models and multi-formulas model checking with the non-shared and
shared memoization approaches with varying values of ℎmax. Each subfigure shows the cumulative
time achieved by the different approaches with 𝑝𝑟 = 0.2 (in blue) and 𝑝𝑟 = 0.5 (in red).

parametrizations of the shared approach, it appears that, within the given experimental setting,
ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 1 and ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = 2 tend to improve over the other values. Overall, the speedup
achieved by shared memoization, calculated as the ratio between the total cumulative times
of the non-shared and best shared approaches, ranges from 185% to 471%. The open-source
implementation of our experiments, together with more results revealing similar trends, is
available at https://github.com/aclai-lab/OVERLAY2022.jl.

3. Conclusions

In this work, we considered modal logic as paradigmatic of temporal, spatial, and spatio-
temporal logics, and noted how Kripke models can be used for representing data with no
predefined structure (which, nowadays, amounts to the vast majority of data). We pointed
out the importance of finite model checking in automatic inductive reasoning. We generalized
this problem to a multiple models and multiple formulas setting, showing the benefits of a
shared memoization approach. This study is part of a bigger investigation on modal symbolic
learning, which attempts at learning qualitative patterns from unstructured objects, seen as
Kripke models, which is not possible with the limited expressive power of propositional logic.

https://github.com/aclai-lab/OVERLAY2022.jl

References

[1] E. Clarke, O. Grumberg, D. Kroening, D. Peled, H. Veith, Model Checking, 2nd ed., MIT
Press, 2018.

[2] A. Gandomi, M. Haider, Beyond the hype: Big data concepts, methods, and analytics,
International Journal of Information Management 35 (2015) 137–144.

[3] A. Sistla, E. Clarke, The Complexity of Propositional Linear Temporal Logics, Journal of
the ACM 32 (1985) 733–749.

[4] E. Bartocci, L. Bortolussi, G. Sanguinetti, Data-driven statistical learning of temporal logic
properties, in: Proceedings of the 12th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS), volume 8711 of Lecture Notes in Computer Science,
Springer, 2014, pp. 23–37.

[5] G. Bombara, C. I. Vasile, F. Penedo, H. Yasuoka, C. Belta, A Decision Tree Approach to
Data Classification using Signal Temporal Logic, in: Proceedings of the 19th International
Conference on Hybrid Systems: Computation and Control (HSCC), 2016, pp. 1–10.

[6] A. Jones, Z. Kong, C. Belta, Anomaly detection in cyber-physical systems: A formal
methods approach, in: Proceedings of the 53rd IEEE Conference on Decision and Control
(CDC), 2014, pp. 848–853.

[7] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, C. Belta, Temporal logic inference
for classification and prediction from data, in: Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control (HSCC), 2014, pp. 273–282.

[8] R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska, E. Entcheva, E. Bartocci, Learning
and detecting emergent behavior in networks of cardiac myocytes, Communications of
the ACM 52 (2009) 97–105.

[9] A. Brunello, G. Sciavicco, I. E. Stan, Interval Temporal Logic Decision Tree Learning, in:
Proceedings of the 16th European Conference on Logics in Artificial Intelligence (JELIA),
volume 11468 of Lecture Notes in Computer Science, Springer, 2019, pp. 778–793.

[10] G. Sciavicco, I. E. Stan, Knowledge Extraction with Interval Temporal Logic Decision
Trees, in: Proceedings of the 27th International Symposium on Temporal Representation
and Reasoning (TIME), volume 178 of LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020, pp. 9:1–9:16.

[11] E. Lucena-Sánchez, G. Sciavicco, I. E. Stan, Feature and Language Selection in Temporal
Symbolic Regression for Interpretable Air Quality Modelling, Algorithms 14 (2021) 76.

[12] G. Pagliarini, G. Sciavicco, Decision Tree Learning with Spatial Modal Logics, in: Pro-
ceedings of the 12th International Symposium on Games, Automata, Logics, and Formal
Verification (GandALF), volume 346, 2021, pp. 273–290.

[13] E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization skeletons us-
ing branching-time temporal logic, in: D. Kozen (Ed.), Logics of Programs, Workshop,
Yorktown Heights, New York, USA, May 1981, 1981, pp. 52–71.

[14] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J. Vincent, F. Wagner, Random graph
generation for scheduling simulations, in: Proceedings of the 3rd International Conference
on Simulation Tools and Techniques (SIMUTools), 2010, p. 60.

	1 Introduction
	2 Model Checking with Memoization for Modal Logic Formulas Induction
	3 Conclusions

