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Abstract  
The distribution density function is a fundamental concept in statistics that provides a natural 
description of the distribution for any random variable and allows the identification of the 
corresponding probabilities by ratio. In this paper, we attempt to determine the 3D density 

distribution of galaxies in large surveys (such as the SDSS) in order to study the effect of the 
environment on galaxy evolution. We will also explore finding structures in large spaces, such 
as six-dimensional phase space, or even larger spaces in large astronomical databases (such as 

the SDSS database itself). This is why we are interested in accurate and efficient density 
estimators for astronomical data sets in several dimensions.  
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1. Introduction 

Estimating density in datasets is a critical first step in progress in many areas of astronomy. For 

example, the galactic environment obviously plays an important role in its evolution, as observed in the 

ratio of color density and color concentration density. It is important to estimate the local density of 

galaxies for these relationships [1, 15, 20]. 

As another example, the reconstruction of a large-scale structure of the universe requires a proper 

assessment of the space field density. Even modeling requires density estimation: SPH is a method of 

creating a simulated astronomical structure by using astrophysical fluid dynamic calculations, which 

uses nuclear density estimation to solve hydrodynamic equations [3, 6, 8].  

Density estimation is required not only for the analysis of spatial region structures, but also for 

structures in other spaces, such as the search for connected structures in six-dimensional phase space 

when modeling space structure formation or in three-dimensional phase space projections in satellite 

galaxy growth simulations [18, 22].  

This paper examines the performance of four distribution density function evaluation methods [5, 

11, 21]:  

• k-nearest neighbors (KNN);  

• 3D-implementation of adaptive estimation of Gaussian nucleus density called DEDICA;  

• a modified version of the adaptive Braiman core density estimation, called the modified 

Braiman estimation (MBE);  

• Delaunay tessellation field estimator (DTFE).  

The first method is well known among astronomers and involves determining the density by 

counting the number of nearby neighbors to the issue under consideration [2, 16]. This method is 

commonly used in studies of the relationship between the environment and the properties of the galaxy. 

The second and third methods are both adaptive nucleus density estimators, where a nucleus whose size 
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adapts to local conditions (usually isotropic), depending on certain criteria established before or 

iteratively during process estimation, is used to smooth the point distribution so that typically density 

can be estimated. The fourth method, like the first, uses the position of neighbors to estimate the local 

densities. 

2. Overview of methods 
2.1. Study of the object of study  

The purpose of density estimation is to approximate the true probability density function (pdf) of a 

random process from the observed data set. There are two main families of density estimators: 

parametric and nonparametric. In parametric methods, the type of distribution (uniform, normal, 

Poisson, etc.) must be known (or guessed) in advance, while nonparametric methods do not require this 

information. The methods considered in this study belong to the second type [4, 10, 19].  

First, we must distinguish between different types of design density. Starting from the input data set, 

which consists of a list of positions of points 𝑟𝑖∈ ℝd, i = 1, ..., N in the d-dimensional spatial region, we 

define two types of probability density as [22, 26]: 

1. Point probabilities: probability densities ṕ(𝑟𝑖) in the initial positions of the points ri; 

2. Probability density field: probability density ṕ(r) at arbitrary points in the spatial region ℝd. We 

often estimate the field density at Cartesian grid points, so we also talk about grid density.  

In addition, the probability density must be converted to the physical density when comparing 

galaxies. This is because the parameter of interest is the quantification of the environment of individual 

galaxies, not the probability of finding the galaxy in a particular position. The latter is calculated using 

density estimators and can be converted to the first by multiplying by N, namely [6, 12, 27]:  

1. Density of point numbers: ṕ(𝑟𝑖) = 𝑁ṕ(𝑟𝑖); 

2. Density field of numbers: ṕ(𝑟) = 𝑁ṕ(𝑟). 

2.2. Method k nearest neighbors 

The KNN estimator is well known in astronomy, and its principle is to focus a spherical window on 

each point r and allow it to grow until it captures k samples (k nearest neighbors r). Then the estimate 

of the density KNN for a data set with N data points is determined in any r ∈ℝd (Formula 1) [7, 13, 25]: 

ṕ(𝑟) =  
1

𝑁

𝑘

𝑉𝑑𝛿𝑘
𝑑, (1) 

where δk is the distance of the k-th nearest neighbor from r and Vd is the volume of a unit sphere in d-

dimensional space. The KNN approach uses a different window size for each point, so it adapts to the 

local density: when the density is high near r, the window will be small; but when the local density is 

low, the window will grow to a larger size.  

The KNN approach can be a good solution for finding the "best" window size. However, this method 

suffers from a number of disadvantages. The obtained density estimate is not a proper probability 

density, because its integral differs in all spaces, and the tails fall out extremely slowly. The density 

field is very "prickly", and the calculated density is far from zero, even in large regions where no 

samples are observed due to heavy tails. In addition, it leads to gaps, even when the main distributions 

are continuous [14, 17, 23].  

In astronomical works, it is typical that the sampling point is not considered its own neighbor. This 

is a conceptual problem because the point density will then disagree with the field density at the location 

of the sample point. In this paper, we take the sampling point as its own first neighbor, as in Silverman 

(1986), and use the average value of the estimated KNN densities with k = 5 and k = 6 when calculating 

either the density of the point or the grid. This is not exactly equivalent to the average density k = 4 and 

k = 5 KNN used in many astronomical works (for example, Baldry et al. 2006). While V in the 

denominator of equation (1) would be equal, k in the denominator is one higher by Silverman's 

definition [9, 21, 27]. 

 



2.3. Epanechnikov adaptive estimation of nucleus density 

Braiman (1977) described the case of an adaptive (Gaussian) nucleus. This method begins by 

calculating the distance δi, k to the k-th nearest neighbor of each data point located on ri, similar to the 

density estimator KNN. Instead of using this distance to calculate the KNN density estimate, it uses it 

to control the local core size (also known as bandwidth) in the adaptive core density estimate or in the 

Parzen estimate. To sample DN from N points with position vectors ri∈ℝd (i = 1, ..., N) and the nucleus 

K (r), the adaptive density of the nucleus ṕ(r) is estimated by (Formula2) [17, 24, 28]:  

ṕ(𝑟) =  
1

𝑁
∑ (𝛼𝑘𝛿𝑖,𝑘)

−𝑑
𝐾(

𝑟−𝑟𝑖

𝛼𝑘𝛿𝑖,𝑘

𝑁
𝑖=1 ). (2) 

In his simulations, Braiman use a symmetric Gaussian kernel. Here k and αk still need to be 

determined. For k or αk, too small a result will be noisy, whereas if k and αk are large, details are lost. 

The eigenvalues of the parameters for σ (width of the normal distribution), k and αk were determined 

by optimizing certain eligibility criteria [11, 19]. 

Silverman (1986) argues that we can interpret this as the use of a "pilot estimate" of density. We can 

understand this by observing from equation (1) that (Formula 3): 

ṕ𝑘𝑁𝑁(𝑟𝑖) ∝ 𝛿𝑖,𝑘
−𝑑 . (3) 

Thus, the bandwidth at each location is proportional. Thus, the density estimate of the KNN pilot 

level is implicitly used to control the final density estimate. The effect is that in low-density regions δi, 

k will be large and the nucleus will expand; in high-density regions the opposite happens. 

2.4. Fundamentals of the Modified Braiman Estimator (MBE) 

Braiman's approach, which is used to find the correct parameter values, is computationally expensive 

because it need to run the estimator many times to find the optimal parameters. This is even more 

expensive because the kernel has endless support. This means that each data point contributes to the 

density at each position, so that O (N2) is worth testing the parameters [12, 22].  

We plan to apply the method to astronomical datasets that are very large (> 50,000 data points) and 

dimensional (10 to hundreds). For this reason, we use a rapid and scalable modification of the Braiman's 

method according to the principles of Wilkinson and Meyer (1995). Silverman (1986) noted that an 

implicit pilot estimate of KNN can be replaced by another estimate without significant changes in 

quality. Therefore, Wilkinson and Meyer used the core density estimator itself to evaluate the pilot. In 

addition, they replaced the infinite support of the Gaussian kernel with the finite support of the 

Epanechnikov kernel, which significantly increases the computational speed and is optimal in terms of 

the minimum mean integral square error. To increase the computational speed of the pilot estimation, 

the pilot density field is first calculated at the grid points, after which the pilot signal density for each 

data point is obtained by multiline interpolation. The method is also scalable: even when the number of 

data points grows very large, the calculation time remains limited by the number of grid points [13, 25]. 

In the modified version of equation (2) becomes (Formula 4): 

ṕ(𝑟) =  
1

𝑁
∑(𝜎𝜆𝑖)−𝑑𝐾𝑒 (

𝑟 − 𝑟𝑖

𝜎𝜆𝑖
)

𝑁

𝑖=1

, 
(4) 

where Ke is the Epanechnikov core defined as (Formuls 5): 

𝐾𝑒(𝑡) =  {

𝑑 + 2

2𝑉𝑑
(1 − 𝑡. 𝑡)𝑖𝑓𝑡 ∗ 𝑡 < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 
(5) 

where Vd is the volume of a unit sphere in d-dimensional space.  

Estimation of density proceeds in two phases [11, 19].  

Phase 1. Calculate the optimal width of the window experiment σopt with the percentage of data 

defined in equation (6) below. Determine the density of the pilot using equation (4) for σ = σopt і λi = 1. 

Phase 2. From the density of the pilot to calculate the local bandwidth parameters λi on (Formula 6) 

𝜆𝑖 =  (
ṕ𝑝𝑖𝑙𝑜𝑡(𝑟𝑖)

𝑔
)

−𝛼

. 
(6) 



Here g is the geometric mean value of the pilot density, and α = 1 / d is the sensitivity parameter. 

The value of 1 / d is chosen to be equivalent to the Braiman's method, although some authors prefer the 

value of 1/2 regardless of d. The final estimate of the density is given by the equation. (4) again, but 

now for σ = σopt and λi, as given by equation (6).  

Compared to the original Braiman's method, it should be noted that a fixed window width σopt is 

used for the pilot assessment, rather than a fixed value of k. During the second phase of the algorithm, 

we change the width of the window with the density at each data point using the local bandwidth 

parameter. Data points with a low pilot score get a large window and vice versa. 

2.5. Adaptive estimation of Gaussian nucleus density (DEDICA) 

Pisani proposed a kernel-based density estimation method for multivariate data, which is a 

continuation of his work for the universal case. Again, this is an adaptive kernel evaluator. The main 

differences of the MBE method are that the Gaussian core is used and that the optimal bandwidths are 

determined iteratively, minimizing the cross-checking estimate. The study uses a 3D density estimator 

DEDICA, which is an implementation of FORTRAN Pisani [3, 8, 19].  

For a sample of DN from N points with position vectors ri∈ℝd, (i = 1, ..., N) and the core width of the 

i-th point given σi, the adaptive estimate of the Gaussian core density is given (Formula 7): 

ṕ(𝑟) =  
1

𝑁
∑ 𝐾𝑁(|𝑟𝑖 − 𝑟|, 𝜎𝑖)𝑁

𝑖=1 , (7) 

where Kn (t, σ) is the standard d-dimensional Gaussian nucleus (Formula 8): 

𝐾𝑛(𝑡, 𝜎) =  
1

(2𝜋𝜎2)𝑑/2 𝑒𝑥𝑝 [−
𝑡2

2𝜎2] 
(8) 

The kernel width σi is chosen by an iterative method that minimizes the local error of the integrated 

square. Procedure as follows:  
1. The window width is initialized ( Formula 9): 

𝜎(0) = 4𝜎𝑡 ,     𝜎𝑡 = 𝐴(𝐾)𝑁−
1

𝑑+4√
1

𝑑
∑ 𝑠𝑢

2

𝑑

𝑖=1

, (9) 

where su is the standard deviation of the l-th coordinate of the data, and A (K) = 0.96 for the Gaussian 

kernel.  

2. Iteratively perform the following steps for n = 1,2, ...:  

(a) halve the width of the window: σ (n) = σ (n - 1) / 2;  

(b) calculate the pilot estimate for (7) with fixed core sizes σi = σ (n);  

(c) calculate the local throughput coefficients through (6) with α = 1/2;  

(d) calculate the adaptive core estimate for (7) with adaptive core sizes;  

(e) calculate the cross-validation estimate (Pisani 1996, level (7)) (Formula 10):  

𝑀 (ṕ𝑘𝑎
(𝑛)

) =
1

𝑁2
∑ ∑ 𝐾𝑛(|𝑟𝑖 − 𝑟𝑗|, (((𝜎𝑖

(𝑛)
)

2
+ (𝜎𝑗

(𝑛)
)

2
)

1

2

)𝑁
𝑗=1

𝑁
𝑖=1  −

 
2

𝑁(𝑁−1)
∑ ∑ 𝐾𝑛(|𝑟𝑖 − 𝑟𝑗|, 𝜎𝑗

(𝑛)
)𝑗≠𝑖

𝑁
𝑖=1 . 

(10) 

Minimizing the cross-checking estimate is equivalent to minimizing the integral square error 

between the true density and the calculated density [5, 14, 20].  

3. Determine the iteration number n = nopt, for which the cross-check estimate is minimized, and 

return the corresponding optimal window widths and the adaptive core density estimate at the sampling 

points.  

The cross-checking procedure can be understood by looking at the behavior of different terms. As it 

decreases during the iteration, some conditions will continue to increase, while others will begin to 

decrease as the local windows size becomes much smaller than the interpoint distances. This is the point 

when the minimum is reached and the iteration stops [4, 29]. 

Although, as shown below, DEDICA gives good results in many cases, in some situations it fails. 

This can be attributed to some disadvantages of the method. First, the fixed core sizes σ (n) used for the 

pilot estimates form a discrete series of values (determined by the choice of σ (0)). This range of values 



may be too rough to find the optimal window width. Second, the method seeks to achieve what leads 

to a globally optimal result, which, however, may not be optimal in some regions [12, 19].  

An extension to the DEDICA code was developed in this study to obtain the grid density, because 

the original code calculates only the point density. The optimal window widths of each point, calculated 

during the estimation of the point density, are used to obtain an adaptive estimation of the core density 

at each point of the grid r by (7) (Fig. 1). 

 

 

 
Figure 1: Simulated data sets with known density distributions 

2.6. Delaunay Tessellation Field Estimator (DTFE) 

DTFE is a well-known in astronomy method of density fields reconstructing from a discrete set of 

scattered points. In this method, the Delaunay tessellation of points is first constructed. Then the density 

of a point is defined as inverse to the total volume V of the surrounding tetrahedra (in 3D) of each point 

multiplied by the normalization constant. To sample DN from N points with position vectors ∈ℝd, (i = 

1, ..., N) the DTFE density estimate is given (Formula 11):  

ṕ(𝑟𝑖) =
1

𝑁

𝑑 + 1

𝑉𝑖
, (11) 

where 𝑉𝑖 =  ∑ 𝑉𝑡𝑒𝑡𝑟𝑎,𝑗
𝐾
𝑗=1 . Here Vtetra, j is the volume of the j-th tetrahedron and K is the number of 

tetrahedra containing the point ri.  

In the next step, the density field is obtained by linear interpolation of point densities at the vertices 

of Delaunay tetrahedra to the full sample size.  

2.7. Formulation of the problem 

Galaxies are strongly influenced by their environment. Quantifying the density of a galaxy is a 

difficult but critical step in studying the properties of galaxies.  

Therefore, the aim is to identify differences in density estimation methods and their application in 

astronomical problems. We study the effectiveness of four density estimation methods: k-nearest 

neighbors (KNN), adaptive Gaussian nucleus density estimation (DEDICA), a special case of adaptive 

Epanechnikov nucleus density estimation (MBE), and Delaunay tessellation field estimator (DTFE). 

 

 

 

 

 



3. Analytical section 
3.1. Dataset 

Investigated the effectiveness of four density estimation methods on three classes of datasets: a series 

of simulated datasets with known density fields to test the ability to recover relatively simple density 

distributions of each method; astronomical data set with unknown but well-selected density field based 

on millennium simulations; and two different observed galaxy samples taken from SDSS. 

3.2. Modulated data sets with known density fields 

We start by constructing six simulated data sets with known density distributions (Fig. 1).  

Data set 1 is the unimodal Gaussian distribution with added uniform noise.  

Data set 2 contains two Gaussian distributions with the same number of points, but different 

covariance matrices (MC) and different centers, again with added uniform noise; this data set has the 

same number of points as 1.  

Data set 3 contains four Gaussian distributions with equal number of points, but different KM and 

different centers, again with added uniform noise; this data set has twice as many points as data sets 1 

and 2.  

Data set 4 contains a wall and thread-like structure. The x and y coordinates of the wall-like structure 

are derived from the uniform distribution, and the z-coordinate is derived from the Gaussian 

distribution. The pod-like structure is created with a Gaussian distribution in the x and y coordinates 

and a uniform z-coordinate distribution.  

Data set 5 contains three wall-like structures, where each wall is created with a uniform distribution 

in two dimensions and a Gaussian distribution in the third.  

Data set 6 contains points derived from the lonormal distribution.  

The representation of the scattering graphs of these data sets is shown in Fig. 2. 
 

 

 
Figure 2: Graphical representations of scattered simulated data sets. Left to right, top to bottom: data sets 1-6 

3.3. Astronomical data sets with fields of unknown density 

Three astronomical data sets are used to test the performance of methods on astronomical data: semi-

analytical model galaxies performed as a result of Millennium modeling, and two samples of galaxies 

performed with SDSS.  

3.3.1. MSG data set 

The first astronomical data set consists of a L-Galaxy "millimil" experimental model Millennium 

sample. Simulation Millennium is one of the largest simulations that has ever studied the evolution of 

the universe, after almost 2 × 1010 particles. It was created to predict the scale structure of the universe 



and compare them with observational data and astrophysical theories. L-Galaxies are created by 

inhabiting halo trees extracted from the Millunium simulation with semi-analytical models according 

to the commandments of De Lucius and Blaisot. A much smaller “milliMillennium” simulator 

(“milliMil”) is used, which took a sample of only ~ 2 × 107 particles and associated L-galaxy data. This 

dataset is referred to as the MSG dataset, which contains 53,918 points. In the visual representation, the 

simulation output looks like a thin three-dimensional fabric of threads with fractal self-similarity and 

several layers of organization. 

 

 

   
Figure 3: Representation of plot graphs of MSG data sets. Top to bottom: MSG data, MSG-DTFE data set, MSG-

MBE data set  

 

The goal is to use the MSG dataset complexity for testing the methods performance with a well-

chosen but reasonably "astronomical" setting. Unfortunately, the true core density field of the MSG 

dataset is unknown. Therefore, MSG samples are downloaded to determine the "true density" for 

astronomical data. The MSG data density field is used to create new datasets, and their density is 

considered to be the true density of these datasets. The process of creating new datasets can be described 

as follows:  

Step 1: Calculate the density field of the MSG data set using one of the density estimation methods.  

Create a new data set that has a probability density function similar to MSG data as follows:  

1. Generate a random position ri(x, y, z) within the original sample and a random value of p between 

zero and the maximum density of the sample field;  

2. Interpolate the density P of the point ri(x, y, z) in the field obtained from step 1;  

3. If p <P take the point ri(x, y, z) as a point in the new data set; P is the true density ri(x, y, z);  

4. Repeat steps 2-3 until the required number of points is obtained.  

Two such datasets were created, one was using DTFE (called the "MSG-DTFE dataset") and the 

other was using the MBE (called "MSG-MBE"), both of them was with the same number of points as 

the original MSG dataset. For the MSG-MBE data set, the true density P was interpolated from a grid 

of 2563 points, and for the MSG-DTFE data set from Delaunay tessellation. The representation of the 

scattering graphs of these three fields - the original MSG data set and the two derived data sets - is 

shown in Fig. 3. It should be noted that both obtained data sets look soothing, like the original MSG 

data set, although in some derived data sets there is a slight smoothing. 

 
 



  

 

Figure 4: Above: distance distribution of SDSS spectroscopic data over a distance in the distance zone 
 

Figure 4. Above: distance distribution of SDSS spectroscopic data over a distance in the distance 

zone, assuming a cosmology of concordance (Ωm = 0.28, ΩΛ = 0.72, h = 0.7). The dotted line 

approaches this distribution, assuming that galaxies perform the function of Schechter luminosity with 

an obvious limit value r <17.7. Bottom: The corresponding inverse weight based on the luminosity 

function. To extract a high level of redshift, a 10% level of completeness is selected (corresponding to 

R = 515 MPC, which is equivalent to z = 0.122).  

Next, the field density generated by all density estimation methods is compared with the true 

densities obtained in the process described above. 

3.3.2. SDSS data sets 

Finally, to apply these density estimation techniques to the observed astronomical data, two samples 

of galaxies are extracted from DR7 in SDSS: a "cone" of galaxies over a relatively small solid angle in 

the sky but extended by redshift and a "z-shell" of galaxies over a small redshift interval  

Spectroscopic redshift is used to calculate the distance R, which is then converted to Cartesian 

coordinates to estimate the density using flat cosmology with Ωm = 0.28, ΩΛ = 0.72, h0 = 0.7.  

Completeness correction is required when calculating the density according to SDSS, which we 

discuss before submitting samples. SDSS is selected by size, but is not (initially) limited to redshift. 

This means that the distance of the number of galaxies in the sample decreases with distance, because 

weak galaxies can no longer be detected, causing a low density for distant galaxies. To counteract this 

effect, weights are calculated for each distance, assuming the Schechter glow function, following the 

procedure of Martinezta Saar (2002). For this calculation, all SDSS galaxies with a spectroscopic 

distance between 50 and 2000 Mps (corresponding to a redshift from 0.0117 to 0.530) and Petrosyansky 

r <17.7 are used. If galaxies follow Schechter's luminosity function, they must also follow the 

distribution of numbers (Formula 12): 
𝑑𝑁

𝑑𝑅
= 〈𝑝(𝑟)〉Ω𝑅2𝛷(𝑅), (12) 

where ⟨ρ (r)⟩ average field density, Ω survey area and Φ (R) - selection function given (Formula 13) 

𝛷(𝑅) =  𝑒
−(

𝑅
𝑅𝑐

)𝛽

, (13) 

The best suitability of the equation (12) for the data (Ω = 2,444 sr) set ⟨ρ (r)⟩ = 0,013 Mpc-3, Rc = 

299,8 Mpc and β = 1,5 and is shown in Fig. 4, above. The corresponding selection function is shown in 

Fig. 4, below. After the calculation, the density is adjusted by dividing by the value of the selection 

function by the distance of the galaxy. 

It should be noted that due to the fiber masks used for SDSS spectroscopy, not all (bright) sources 

in dense media have spectroscopic redshifts. These sources are not included in the sample, and failure 

to correct this has led to a shift in low density in the densest regions.  

The "primary" galaxies of 1939 were chosen within the rectangular boundary RA = (185,190) and 

Dec = (9,12). The celestial coverage of our sample is 14.7 °.  



To cut the sample of the galaxy, the lower limit of completeness was chosen (Fig. 4) - 10%; to limit 

the effect of long distances; incompleteness up to 90% does not cause unacceptably large errors when 

trying to estimate the density of galaxies. This corresponds to the distance Rmax = 515 Mps (redshift 

0.123).  

To prevent edge effects and limit the effects of local motion, the lower distance limit is set at Rmin = 

50.0 Mps (corresponding to a redshift of 0.0117). This results in the final number of galaxies in the 

1030 cone sample. Bulk densities were calculated using this sample with a limited size and redshift of 

1030 galaxies.  

The integration of equation (12) for the cone sample (Ωcone = 0.00449 sr) is expected to have 2702 

sources in the region, of which 692 should be detected. Instead, the cone sample has 1030 galaxies, 

which is 49% more than expected. A comparison with other regions of the same size shows that the 

cone pattern is indeed extremely dense. Therefore, the average field density of the "cone" sample was 

corrected by ⟨ρcone (r)⟩ = 0.0196 Mps-3.  

The definition of σopt for MBE is insufficient for narrow cone-shaped samples. Problem cases of 

such samples are strong alignment of one axis (or planes) of the Cartesian coordinate system or 

alignment with one of the diagonals of space. The first leads to too small σopt value because one or two 

values of σl will be much smaller than the others (s), while the last leads to too high σopt because N does 

not reflect incomplete filling of the sample space. Therefore, a new definition of σopt was created for 

conical samples: first, the average distance to the nearest half of the galaxies is determined; then σopt is 

selected as the square root of the cross section of the cone at this distance. 
 

 
Figure 5: Performance of density estimators: simulated data sets and MSG  

4. Experiments 
4.1. Simulated data sets 

Firstly, we studied the effectiveness of four density estimation methods on six simulated datasets 

and then on the two data sets obtained by MSG. 

The effectiveness of the methods for artificial data sets in the upper rows of Fig. 5 is compared using 

ISE and GKLD indicators. True density is the parametric density calculated from the parameters used 

to create data sets. It is clear that the methods based on the adaptive core, MBE and DEDICA, perform 

much better than KNN or DTFE in restoring the density distributions of the input data. For all but the 

data set 6, the lonormal distribution, the performance of the MBE is better or approximately equal to 

the efficiency of DEDICA. It is worth noting that the MBE density was calculated by automatically 

selecting the core size, and the best MBE performance can be obtained by changing the anti-aliasing 

setting manually. 
 

 



 
Figure 6: DEDICA performance for the data set 4 

 

The thread is red and the wall is blue. Left: Spatial representation of the data set. Right: a comparison 

of true and DEDICA-formed density. 

It can also be noted that DEDICA works very poorly for data set 4 (wall plus thread), where it is not 

possible to estimate the proper density. Studying the density of points in Fig. 6, it is seen that DEDICA 

underestimates the density in the wall. This is because the correct kernel size could not be selected 

during automatic (cross-validation) selection of the kernel size on this dataset. Similar behavior is also 

observed when considering MSG and SDSS datasets. In addition, the field produced by KNN is not 

normalized. For data sets from 1 to 6 fields on average are approximately 25-30% excessively dense. 

This is why KNN performs the worst in terms of integral square error on these datasets. 

4.2. MSG datasets 

The performance of the density estimators on the MSG datasets in the lower rows of Fig. 7 is 

compared. DTFE is expected to work best on the MSG-DTFE dataset, and MBE works best on the 

MSG-MBE dataset. Interestingly, KNN works in the same way as DTFE on the MSG-DTFE dataset. 

This is not a complete surprise, as DTFE and KNN are conceptually similar, as both use only points in 

close proximity to the current location for direct density estimation. Because of this, both can work 

better than core estimates, with strong gradients or even fundamental density gaps. Nevertheless, the 

MBE works in much the same way as DTFE and KNN on the MSG-DTFE dataset, suggesting that the 

MBE continues to operate even in spatially complex datasets. 
 

 

 
Figure 7: Diagram of the true and approximate density of the MSG-MBE data set field using MBE (upper left), 

DEDICA (upper right), DTFE (bottom left) and KNN (bottom right). Approximately 16,000 random grids are shown 
 



The GKLD in Fig. 5 shows that DEDICA is unable to estimate the appropriate density for the samples from 

the Millennium dataset. For both samples, MSG DEDICA produces very different density distributions compared 

to the "true" distribution (MSG-MBE dataset Fig. 7). As mentioned above, a similar performance of DEDICA 

was observed on the simulated data set 4, which contains a filamentous structure. The MSG data set also contains 

an obvious filamentous structure. Again, it turns out that DEDICA's automatic kernel size selection (using cross-

checking) failed to select the appropriate kernel size for such datasets (although it works quite well in Gaussian 

and lonormal cases). 

 

 

 
Figure 8: Normalized distribution of density values in the logical space for each estimator  

 

The distribution is smooth and close to Gauss. A wider density range (DTFE, KNN) means that the estimator 

detects more clustering. More clustering leads to an increase in galaxies in regions of higher density, shifting the 

distribution peak to the right. The dotted line represents the measured average field density from the selection 

function. Left: sample "cone". Right: a sample of the "shell". 

4.3. Density distributions 

We are currently studying the application of our own density estimators to two observable data sets of galaxies 

with SDSS, "cone" and "shell" samples.  

Starting with comparing the distributions of density values obtained by four different methods (Fig. 8). All 

four methods for estimating density give an approximately logical distribution of values for SDSS samples (as 

expected from previous research and theoretical ideas). Therefore, the analysis is performed with the logarithm 

of the density, or "standardized density", defined as (Formula 14): 

𝑝𝑠 =  
𝑝𝑙 − 𝜇𝑙

𝜎𝑙
, (14) 

where μ1 and σl are the mean and standard deviation of (almost) Gaussian density distributions. We give graphs 

of the distribution of logarithmic density in Fig. 8.  

The true average galaxy density ⟨ρ (r)⟩ for the cone and shell samples is 0.0196 and 0.013 galaxies per cubic 

megaparsec, respectively. The average value of the calculated densities cannot be directly compared with this 

number, because it is averaged over the set of galaxies and ⟨ρ (r)⟩ over the field. High-density regions contain 

more galaxies, and therefore they have more weight in the average density of points. This weight is proportional 

to the density, and if a lonormal distribution of the estimated density is assumed, the average value of the 

calculated field density can be calculated as (Formula 15): 

〈ṕ(𝑟)〉 = 𝑒ln 10𝜇𝑖
−

(ln 10𝜎𝑗)2

2 . (15) 

For each estimator, the calculated value is shown in Fig. 7, as well as the known average field density. For the 

DTFE "cone" sample the best approximates the known average field density, closely following the MBE. For the 

"shell" sample, this order is reversed. DEDICA incorrectly represents the known average field density, and KNN 

is between them.  

The distribution of the "shell" sample is smoother than that of the "cone" sample due to the larger number of 

data points. Even for the "shell" sample, the DEDICA density distribution is not equal, due to global optimization, 

which results in small window widths. The MBE density distribution peak reaches a slightly higher density for 

the "shell" sample. In addition to the difference in means and widths, differences in density methods are 

manifested in the tails of the calculated density distribution. DTFE creates high-density tails because it is sensitive 

to excessive density due to the local nature of the method. MBE creates a low density tail. And the distribution 

from KNN has stronger tails of high and lower class (compared to Gauss).  

The DEDICA density distribution is offset by other distributions. Comparing the estimated average field 

density and the true average field density, it can be seen that the calculated values cannot represent the actual 



density. This is due to DEDICA's sensitivity to excessive density: in the case of high-cluster data such as ours, 

they create very small cores, emphasizing the density field. Moving the positions of galaxies by 1 MP in the 

random direction, thereby slightly homogenizing the sample, removes this effect almost completely. However, 

despite the fact that the density of DEDICA galaxies is much higher than expected, it can still be used as a 

parameter describing the environment of galaxies, using it in a standardized form. 

5. Conclusion 

All four methods are applicable in astronomical problems; in general, a modified Braiman estimator is 

preferred. For artificial datasets, kernel-based methods outperform DTFE and KNN in terms of integral quadratic 

error and Kullbeck-Leibler discrepancy. Correct kernel sizing is crucial, and DEDICA is unable to properly 

estimate kernel size in more complex datasets such as Millennium and SDSS simulations.  

From the artificial data sets, it can be concluded that the methods based on adaptive nuclei, MBE and DEDICA, 

are better in restoring the "true" density distributions than the KNN or DTFE methods. However, DEDICA 

obviously has difficulties with spatially complex distributions, which makes it unsuitable for use in problems 

related to the large-scale structure of the universe.  

All the methods overestimate the density of dense regions, and DTFE has the largest deviation from the true 

density, because the density of DTFE is close to infinity if the volume of the surrounding tetrahedra is close to 

zero. On the other hand, all methods almost equally underestimate the density in areas of low density.  

DTFE even produces zero density for points on the convex body of the data set. However, in astronomical 

conditions it is not always problematic. The convex body is the edge of the sample: physically outside the edge 

are galaxies that are not represented in our estimated densities. Therefore, all methods give a density lower than 

the unknown "true" densities in these regions. The zero values of the DTFE density estimator can be used as an 

implicit indication that the density estimation was not successful for these galaxies. With other methods, these 

galaxies are silently in a bucket for too low a density. 
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