
Constrained Training of Neural Networks via
Theorem Proving
Mark Chevallier1, Matthew Whyte1 and Jacques D. Fleuriot1

1Artificial Intelligence and its Applications Institute, School of Informatics, University of Edinburgh, UK

Abstract
We introduce a theorem proving approach to the specification and generation of temporal logical
constraints for training neural networks. The distinctive benefit of our approach is the fully rigorous
implementation of generalised constrained training, that guarantees correctness of implementation at
every step.

1. Introduction

Neural networks are powerful tools that can be used for low-level action and perception in
complicated environments, e.g. autonomous driving, but whether they subsequently implement
intended behaviour is difficult to assert, let alone guarantee [1]. We want a neural network that
can be taught constraints such as “never go past this threshold” or “always avoid this region”
and actually obey them as intended when deployed. Learning that incorporates such constraints
has been the subject of recent efforts, where many approaches have been used to express and
inject knowledge into model training. The latter encompass logical encoding directly in PyTorch
[2] and TensorFlow [3] and a range of other bespoke encoding and integration [4, 5, 6, 7, 8, 9].
Given the ad-hoc nature of these implementation mechanisms, it is difficult to provide strong
guarantees about the correctness of logical constraints and hence about the actual training.

Our work introduces a neurosymbolic pipeline that injects a loss function, which measures
the breach of a constraint expressed in linear temporal logic over finite traces [10] (LTL𝑓 ), into
the training of any neural network, with formal guarantees of correctness.

To achieve this, we use the proof-assistant Isabelle/HOL [11] to formally verify our model
of the logical system, the soundness of the loss function ℒ and the loss function derivative
𝑑ℒ, which is used for backpropagation in training neural networks. The formal proof that ℒ
is sound with respect to the semantics of LTL𝑓 guarantees that it will enforce the intended
behaviour during training. We then automatically generate OCaml code from our provably
correct formal specifications [12], and integrate it into a PyTorch neural network via a library
that provides OCaml bindings for Python [13]. The use of code generation here, rather than an
ad-hoc, manually written implementation, guarantees that the implementation will match the
specification.

OVERLAY 2022: 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 28, 2022, Udine, Italy
$ m.chevallier@sms.ed.ac.uk (M. Chevallier); m.j.whyte@sms.ed.ac.uk (M. Whyte); jdf@ed.ac.uk (J. D. Fleuriot)
� 0000-0001-5307-7018 (M. Chevallier); 0000-0002-6867-9836 (J. D. Fleuriot)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:m.chevallier@sms.ed.ac.uk
mailto:m.j.whyte@sms.ed.ac.uk
mailto:jdf@ed.ac.uk
https://orcid.org/0000-0001-5307-7018
https://orcid.org/0000-0002-6867-9836
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Lastly, to demonstrate the approach’s guarantees, we build an example implementation, and
perform some experiments confirming that it behaves as expected. The results show that the
method yields a practical implementation with formal guarantees.

2. Formalising linear temporal logic

We define a state as a function from the integers to the reals that tracks several values in
a learning problem that might be compared: a constant, or some measurement that a neural
network uses in its training e.g. how far a robotic hand is from a barrier at a given moment in
time. The integers passed to a state function are simply the indices to those values of interest. As
we are working with LTL𝑓 (see below) we allow the state functions to vary over time. With each
state function encoding information about a system at a specific time-step, we define a path of
length 𝑁 as a set of state functions encoding the evolution of a system over 𝑁 time-steps.

Our formalisation uses a variant of linear temporal logic [14] known as LTL𝑓 [10], which is
interpreted over finite paths and is often viewed as a more natural choice for applications in AI,
e.g. planning [15], where processes are usually of finite duration.

Following Fischer et al. we take comparisons of a state function’s values as our atomic
propositions 𝜌, namely 𝑡 < 𝑡′, 𝑡 ≤ 𝑡′, 𝑡 = 𝑡′, 𝑡 ̸= 𝑡′ [5]. Thus we build constraints in LTL𝑓 from
these comparisons (comp) and the constraints (constraint) arising from LTL𝑓 ’s operators.

The LTL𝑓 formulae are thus: 𝜌, 𝜌1 ∧ 𝜌2, 𝜌1 ∨ 𝜌2, 𝒩𝜌 (Next), □𝜌 (Always), ♢𝜌 (Eventually),
𝜌1𝒰𝜌2 (Weak Until), 𝜌1ℛ𝜌2 (Strong Release). In LTL𝑓 , these have the usual semantics of LTL
[14], except at the end of a path. In particular, ¬(𝒩𝜌) holds for all 𝜌 at the final time-step 𝑖 [10].

We define Isabelle datatypes comp and constraint for the real-valued comparisons and
LTL𝑓 constraints respectively. This approach to specifying the language in higher-order logic
is known as a deep embedding [16]. Doing so will enable us to prove that the loss function is
sound and, importantly, generate fully self-contained code for defining LTL𝑓 constraints that
will be used as part of the training of a neural network.

Next, we formalise the eval function, which characterises the semantics of LTL𝑓 by recur-
sively evaluating the truth-value of a constraint over a path. Given the complexity of LTL𝑓 , we
also prove a number of LTL𝑓 equivalences, which confirms that our eval behaves as expected
and matches LTL𝑓 semantics.

3. A LTL-based loss function and its derivative

The loss function ℒ takes an LTL𝑓 constraint 𝜌, a path 𝑃 and a relaxation factor 𝛾, and returns
a real value. Its purpose is to return a proportional positive value if 𝜌 is breached under path 𝑃 ,
and 0 otherwise. It needs to satisfy several important properties:

1. ℒ(𝜌, 𝑃, 𝛾) ≥ 0;
2. ℒ is differentiable w.r.t. any of the terms that the constraint compares, for 𝛾 > 0;
3. (Soundness) lim𝛾→0 ℒ(𝜌, 𝑃, 𝛾) = 0⇐⇒ 𝜌(𝑃 ), where 𝜌(𝑃 ) is the truth value of 𝜌 on 𝑃 .

When formalising ℒ, it must be differentiable for the neural network to be able to learn from
it via backpropagation (see Section 4). We therefore use soft, differentiable versions of various



functions to quantify the satisfaction of constraints. Based on the work by Cuturi and Blondel
[17], we define a binary softmax (and softmin analogously) function, max𝛾 , as:

max
𝛾

(𝑎1, 𝑎2) =

{︃
max(𝑎1, 𝑎2) 𝛾 ≤ 0

𝛾 log(𝑒𝑎1/𝛾 + 𝑒𝑎2/𝛾) otherwise

Every soft function takes an additional parameter 𝛾, the relaxation factor used for ℒ. The
intention behind this parameter is that as 𝛾 → 0, max𝛾 → max, and that it is differentiable
when 𝛾 > 0. We formalise this in Isabelle, and prove it has the desired properties, going on to
formalise its derivative and proving that it is correct. Different soft functions capture losses
from the 𝑡 ̸= 𝑡′ comparison, again using 𝛾 as a parameter in the same way.

We proceed to define ℒ recursively, over the constraint and path, with 𝛾 as a parameter. For
all the LTL𝑓 operators, the ℒ function, in common with our eval function, recurses over the
constraint from the outside in, and recurses down the path as required for temporal operators.
Once we have formulated ℒ, we show via a series of lemmas and an inductive proof on the
constraint datatype that it has the expected soundness property with respect to the eval
function.

We next construct a derivative 𝑑ℒ for the ℒ function, to be used for gradient-based methods
in PyTorch (see Section 4). The derivative must be defined with respect to each time-step 𝑖 and
state-value index 𝑗 at that time-step along the finite trace.

The 𝑑ℒ function formalisation is structured similarly to our formalisation of the ℒ function,
defined recursively over the components of the LTL𝑓 constraint passed to it and essentially
follows from repeated applications of the chain rule. In defining it, we make extensive use of
the derivatives of the soft-functions we defined earlier. We formally prove that 𝑑ℒ is the correct
derivative for our loss function and thus guarantee that when used for backpropagation it will
achieve the desired results.

4. A PyTorch-compatible LTL loss function

With our formalisation and proofs complete, what remains is to integrate them into the PyTorch
environment. Unfortunately, there does not exist a mechanism for generating Isabelle functions
as Python code. Instead, we choose to generate intermediate representations of ℒ and 𝑑ℒ in
OCaml since our recursive Isabelle functions can be straightforwardly translated to type-safe
OCaml ones using the code generation machinery of Isabelle. Moreover, there exists a Python
library that can be used to call OCaml functions from within Python code [13].

In order to produce computable code, we need to map the real numbers of Isabelle to floating
points [18]. As this is an approximation, it naturally has some scope for machine arithmetic
errors, although the code generated for the various functions is fully faithful to their definitions
in Isabelle. We generate an OCaml module LTL_Loss.

Python bindings for the OCaml definitions of ℒ and 𝑑ℒ are incorporated into a PyTorch
autograd.Function object through the forward and backward methods, respectively [19].
These methods are required for the loss function to form part of a computational graph in
PyTorch and enable training based on gradient descent. Consequently, our LTL_Loss module,
implemented as a subclass of autograd.Function, is functionally identical to a differentiable



Figure 1: Avoid, Patrol, Until and Compound tests. The unconstrained output trajectory is in yellow,
and the constrained output trajectory is in blue.

PyTorch operation on tensors. Significantly, we know exactly how LTL_Loss should behave
when computing gradients with autograd, as it is solely characterised by its formalisation in
Isabelle.

5. Experiments and Discussion

We base our experiments on those of Innes and Ramamoorthy [2] where they assess LTL𝑓

constraint training in a spatial environment. Each of the tests takes place in a 2-dimensional
planar environment with Cartesian co-ordinates. The training data follow a spline-shaped curve
consisting of 𝑁=100 sequenced points in the plane following the curve with small random
perturbations, simulating a demonstrator moving to some destination. We train a feed-forward
neural network to learn a Dynamic Movement Primitive (DMP) [20] to follow this trajectory.

We lay out 4 different constraints to test. Avoid: The trajectory (always) avoids an open ball
of radius 0.1 around the point (0.4, 0.4). Patrol: The trajectory eventually reaches (0.2, 0.4)
and (0.85, 0.6) in the plane. Until: The 𝑦 co-ordinate of the trajectory cannot exceed 0.4
until its 𝑥 co-ordinate is at least 0.6. Compound: A more complicated test combining several
conditions. The trajectory should avoid an open ball of radius 0.1 around the point (0.5, 0.5),
while eventually touching the point (0.7, 0.5). Further, the 𝑦 co-ordinate of the trajectory should
not exceed 0.8.

When we run our tests, we first train the neural network ignoring the logical constraint,
then we use the latter as part of its loss calculations. The differences between the two sets of
results demonstrates the effectiveness of the logical constraint as used in the loss function for
the training. Visual depictions of the results are given in Fig. 1.

This demonstrates that our approach has the desired intent: a theorem-proving based ap-
proach (with associated code-generation) can be used to rigorously inject constraints into neural
network training to guarantee the expected behaviour. Our approach is generic, so in principle
a different formalism, e.g. a continuous-time logic, could be used instead of LTL𝑓 , and applied to
any applicable neural network. Moreover, by formalising the derivative of the loss function, we
unlock the potential to reason formally about the traversal of the loss surface during gradient
descent. Given our results, we believe this work opens the way to a tighter integration between
fully-formal symbolic reasoning in a theorem prover and machine learning.



References

[1] N. Kalra, S. M. Paddock, Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability?, Transportation Research Part A: Policy
and Practice 94 (2016) 182–193. URL: https://www.sciencedirect.com/science/article/pii/
S0965856416302129. doi:https://doi.org/10.1016/j.tra.2016.09.010.

[2] C. Innes, R. Ramamoorthy, Elaborating on Learned Demonstrations with Temporal Logic
Specifications, in: M. Toussaint, A. Bicchi, T. Hermans (Eds.), Proceedings of Robotics:
Science and System XVI, 2020. doi:10.15607/RSS.2020.XVI.004.

[3] G. Marra, F. Giannini, M. Diligenti, M. Gori, Lyrics: A general interface layer to integrate
logic inference and deep learning, in: U. Brefeld, E. Fromont, A. Hotho, A. Knobbe,
M. Maathuis, C. Robardet (Eds.), Machine Learning and Knowledge Discovery in Databases,
Springer International Publishing, Cham, 2020, pp. 283–298.

[4] S. Badreddine, A. d’Avila Garcez, L. Serafini, M. Spranger, Logic tensor networks, Artificial
Intelligence 303 (2022) 103649. URL: https://www.sciencedirect.com/science/article/pii/
S0004370221002009. doi:https://doi.org/10.1016/j.artint.2021.103649.

[5] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, M. Vechev, DL2: Training
and querying neural networks with logic, in: International Conference on Machine
Learning, 2019, pp. 1931–1941.

[6] Z. Hu, X. Ma, Z. Liu, E. Hovy, E. Xing, Harnessing deep neural networks with logic rules, in:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computational Linguistics, Berlin, Germany, 2016,
pp. 2410–2420. URL: https://aclanthology.org/P16-1228. doi:10.18653/v1/P16-1228.

[7] T. Li, V. Srikumar, Augmenting neural networks with first-order logic, in: A. Korhonen,
D. R. Traum, L. Màrquez (Eds.), Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, Association for Computational Linguistics, 2019, pp. 292–302. URL: https:
//doi.org/10.18653/v1/p19-1028. doi:10.18653/v1/p19-1028.

[8] R. Stewart, S. Ermon, Label-free supervision of neural networks with physics and domain
knowledge, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[9] J. Xu, Z. Zhang, T. Friedman, Y. Liang, G. Broeck, A Semantic Loss Function for Deep
Learning with Symbolic Knowledge, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, PMLR, Stockholmsmässan, Stockholm Sweden, 2018, pp. 5502–5511.
URL: http://proceedings.mlr.press/v80/xu18h.html.

[10] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces,
in: IJCAI’13 Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, Association for Computing Machinery, 2013, pp. 854–860.

[11] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL: a proof assistant for higher-order logic,
volume 2283, Springer Science & Business Media, 2002.

[12] F. Haftmann, L. Bulwahn, Code generation from Isabelle/HOL theories, Isabelle documen-
tation (2021). URL: https://isabelle.in.tum.de/doc/codegen.pdf.

[13] L. Mazare, Using Python and OCaml in the same Jupyter notebook (2019). URL: https:
//blog.janestreet.com/using-python-and-ocaml-in-the-same-jupyter-notebook.

https://www.sciencedirect.com/science/article/pii/S0965856416302129
https://www.sciencedirect.com/science/article/pii/S0965856416302129
http://dx.doi.org/https://doi.org/10.1016/j.tra.2016.09.010
http://dx.doi.org/10.15607/RSS.2020.XVI.004
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103649
https://aclanthology.org/P16-1228
http://dx.doi.org/10.18653/v1/P16-1228
https://doi.org/10.18653/v1/p19-1028
https://doi.org/10.18653/v1/p19-1028
http://dx.doi.org/10.18653/v1/p19-1028
http://proceedings.mlr.press/v80/xu18h.html
https://isabelle.in.tum.de/doc/codegen.pdf
https://blog.janestreet.com/using-python-and-ocaml-in-the-same-jupyter-notebook
https://blog.janestreet.com/using-python-and-ocaml-in-the-same-jupyter-notebook


[14] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), 1977, pp. 46–57. doi:10.1109/SFCS.1977.32.

[15] J. Baier, S. Mcilraith, Planning with First-Order Temporally Extended Goals using Heuristic
Search, in: Proceedings of the National Conference on Artificial Intelligence, volume 1,
2006.

[16] R. J. Boulton, A. D. Gordon, M. J. Gordon, J. Harrison, J. Herbert, J. Van Tassel, Experience
with embedding hardware description languages in hol., in: TPCD, volume 10, Citeseer,
1992, pp. 129–156.

[17] M. Cuturi, M. Blondel, Soft-DTW: a differentiable loss function for time-series, arXiv
preprint arXiv:1703.01541 (2017).

[18] F. Haftmann, J. Hölzl, T. Nipkow, Code_Real_Approx_By_Float, HOL_Library (2021). URL:
https://isabelle.in.tum.de/library/HOL/HOL-Library/Code_Real_Approx_By_Float.html.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep
learning library, Advances in neural information processing systems 32 (2019) 8026–8037.

[20] S. Schaal, J. Peters, J. Nakanishi, A. Ijspeert, Learning movement primitives, in: Robotics
research. the eleventh international symposium, Springer, 2005, pp. 561–572.

Acknowledgements

The authors would like to express their gratitude to the Artificial Intelligence and its Applications
Institute, the Informatics Graduate School at the University of Edinburgh, and the Engineering
and Physical Sciences Research Council for funding this work.

http://dx.doi.org/10.1109/SFCS.1977.32
https://isabelle.in.tum.de/library/HOL/HOL-Library/Code_Real_Approx_By_Float.html

	1 Introduction
	2 Formalising linear temporal logic
	3 A LTL-based loss function and its derivative
	4 A PyTorch-compatible LTL loss function
	5 Experiments and Discussion

