
From POMDP executions to policy specifications
Daniele Meli, Giulio Mazzi, Alberto Castellini and Alessandro Farinelli

Department of Computer Science, University of Verona, Italy

Abstract
Partially Observable Markov Decision Processes (POMDPs) allow modeling systems with uncertain state
using probability distributions over states (called beliefs). However, in complex domains, POMDP solvers
must explore large belief spaces, which is computationally intractable. One solution is to introduce
domain knowledge to drive exploration, in the form of logic specifications. However, defining effective
specifications may be challenging even for domain experts. We propose an approach based on inductive
logic programming to learn specifications with confidence level from observed POMDP executions. We
show that the learning approach converges to robust specifications as the number of examples increases.

Keywords
Partially Observable MDPs, Inductive Logic Programming, Answer Set Programming, Explainable AI

1. Introduction

Partially Observable Markov Decision Processes (POMDPs) is a popular framework for modeling
systems with state uncertainty [1]. The state cannot be completely observed by the agent,
hence it is modeled as a probability distribution called belief. A POMDP agent can execute
actions, depending on the current belief, and each belief-action pair is mapped to a new belief
according to a belief update rule that considers all possible state transitions performed by a
transition map. Finally, a reward is assigned to each state-action pair. The goal of the agent
is to maximize the cumulative reward (return) by selecting optimal actions (through a policy
function). Unfortunately, computing optimal policies for POMDPs is complex [2], because
different belief realizations are possible at each step. In the field of MDPs and reinforcement
learning [3, 4, 5], and recently POMDPs [6, 7, 8], one solution is bounding policy search with
logic specifications. However, defining them requires usually unavailable knowledge about the
policy.

We propose to learn logic specifications offline from traces (belief-action pairs) of POMDP
executions. We express specifications in Answer Set Programming (ASP) [9], a state-of-the-art
paradigm for logic planning [10, 11, 12]. We convert the belief to ASP representation, in terms
of higher-level domain features specified by an expert user, in order to find logic relationships
between beliefs and actions. Defining features requires only basic domain knowledge (e.g.,
relevant domain quantities, used to represent any POMDP task instance). We then exploit
Inductive Logic Programming (ILP) [13] to infer ASP rules from feature-action pairs. ILP has

OVERLAY 2022: 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 28, 2022, Udine, Italy
$ daniele.meli@univr.it (D. Meli); giulio.mazzi@univr.it (G. Mazzi); alberto.castellini@univr.it (A. Castellini);
alessandro.farinelli@univr.it (A. Farinelli)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:daniele.meli@univr.it
mailto:giulio.mazzi@univr.it
mailto:alberto.castellini@univr.it
mailto:alessandro.farinelli@univr.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

already been used to enhance interpretability of black-box models [14, 15, 16] and mine robotic
task knowledge [17, 18].

We show that state-of-the-art ILASP software [19, 20] is able to automatically learn logic rules
representing the policy strategy. These rules are human-readable, since they use human-defined
features.

2. Background

2.1. Rocksample

In the rocksample domain, an agent can move in cardinal directions (north, south, east and west)
on a 𝑁 ×𝑁 grid, with the goal to reach and sample a set of 𝑀 rocks with known positions.
Rocks may have a good or bad value, yielding to positive or negative reward when sampled,
respectively. The observable part of the state is the position of the agent and rocks, while the
unobservable part is the value of rocks, modeled with belief distribution. The agent can check
the value of rocks to reduce uncertainty. Finally, the agent gets a positive reward exiting the
grid from the right-hand side. In this paper, we use 𝑁 = 12 and 𝑀 = 4.

2.2. Answer Set Programming (ASP) and Inductive Logic Programming (ILP)

As of standard syntax [21], an ASP program represents a domain of interest with a signature and
axioms. The signature is the alphabet of the domain, defining variables with their ranges (e.g.,
rock identifiers R∈ {1..4} in rocksample); and atoms, i.e., predicates of variables (e.g., actions
or environmental features as dist(R,D) for representing distance D between agent and rock
R). A variable with assigned value is ground, and an atom is ground if its variables are ground.
Axioms define logical implications between atoms in the form h :- b1..𝑛, (i.e.,

⋀︀𝑛
𝑖=1b𝑖 →h). For

instance, in rocksample, axiom sample(R) :- dist(R,0) means that a rock can be sampled if
the agent is on it. ASP solvers start from known ground atoms (determined from observable
state and belief in POMDP traces) and propagate them through axioms to compute a ground
program (i.e., with ground atoms). Ground atoms are interpreted as Booleans and true atoms are
returned. For instance, in previous example, if dist(1,0), then sample(1) becomes executable.

A generic ILP problem 𝒯 under the ASP semantics is defined as 𝒯 = ⟨𝐵,𝑆𝑀 , 𝐸⟩, where 𝐵
is the background knowledge, i.e., a set of ASP axioms, atoms and variables; 𝑆𝑀 is the search
space, i.e., the set of candidate ASP axioms to be learned; and 𝐸 is a set of examples, i.e., context-
dependent partial interpretations, namely couples ⟨𝑒, 𝐶⟩, being 𝑒 a partial interpretation and 𝐶
the context. A Partial Interpretation (PI) is a pair of sets of ground atoms (actions in this paper)
⟨𝑒𝑖𝑛𝑐, 𝑒𝑒𝑥𝑐⟩, being 𝑒𝑖𝑛𝑐 the included set and 𝑒𝑒𝑥𝑐 the excluded set. The context is a set of ground
atoms, here representing domain features. The goal of 𝒯 is to find 𝐻 ∈ 𝑆𝑀 such that 𝑒𝑖𝑛𝑐

can be grounded from 𝐵 ∪𝐻 ∪ 𝐶 , while 𝑒𝑒𝑥𝑐 cannot. ILASP [19] finds 𝐻 which satisfies most
examples, also returning the number of counterexamples (i.e., examples whose 𝑒𝑖𝑛𝑐 / 𝑒𝑒𝑥𝑐 is not
/ is a PI of 𝐻).

3. Learning ASP rules from POMDP traces

3.1. ASP representation of the task

The first step of our methodology for learning ASP specifications from POMDP executions is to
define a map 𝐹 : ℬ → 𝐺(ℱ) from the belief space ℬ to the set 𝐺(ℱ) of possible groundings of
ℱ , i.e., the set of user-defined features. Map 𝐹 thus translates the belief distribution to ground
ASP atoms. In rocksample, we define the following features: guess(R,V), i.e., probability
V∈ {0, 10, ..., 100} that R is valuable; dist(R,D), i.e., the 1-norm D∈ N between positions of
agent and R; delta_x(R,D) and delta_y(R,D), i.e., D∈ Z is 𝑥- or 𝑦-coordinate of R with respect
to agent; bounds on D,V (e.g., D<1); sampled(R) to mark sampled rocks; and num_sampled(N),
i.e., N∈ {0, 10, ..., 100} percentage of rocks were sampled.

We represent the set A of actions as ASP atoms, e.g., sample(R), north. We also introduce
atom target(R) to identify next rock to sample and capture intention of the agent.

3.2. ILASP problem definition

We are now interested in finding ASP axioms matching features to actions. With reference to
the notation of Section 2.2, 𝐵 contains variables and ranges defined in Section 3.1. 𝑆𝑀 is the set
of all possible axioms a :- b1..𝑛, being a an action and b1..𝑛 features. The set 𝐸 is composed
as follows: whenever an action a is executed, an example is generated with 𝑒𝑖𝑛𝑐 = {a} and
𝑒𝑒𝑥𝑐 = ∅; on the contrary, when a is not executed, 𝑒𝑒𝑥𝑐 = {a} and 𝑒𝑖𝑛𝑐 = ∅. The context is
computed from belief with map 𝐹 . In this way, we learn axioms which explain not only why an
action was executed, but also cases when it was not.

4. Experimental results

We generate 1000 different rocksample executions with a state-of-the-art planner [22], ran-
domizing positions and values of rocks and initial positions for the agent. We then construct
ILASP examples only from executions with returns greater than or equal to the average of all
executions in order to learn only from “good” evidence. Overall, 8487 examples for each action
are generated. ILASP tasks are run separately for each action for computational efficiency. As
an example of learned axioms, the one for sample(R) follows:

sample(R) :- target(R),dist(R,D),D ≤ 0,not sampled(R),guess(R,V),V ≥ 90. (1)

meaning that an unsampled rock (not sampled(R)) can be sampled when the agent is on
it (dist(R,D), D ≤ 0) and the rock is valuable with high probability (guess(R,V),V ≥
90). Figure 1 shows the learning results, selecting different percentages of examples in the
training set. We want to discover ASP axioms underlying policy computation from patterns
in execution traces, hence we do not have access to ground truth specifications to compute
standard evaluation metrics and assess learning performance. Instead, we evaluate percentage
of counterexamples (on the left) and distance between learned axioms (on the right) for different
number (#) of training examples, with respect to axioms learned from the full dataset. Given 2
rules 𝑅1, 𝑅2, each one made of a set of atoms {a𝑖}, 𝑖 ∈ {1, 2}, we define distance 𝑅1 −𝑅2 =

Figure 1: Learning results for different amounts of examples, expressed as percentage of the full dataset.

|{a1}∪{a2}|−|{a1}∩{a2}|. For instance, sample(R) :- dist(R,V), V≤2 has a distance 5 from
(1), due to the missing not sampled(R), guess(R, V),V ≥90 and target(R) and the different
upper bound on distance D. The chart on the right of Figure 1 reports distances normalized
with respect to the number of atoms in final axioms (i.e., axioms using 100% examples). We
observe that using ≥ 80% of the dataset, the percentage of counterexamples stabilizes and
the distance becomes null for all actions, thus learning successfully converges to a specific
hypothesis. Overall, examples learned from the full dataset cover more than 73% of examples.

5. Conclusion

We have proposed a method based on ILP and ASP to induce logic specifications explaining
POMDP policies, starting from examples of POMDP executions. Our approach only requires the
definition of high-level domain-dependent features from an expert user, which is easier than
defining the structure of specifications. Our axioms are enriched with a level of confidence,
corresponding to the number of covered examples in the dataset. The confidence level converges
as the number of considered examples in the dataset increases, as well as the distance between
learned axioms. Furthermore, at least 73% of> 8400 examples are covered, proving the goodness
of our axioms. In the future, we aim to include learned specifications in online POMDP solvers
to specify new kinds of constraints [23] able to improve performance and efficiency.

Acknowledgments

This project has received funding from the Italian Ministry for University and Research, under
the PON “Ricerca e Innovazione” 2014-2020 (grant agreement No. 40-G-14702-1).

References

[1] A. R. Cassandra, M. L. Littman, N. L. Zhang, Incremental pruning: A simple, fast, exact
method for partially observable markov decision processes, arXiv preprint arXiv:1302.1525
(2013).

[2] C. H. Papadimitriou, J. N. Tsitsiklis, The complexity of markov decision processes, Mathe-
matics of operations research 12 (1987) 441–450.

[3] M. Leonetti, L. Iocchi, P. Stone, A synthesis of automated planning and reinforcement
learning for efficient, robust decision-making, Artificial Intelligence 241 (2016) 103–130.

[4] M. Sridharan, M. Gelfond, S. Zhang, J. Wyatt, Reba: A refinement-based architecture for
knowledge representation and reasoning in robotics, Journal of Artificial Intelligence
Research 65 (2019) 87–180.

[5] G. De Giacomo, L. Iocchi, M. Favorito, F. Patrizi, Foundations for restraining bolts: Rein-
forcement learning with ltlf/ldlf restraining specifications, in: Proceedings of the interna-
tional conference on automated planning and scheduling, volume 29, 2019, pp. 128–136.

[6] G. Mazzi, A. Castellini, A. Farinelli, Identification of unexpected decisions in partially
observable monte-carlo planning: A rule-based approach, in: Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), In-
ternational Foundation for Autonomous Agents and Multiagent Systems, 2021, p. 889–897.

[7] G. Mazzi, A. Castellini, A. Farinelli, Rule-based shielding for partially observable monte-
carlo planning, in: Proceedings of the International Conference on Automated Planning
and Scheduling, volume 31, 2021, pp. 243–251.

[8] G. Mazzi, A. Castellini, A. Farinelli, Active generation of logical rules for pomcp shield-
ing, in: Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’22, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 2022, p. 1696–1698.

[9] V. Lifschitz, Answer set planning, in: International Conference on Logic Programming
and Nonmonotonic Reasoning, Springer, 1999, pp. 373–374.

[10] E. Erdem, V. Patoglu, Applications of asp in robotics, KI-Künstliche Intelligenz 32 (2018)
143–149.

[11] M. Ginesi, D. Meli, A. Roberti, N. Sansonetto, P. Fiorini, Autonomous task planning and
situation awareness in robotic surgery, in: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 3144–3150.

[12] E. Tagliabue, D. Meli, D. Dall’Alba, P. Fiorini, Deliberation in autonomous robotic surgery:
a framework for handling anatomical uncertainty, arXiv preprint arXiv:2203.05438, in
publication for IEEE ICRA 2022 (2022).

[13] S. Muggleton, Inductive logic programming, New generation computing 8 (1991) 295–318.
[14] J. Rabold, M. Siebers, U. Schmid, Explaining black-box classifiers with ilp–empowering

lime with aleph to approximate non-linear decisions with relational rules, in: International
Conference on Inductive Logic Programming, Springer, 2018, pp. 105–117.

[15] F. A. D’Asaro, M. Spezialetti, L. Raggioli, S. Rossi, Towards an inductive logic programming
approach for explaining black-box preference learning systems, in: Proceedings of the
International Conference on Principles of Knowledge Representation and Reasoning,
volume 17, 2020, pp. 855–859.

[16] G. De Giacomo, M. Favorito, L. Iocchi, F. Patrizi, Imitation learning over heterogeneous
agents with restraining bolts, in: Proceedings of the international conference on automated
planning and scheduling, volume 30, 2020, pp. 517–521.

[17] D. Meli, P. Fiorini, M. Sridharan, Towards inductive learning of surgical task knowledge:
A preliminary case study of the peg transfer task, Procedia Computer Science 176 (2020)
440–449.

[18] D. Meli, M. Sridharan, P. Fiorini, Inductive learning of answer set programs for autonomous
surgical task planning, Machine Learning 110 (2021) 1739–1763.

[19] M. Law, A. Russo, K. Broda, The ILASP system for learning answer set programs, www.
ilasp.com, 2015.

[20] M. Law, A. Russo, K. Broda, Iterative learning of answer set programs from context
dependent examples, Theory and Practice of Logic Programming 16 (2016) 834–848.

[21] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
M. Maratea, F. Ricca, T. Schaub, Asp-core-2 input language format, Theory and Practice
of Logic Programming 20 (2020) 294–309.

[22] D. Silver, J. Veness, Monte-carlo planning in large pomdps, Advances in neural information
processing systems 23 (2010).

[23] A. Castellini, G. Chalkiadakis, A. Farinelli, Influence of State-Variable Constraints on
Partially Observable Monte Carlo Planning, in: IJCAI 2019, Macao, China, August 10-16,
2019, ijcai.org, 2019, pp. 5540–5546.

www.ilasp.com
www.ilasp.com

	1 Introduction
	2 Background
	2.1 Rocksample
	2.2 Answer Set Programming (ASP) and Inductive Logic Programming (ILP)

	3 Learning ASP rules from POMDP traces
	3.1 ASP representation of the task
	3.2 ILASP problem definition

	4 Experimental results
	5 Conclusion

