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Abstract
Fully automated manufacturing plants are designed to perform the processes effectively and efficiently.
During the planning stage, some behavioral controls are already implemented in order to proactively
respond to unforeseen outcomes such as a deterioration in the quality of the products, a lack of material
supply, or sudden maintenance work. However, not every scenario can be covered, especially if the
structure of the production line changes over time or new product variants with different characteristics
are introduced. With a particular focus on minimizing the overall completion time (makespan), in this
paper we present a simulation environment that mimics an assembly line of the Industrial IoT Test Bed
(at HTW Dresden). In this regard we incorporated reinforcement learning techniques such as Deep-Q
Networks (DQN), REINFORCE, Advantage Actor Critic (A2C) and Proximal Policy Optimization (PPO)
as a mean to bring cost efficiency and productivity in an automated manner. We investigate how fast the
trained models converge and how accurately they solve the different problems.
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1. Introduction

In modern manufacturing systems, job assignment and dynamic scheduling are among the major
challenges. Scheduling performance is directly influenced by the design of the corresponding
control mechanism and reflects primarily on the production rate and the overall completion time.
Nevertheless, the performance of a manufacturing plant depends on a number of challenging
factors and, in large part, on the dynamic nature of the manufacturing environment. Dynamic
events such as failures or jams pose challenges to traditional static scheduling approaches.
As part of an industrial lab at HTW Dresden for smart manufacturing, we are working on a
wide range of issues, including control problems to optimize the production process and the
corresponding performance. The IIoT Test Bed consists of 13 production stations, where some
can perform similar operations. This redundancy allows the physical system to handle problems
such as bottlenecks, maintenance or failures and maintain the overall performance. However, the
existing control software is quite static and does not take into account dynamic events during the
production process, thus preventing the potential from being fully exploited. The challenge is
to consider at the conception stage all possible scenarios that could occur during the production
process, even though the structure of the system may change. In this paper, Reinforcement
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Learning (RL) was incorporated to realize dynamic planning for the use of parallel machines
to support same operations. Therefore, planning for the allocation of resources is where RL is
integrated with the system. While the literature tends to refer to scheduling in a broader sense, job
shop scheduling, we have a somewhat different goal of considering redundant capabilities with
uncertainty in the operation cycle. The literature reports for the use of algorithms of various types
for scheduling including rule-based, heuristics, metaheuristic approaches, supervised learning
based methods and also, a field known as reinforcement learning. Boden et al. [1] suggested
a rule-based method for a dynamic scheduling of product transportation using heterogeneous
automated material handling systems. Svensson et al. [2] presented an offline optimisation
method based on a multiple linear regression. Akyol et al. [3] proposed a real time scheduler
algorithm based on the neuro-fuzzy network wherein an offline learning procedure was used to
develop decision heuristics. RL methods have been used in the literature as alternative problem
solvers, especially for dynamic environments. Said et al. [4] used RL to create a dynamic,
flexible schedule for job store manufacturing system. In Shafiq et al. [5], the authors introduced a
DQN and SARSA to find optimal policies for scheduling jobs of various types. Zadeh et al. [6]
introduced a heuristic algorithm that minimises makespan considering the variation in processing
time. However, a little attention have been paid to the presence of redundant capabilities as well
as sources of uncertainty, for instance the chance of machine failure or varying operation times.
This paper incorporates RL to address the mentioned issue in an effective manner.

2. Methodology

RL is a method for dealing with uncertainty where optimization is the main objective. Within this
work, RL was used to find the an optimal and reliable scheduling policy for minimizing makespan
in a production system characterized by multiple machines supporting the same operations while
experiencing uncertain operating times. This paper, however studies the sole application of RL to
the specific architecture of our IoT Test Bed while due to the limitations in the the content space,
refers the reader to [7] for detailed explanations of the implementation. As soon as the training
process is completed, the policy will serve as a function that observes the state of the machine and
suggests decisions on the allocation of jobs. The complete structure of our IIoT Test Bed is shown
in Fig. 1. This paper only studies the simplest product variant to be manufactured, which only
requires 3 operations, whereby the execution order (A→B→C) must be adhered to. The stations
that can be used for this were highlighted in color, and the rest have not been considered in the
simulation. They are connected via a conveyor belt and the workpieces are transported using
carriers. In our discrete manufacturing system, carriers move one slot further during each time
step, and wait for their predecessors to move on or for stations to complete their operations. By
increasing the number of carriers and/or parallel stations, the amount of decision combinations
for a specific problem also increases exponentially, as shown by equation (1).

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 = (2𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑠 (1)

Since the discovery of the global minimum is an NP-hard problem, it requires a significant
amount of computational effort even with a few parallel stations and a small number of carriers.
Tbl. 1, represents this correspondence in numbers. In this table, similar to our experiments, a
margin of ± 3 seconds was considered as well as the possibility of failure. As a description



Situation Uncertainty No. of No. of poss. No. of poss. No. of independent experiments to
Index (Duration±) carriers initial states decisions completely represent the solution space
SI=1 1 4 (34) * (24𝑐ℎ𝑜𝑜𝑠𝑒4) = 860.706 16 13.771.296
SI=2 3 4 (74) * (24𝑐ℎ𝑜𝑜𝑠𝑒4) = 25.513.026 16 408.208.416
SI=3 1 6 (34) * (24𝑐ℎ𝑜𝑜𝑠𝑒6) = 10.902.276 64 697.745.664
SI=4 3 6 (74) * (24𝑐ℎ𝑜𝑜𝑠𝑒6) = 323.164.996 64 20.682.559.744

Table (1): Complexity

of the methods used to implement the RL algorithm is beyond the scope of this paper, we
mention here only these used techniques and refer the reader to further reading: DQN [8, 9, 10],
REINFORCE [11], A2C [12, 13] and PPO [14]. In our approach, we used formal verification in
the form of an early stopping criteria during the process of reinforcement learning. This formal
verification method is repeated for each episode of training as a validation criteria to ensure the
performance level of the learning process. In this regard, a test and an evaluation dataset has been
incorporated. Due to the largeness of the problem space, it’s practically impossible to perform
experiments for all the possible combinations. Consequently, we were able to calculate the global
makespan minimum for only a fraction of initial states. The experiments were performed in our
simulated environment, where all possible decision combinations were evaluated. This type of
verification, however, is not common in RL applications as RL techniques are mainly verified by
the reward which cannot guarantee the total safety of the policy learnt. The models were trained
with randomly generated initial states for which the global minimum is not known. To determine
if the models converge or not, one test dataset was used after each training episode for which
the global minimum is known already. Then, according to equation (2), the normalized value of
the overall completion time was stored in a list. The mean value of this list was then used as a
condition to determine the termination of the training process. In other words, this verification
was also used as a mean of early stopping, which is kind of reducing the search space.

𝑆𝑐𝑜𝑟𝑒 = (
𝑂𝐶𝑇𝑊𝑜𝑟𝑠𝑡 −𝑂𝐶𝑇𝑅𝐿

𝑂𝐶𝑇𝑊𝑜𝑟𝑠𝑡 −𝑂𝐶𝑇𝐵𝑒𝑠𝑡
);𝑅𝑒𝑤𝑎𝑟𝑑 = (𝑂𝐶𝑇𝑅𝐿)

3 (2)

Where 𝑂𝐶𝑇𝑊𝑜𝑟𝑠𝑡, 𝑂𝐶𝑇𝐵𝑒𝑠𝑡 and 𝑂𝐶𝑇𝑅𝐿 stand for the worst, the best and the rl-output of overall completion times.

3. Evaluation

The experimental results for the simulated experiments are presented in Fig. 2, the 4 sections
each representing the results for one RL method. Each section shows 4 experiments (SI=1,2,3 or
4) detailed in Tbl. 1. For each experiment, we applied 4 different early stopping condition that
differ by their color listed in the legend (e.g. 𝑂𝐶𝑇𝑅𝐿 ≥ 0.92;𝑚 = 10), where 𝑚 represents the
horizon over which 𝑂𝐶𝑇𝑅𝐿 is calculated. The example means that early stopping is activated
when 𝑂𝐶𝑇𝑅𝐿 ≥ 0.92 over the last 𝑚 = 10 episodes. These experiments are repeated for the
remaining conditions mentioned. In Fig. 2, boxplots each represents the results of multiple runs
of the corresponding method with the same parameters. The trained models were applied to
each of 1000 evaluation datasets. The numerical results for the experiments evaluated in Fig. 2
are provided in Tbl. 2. As shown in the results, PPO was able to outperform DQN, A2C and
REINFORCE in terms of the average score, duration and the number of episodes required for
training with rising uncertainty. Therefore, PPO is the recommended method for our IIoT Test
Bed to realize dynamic scheduling.
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Figure (1): Structure of our IIoT Test Bed with highlighted stations used in the simulation

𝑂𝐶𝑇𝑅𝐿 ≥0.79; m=100 𝑂𝐶𝑇𝑅𝐿 ≥0.85; m=50 𝑂𝐶𝑇𝑅𝐿 ≥0.89; m=25 𝑂𝐶𝑇𝑅𝐿 ≥0.92; m=10
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Figure (2): Results in Boxplots

Situation best best av score av no. of fastest fastest av score av no. of av score av no. of
Index alg. e.s.m. (best) ep. (best) alg. e.s.m. (fastest) ep. (fastest) (Δ) ep. (Δ)
SI=1 PPO 0.85-50 0.928 307 DQN 0.85-50 0.915 273 -0,013 -34
SI=2 DQN 0.89-25 0.861 24781 DQN 0.89-25 0.819 799 -0,042 -23982
SI=3 PPO 0.89-25 0.957 321 PPO 0.79-100 0.951 202 -0,006 -119
SI=4 PPO 0.79-100 0.890 5563 PPO 0.92-10 0.869 524 -0,021 -5039

Table (2): Best and fastest converging models

4. Conclusion

In this paper, we proposed the use of RL for dynamic job scheduling in a virtual environment
that has the behaviour of our IIoT Test Bed. For different scenarios, we illustrated how the
corresponding NP-hard scheduling problem can be addressed using RL without the need for
examining an enormous number of experiments.
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