
Domain Ontology Learning using Link Grammar Parser and
WordNet
Dmytro Dosyn

1
, Yousef Ibrahim Daradkeh

2
, Vira Kovalevych

3
, Mykhailo Luchkevych

1
and

Yaroslav Kis
1

1
 Information Systems and Network Department, Institute of Computer Science and Information Technologies,

Lviv Polytechnic National University (LPNU), Ukraine
2

Department of Computer Engineering and Networks, College of Engineering at Wadi Addawasir 11991,

Prince Sattam Bin Abdulaziz University, KSA
3
 Department of the theory of wave processes and optical systems of diagnostics, Karpenko Physico-Mechanical

Institute of the National Academy of Sciences of Ukraine

Abstract
The problem of knowledge discovery that comes down to information pertinence evaluation

still stay unsolved because of absence of practical effective methods and means of ontology

learning. Despite active development of natural language processing tools, they mostly reach

the level of semantics, named entity recognition and sentiment analysis but not pragmatics.

On the other hand, ontology is the only instrument, “measuring ruler” to compare and

estimate the usefulness of information for some particular user, which knowledge could be

represented by such ontology as his hierarchical task network (HTN). The need to build

separate HTN ontology for each user puts on the agenda the task of design of the automated

ontology learning from text. With aim to solve this task the system of automated and semi-

automated ontology learning from text had been developed using Carnegie Mellon Link

Grammar Parser and WordNet API. Two approaches to distinguish semantic relations in

natural language text (NLT) sentences were adopted: analysis of the sentence constituent

trees – for explicit relations recognition and Naïve Bayes supervised learning – for

recognition implicit semantic relations which need not only verb phrase but other parts of

sentence due to its ambiguity. Developed approach was implemented in the Java desktop

application using OWL API and Protégé-OWL API. Experimental results were compared to

expert analysis and had shown good recognition reliability.

Keywords1
Ontology Learning, Natural Language Processing, Naïve Bayes Classifier, Protégé-OWL

API, Knowledge Discovery, Pertinence Estimation, Link Grammar Parser, WordNet

1. INTRODUCTION

Traditionally, computer linguistics (CL) presents a text document as a "bag of words", i.e., the

model of a document in terms of CL is the distribution of terms according to the frequency of their

occurrence in the text of this document. Content as a logical essence is not discussed in this approach,

instead only lexical analysis is performed, so it is difficult to distinguish between important and

unimportant documents, look for borrowings from other documents, make short annotations, translate

their content into other languages. Historically, the vast majority of information retrieval systems

have been built on this approach, as the simplest and most obvious. The corresponding information

model of the document is called a vector-spatial model. In this interpretation, the document is

searched in the space of vectors of frequency of occurrence of terms and their combinations. Such

1 MoMLeT+DS 2022: 4th International Workshop on Modern Machine Learning Technologies and Data Science, November, 25-26, 2022,

Leiden-Lviv, The Netherlands-Ukraine.

EMAIL: dmytro.h.dosyn@lpnu.ua (D. Dosyn); daradkehy868@gmail.com (Y.I. Daradkeh); virusia333@gmail.com (V. Kovalevych);
luchkevychmm@gmail.com (M. Luchkevych); yaroslav.p.kis@lpnu.ua (Y. Kis)

ORCID: 0000-0003-4040-4467 (D. Dosyn); 0000-0002-9209-0626 (Y.I. Daradkeh); 0000-0003-3651-5746 (V. Kovalevych); 0000-0002-

2196-252X (M. Luchkevych); 0000-0003-3421-2725 (Y. Kis)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:luchkevychmm@gmail.com
mailto:yaroslav.p.kis@lpnu.ua

search methods are widely described in special and popular literature (see, for example, [1]), however,

their main drawback is the already mentioned approach, in which the model of a text document is

exclusively lexical and stochastic. This is due to the fact that such models are easy to implement, and

therefore this approach to solving the practical problem of information retrieval is reminiscent of a

situation where a drunkard, returning from a party, looking for lost keys under a lantern only because

it is better visible. But a simple solution is not always correct. And it is intuitively clear that the metric

requires choosing an object commensurate with its dimension as a measure of some phenomenon.

Thus, the model of a text document, as a message of one intellectual agent to another has a certain

functional structure, caused by its purpose to convey certain important from the point of view of the

author information to its recipient. That is why the message usually consists of two parts – a

concluding introductory, in which the author indicates to the addressee known to the latter, in his

opinion, the context of basic information, and the main, constructive, in which the author transmits to

the recipient the information that in a given context will be potentially demanded by the addressee

(See Fig. 1). This means that the recipient will supplement the knowledge base with this new

information.

Figure 1: Representation a text document as a message.

The task of the intelligent agent linguistic analysis subsystem is to recognize the true context of the

message contained in the text document, provided that it is correctly specified. To simplify, we must

assume that this is so. What is the process of context recognition? Obviously, in the localization in the

agent's knowledge base of entities and connections, as well as possibly registered in the agent's

knowledge base, the facts referred to in this document, ie, to which there is an explicit or implicit

reference, but which must be recognized.

To do this, it is necessary to provide the possibility of eliminating ambiguity in the identification

of the concepts mentioned in the text. In particular, this is achieved by comparing the attributes of

such a concept used in the text with the semantic connections of the corresponding entity that are

valid in the agent's ontology. For this purpose it is necessary to perform syntactic-semantic analysis of

sentences of this text with their transformation into predicates of descriptive logic, the names of which

will be semantic connections between concepts represented in the text mainly by verbs (verb phrases)

and adjectives (verb adjectives), and attributes – the concepts themselves, represented by nouns,

pronouns or noun groups.

The intention of the author of the message to pass it to the correspondent gives grounds to believe

that the author has provided the necessary set of features in the first part of the message to

unambiguously identify the context according to the above scheme. After determining the context, the

next part of the message can be used to identify in the text of unknown (missing in the knowledge

base of the agent) facts and enter them into the knowledge base.

2. THE TASK STATEMENT

The need to build a separate HTN ontology for each user puts on the agenda the task of design of

the methods and means of automated ontology learning from text. Those tools should be able to

separate the part of input information that can be relevant to the specific user domain, distinguish

right semantics of the concepts to be placed at the right position in the ontology’s class hierarchy and

reconstruct appropriate specific semantic relations between concepts of the learned ontology from a

complex verb phase.

Context information should be extracted consequently from the learned ontology in a part relevant

to the analyzed text fragment and compared to the discovered context of the whole analyzed

document and/or its information source. The most relevant context should be chosen [2].

3. RELATED WORKS

As of 2020, the processing of text documents written in natural language (NLP) is based on

statistical models of the use of words and phrases in the text as a whole or the terminological structure

of each sentence regardless of the rest of the text, i.e. without reference to the context of the entire

message. Thus both the systems of rules developed by means of machine learning of statistical

models, and neural network technologies can be used.

The existing ontology population approaches and already available software had been investigated.

In particular, similar studies were conducted at Carnegie Mellon University with financial support

from DARPA, Google, NSF, and CNPq under the NELL project (Never-Ending Language Learning,

[3, 4]). According to the developers, "If successful, this will result in a knowledge base (i.e., a

relational database) … that mirrors the content of the Web” (see:

http://rtw.ml.cmu.edu/rtw/overview). Initially, the NELL ontology contained several hundred

categories of concepts, 280 types of semantic relations between them, and 10 to 15 sample sentences

for each of them. The system processed about 500 million Internet pages by selecting possible copies

of the categories and connections known to it by several hundred recognition methods available to the

system and identified 390 thousand concepts and 350 thousand types of semantic links. Stuart Russell

commented the project in his book “Human Compatible: Artificial Intelligence and the Problem of

Control”: “Unfortunately NELL has confidence in only 3 percent of its beliefs…” and as a

conclusion: “Reading requires knowledge and knowledge (largely) comes from reading” [5].

Another similar project, TextRunner, was previously implemented at the University of

Washington. During its implementation, about 9 million web pages, 133 million individual sentences

were processed, of which 7.8 million tuples were selected [6].

Ontology learning consists in knowledge discovery which differs significantly from data mining

and even from knowledge base population. In the case of data mining statistical analysis is used to

discover some trends and irregularities in big sets of uniform represented data. The knowledge base

population updates the knowledge base by new facts according to already existing formal model of

the domain without changing it. Instead ontology learning besides updating separate facts by new data

updates and rebuilds whole model.

We define knowledge as useful information. Usefulness anticipates existing an intelligent agent

which is able to make decisions taking into account some information which could be (or not be)

useful. An agent strategy has almost the same parameter – expected utility. Such coincidence is not

accidental – in both cases we are talking about agent’s informed decision making. Information that

increases agent’s strategy expected utility is useful therefore he uses it as knowledge “how to increase

his performance”. Information usefulness as an agent knowledge called pertinence. Knowledge

metrics problem still stay open because of absence of adequate measure instrument which could be

ontology itself, but only in the case when it will contain an optimal strategy of the ontology owner.

Formal description in an ontology of optimal strategy with states, rewards, actions, goal and evaluated

expected utility creates an agent's knowledge what to do to reach max utility (reward) in observed

conditions.

How to build an agent optimal strategy by means of RDF-OWL-SWRL-SPARQL-PDDL ontology

– still stays an open problem, but some prospective approaches had been already developed [7…9].

Each separate word and any unordered set of words can’t represent the same statement as a logical

sentence with right syntax, similarly no one set of not ordered sentences (and correspondent DL

predicates) can’t be distinguished as a valuable new knowledge without asserting them into existing

DL model. The key problem of discovering new knowledge in a text document written in natural

language is the development of a method of automatic learning of ontology as a formal-logical model

of the world, in which new information found in the text can be transformed into knowledge.

According to information theory by Claude Shannon [10] any knowledge as a kind of information

could be measured in terms of changing entropy of the system. But it could be shown that not all

equal entropy changing gives to an intelligent agent equal increasing his performance or equal

opportunity to reach closer to his goal. Exactly the change of expected utility of the agent strategy

after updating his knowledge base by this new information could be used as its usefulness i.e.

pertinence. Therefore to find if this information is useful for this agent, other words, to estimate the

pertinence of the information we should include it into ontology strategy of the agent, rebuild an

optimal strategy, taking into account new information, evaluate new expected utility, compare it to

previous one and take the difference as a value of pertinence of a new information, i.e. obtained

knowledge value. For this purposes an adaptive self-learned strategy planning ontology of the

intelligent agent, based on PEAS architecture is needed together with ontology learning technics

similar to described here.

In general, the solution of almost any automatic word processing problem includes the following

levels of analysis:

• graphematic analysis – to be concise if simplified – the division of the text into individual words

(tokens) and sentences;

• phonetic analysis, applicable in the processing of acoustic data;

• morphological analysis – selection of the grammatical basis of the word, definition of parts of

speech, reduction of words to the dictionary form;

• parsing – identifying syntactic connections between words in a sentence, building the syntactic

structure of the sentence;

• semantic analysis – identification of semantic connections between words and syntactic groups;

• pragmatic analysis – identification of statements – facts and rules, assessment of the importance

of the identified statements for the overall software model.

Each such analysis is set and implemented as a separate independent task, which is used in

conjunction with others to solve specific applied and theoretical problems.

A. TECHNOLOGIES

From the point of view of practical realization, the most developed and, accordingly, the most

widespread are the following methods and corresponding NLP technologies:

1. Named entity recognition (NER) is one of the most popular methods of semantic analysis.

According to it, the algorithm takes a phrase or paragraph as input and identifies all existing nouns or

names by classifying them. The task of fully recognizing a named entity can be divided into two

different problems: identifying names and classifying names according to the type of entity they refer

to (e.g., person, organization, location, and others). Hierarchies of the named types of entities are

developed. For example, BBN categories [11] consists of 29 types and 64 subtypes, Sekin's extended

hierarchy consists of 200 subtypes [12]. Ritter used a hierarchy based on conventional Freebase entity

types, applying NER to texts from social media [13]. Approaches with the use of social networks data

are considered promising [14].

2. Tokenization or lexical parsing is the process of converting a sequence of symbols into a

sequence of tokens (groups of symbols corresponding to certain patterns), and determining their

types. The process of displaying texts as a set of characters in a set of ribbons, a set of ribbons in a set

of words are the main steps of any PMT processing task. Various methods and libraries are available

for tokenization, in particular, such as NLTK, Gensim, Keras.

A tokenizer based on Penn TreeBank [15] allows to recognize punctuation, auxiliary words (words

that occur only in combination with other words) and words with a hyphen. Moses’ tokenizer

developed as part of the project of the automatic translator of the same name

(http://www.statmt.org/moses/) based on statistical training on parallel text corpora.

spaCy (https://spacy.io/api/tokenizer) – another tokenizer which provides flexibility in defining

special markers.

Word particle tokenization is also used. This tokenization is very useful for a specific application,

where it is important to take into account frequently used particles [16].

3. Stemming and lemmatization. In linguistic morphology, stemming is the process of removing

affixes in order to obtain the basis of a word, which will serve as its most general formulation. The

base found does not have to be identical to its root. Since 1968, in the field of computer science,

appropriate stemming algorithms have appeared. Many search engines use stemming to highlight the

base in order to supplement the queries with synonyms which is called a conflation.

Lematization is aimed at solving the same problem with the only difference that special

dictionaries (for example, WordNet [17]) and/or corpora of texts are used to find the basis in order to

find the correct vocabulary word form – a lemma, as some canonical form of the studied token.

4. "Bag of words"/TF-IDF/N-grams model – NLP procedures, aimed at further its lexical and

statistical analysis as a vector-space model [9] for using machine learning methods. This procedures

preferably includes mentioned stages of tokenization, stemming, and lemmatization. This approach

ignoring context but is simple therefore widely popular.

5. Sentiment analysis has been actively developing since the 2000s. Most commercially developed

NLP systems include a subsystem to analyze their tonality (see, for example, [19]). In such an

analysis, it is assumed that the textual information contains both facts and judgments of the author, the

tone of which should be determined. Knowledge-based techniques, statistical methods, and hybrid

approaches are used to distinguish the polarity of the studied text messages [20].

6. Immediate constituent analysis (analysis of successive layers – constituents) is a method of

sentence analysis, which was first formulated by Leonard Bloomfield, and developed by Rollon Wells

and Noam Chomsky [21, 22]. The method uses successive division of a sentence into subparts –

“immediate constituents” up to last word to obtain a layered sentence structure of recursive

inclusions, which should represent some its internal logic to be further analyzed. Now this practice is

widely used.

7. Dependency analysis parses syntactic structure of a sentence to build a network of

subordinations dependencies between all separate words of the sentence. Used dependency grammar

lets to reveal the basic elements of the sentence, which fulfils the roles of subject, object and a

semantic relation between them as skeletal predicate structure of the sentence. Authors [23] used to

compare constituent and dependency analysis by parsing the same example for both methods (see

Figure 2).

(a)

 (b)

Figure 2: Immediate constituent analysis (a) and dependency analysis (b) of the sentence “I saw
a fox” (From https://www.baeldung.com/cs/constituency-vs-dependency-parsing)

The result of dependency analysis can be represented by an oriented graph with a single root node

corresponding to the predicate, from which the edges named according to the type of connection are

directed to the dependent members of the sentence, and each word in the sentence, except that which

serves as a root node, must be at least one edge oriented to that word. Although syntactic

dependencies cannot be directly transformed into predictive logic predicates, they, in combination

with constituent analysis data that allow the identification of multi-word predicate attributes, can

serve as a sufficient basis for the application of machine learning methods to classify-recognize

known semantic connections and corresponding predicate constructions.

B. TOOLS

At the end of the second decade of the 21st century, it is the methods of automating the processing

of text written in natural language, or rather their imperfection, became a bottleneck in the

development of information systems towards their intellectualization: over-scale volumes of available

textual information remain unavailable for full analysis. The developed tools use vector-space model

methods such as "bag of words" or recognition of named entities and do not go beyond the analysis of

the tone of the text, automatic abstracting or translation. A number of companies and research groups

are actively developing and improving existing systems and technologies:

Table 1
The most commonly used NLP tools [24]

Name Prog. Vers. Algo Classifiers

StanfordNLP Java 4.2.0 CRF CoNLL, MUC6-7, ACE

OpenNLP Java 1.9.3 Max. entropy

SpaCy Python 3.0.5 Neural (2.0) OntoNotes

NLTK Python 3.5 Max entropy StanfordNER

GATE Java 9.0.1 JAPE

Link Parser Java 5.8.1 Link Grammar

1. NLTK (Natural Language Toolkit) – open source library of entry level NLP tools, developed

with Python. It includes tools such as:

• tokenization;

• stemming;

• grammar markup;

• text classification;

• NER;

• sentiment analysis.

In addition to the NLP processing tools themselves, NLTK includes more than 50 lexical databases

and text corpora, such as RST Treebank [25], Penn Treebank [15], WordNet 17], Lin thesaurus [26]

etc.

Drawbacks include low performance and lack of a syntactic parser, which must be compensated by

additional tools [27], such as, for example, the statistical parser Bohnet and Nivre [28].

2. Stanford Core NLP – multi-purpose “full-stack” tool for text analysis, including NER, text

tonality (sentiment analysis), construction of conversational interface. Like NLTK, Stanford CoreNLP

offers a wide range of NL text treatment tools. The main advantage of Stanford NLP tools is

scalability. Unlike NLTK, Stanford Core NLP is better suited for processing large amounts of data

and performing complex operations. Thanks to the architecture of the scalability system Stanford

CoreNLP effectively handles the processing of streaming data, such as extracting information from

open sources (social media, breaking news, running reviews generated by users), tone analysis (social

media, customer support), conversational interfaces chatbots), natural language generation (customer

support, e-commerce). This tool effectively recognizes named entities and provides fast syntactic

markup of terms and phrases.

3. Apache OpenNLP – a multifunctional text analyzer similar to Stanford Core NLP, which

supports the main common tasks of natural language text processing, such as tokenization, sentence

segmentation, tagging of parts of speech, recognition of named entities, fragmentation, parsing,

language recognition and interpretation of current references (searches expressions that refer to the

same entity in the text). This analyzer, according to its documentation, is based on the use of machine

learning methods, such as classification by maximum entropy and perceptron modeling. Apache

OpenNLP is a library that consists of many components. The user can make from these components a

NLP conveyor according to his tasks.

A comparative analysis of the Apache OpenNLP on the Internet with Stanford Core NLP shows a

significant functional similarity, which does not allow making an unambiguous decisive choice

between them: both systems perform their functions equally well.

4. SpaCy – open source software library for NLP in Python. The library includes the following

components:

• tokenization

• POS tagging

• dependency parsing

• lemmatization

• SBD (sentence boundary detection)

• NER (named entity recognition)

• EL (entity linking)

• similarity

• text classification

• rule-based matching – search for patterns by given features and regular expressions.

In general, this is a standard set of basic-level functions for the construction of specialized PMT

processing systems designed to solve specific problems in particular software. The main feature of the

library, which distinguishes it from the previous two, is the implementation in Python. Easy

integration of deep learning software is declared. It also includes proprietary parsing and NER

visualization tools.

5. GATE – open-source software infrastructure and graphical IDE for reliable creation and

deployment of components and resources for NLP [29]. Due to the modular architecture, it can be

used element by element or complex. It performs an almost complete set of the above operations with

text. Initially it was made in Java but currently also supports Python. The low entry threshold for

system users is provided by the existing graphical shell, which ensures its widespread use not only by

experts in the field of NLP, but also by those who try to solve practical problems in other areas related

to streaming and processing text streams, such as automatic dialog systems.

The advantages of GATE developers include the following properties of the system:

• automatic measurement of the performance of components;

• distinguishing between low-level tasks, such as data storage, data visualization, component

detection and loading, and high-level NLP tasks;

• clear separation between data structures and NLP algorithms;

• use of standard linguistic data exchange mechanisms for components and open standards such as

Unicode and XML;

• correction of exotic data formats – GATE performs automatic format conversion and provides

alignment and standardization of NLP data;

• providing a basic set of NLP components that can be expanded and/or replaced by users as

needed [30].

An important positive feature of the GATE project is the presence of APIs for modeling ontologies

and manipulating them.

6. Link Grammar Parser – a publicly available library of NLP software, originally built on ANSI

C as a formal grammar system Link Grammar, which in the process of development became part of

the Java distribution RelEx (https://wiki.opencog.org/w/RelEx_ Dependency_Relationship_Extractor) [31].

The system was developed in the 1990s by three linguists – David Temperley, John Lafferty and

Daniel Sleator [32]. This system includes all the elements of text analysis – from the initial

(graphematic) to the level that can be called the primary semantics of the English language.

The system decomposes English sentences into a set of binary meta-semantic relations between

words or punctuation, thus forming some syntactic structure (similar to dependency parsing). To do

https://wiki.opencog.org/w/RelEx_Dependency_Relationship_Extractor
https://wiki.opencog.org/w/RelEx_Dependency_Relationship_Extractor

this, the authors have built a special dictionary, in which for each word of the language indicates

which meta-semantic relations it can be associated with other words in the sentences of this language.

Link Grammar Parser (LGP) distinguishes over 100 different types of meta-semantic relations

between words in English sentences, providing the user with the ability to recognize detailed context.

The advantages of the system include the ability to process the entire array of text in parallel,

provided by dictionary technology to identify meta-semantic relations between word pairs in

sentences with subsequent weight filtering by probability, which is fully consistent with the Big Data

view. At same time due to the exponential complexity of used algorithm it operation is limited in

time.

4. METHODS

Among all the above-mentioned NLP tools and related technologies, it is necessary to choose the

most appropriate for the task of knowledge discovery according to the criteria of reliability,

robustness, speed and ease of implementation.

From the point of view of algorithmic language, the choice was made in favor of Java, mainly

given that most software libraries for work in the field of semantic networks (in particular, Protégé-

OWL API, OWL API, Apache Jena) were developed in this language. From the point of view of

specific distributions and relevant software libraries, it is quite difficult to choose one (see Table 2)

and, based on previous development experience, it is necessary to avoid such a choice as long as

possible, trying to choose the most standardized solutions and combine necessary elements of various

means (API) by including the required software libraries in the overall project. At the same time it is

necessary to pay special attention to possible conflicts between versions and implementations of the

involved libraries.

Table 2
Some aspects of implementing NLP tools

Software URL Lang. Licence OWL API

NLTK https://www.nltk.org/ Python Apache License 2.0 -

Stanford Core
NLP

https://nlp.stanford.edu/ Java GNU GPL +

Apache
OpenNLP

https://opennlp.apache.org/ Java Apache License 2.0 +

SpaCy https://spacy.io/ Python MIT License -

GATE http://gate.ac.uk/ Java LGPL +

LGP (RelEx) https://github.com/opencog/relex Java Apache License 2.0 +

Among other dependency parsers, RelEx attempts to obtain a greater degree of semantic

normalization: for questions, comparative data, entities, and sentence and subordinate clauses, while

other parsers (such as Stanford Core NLP) follow a literal representation of the text's syntactic

structure. In particular, RelEx pays special attention to determining when a sentence is hypothetical or

speculative, and isolating query variables from the question. Both of these aspects aim to make RelEx

suitable for question-answering and semantic understanding/reasoning systems. In addition, RelEx

performs word markup to denote a part of speech, a set of nouns, their gender, the temporal form of

verbs, and so on. According to the developers, RelEx analyzes text almost four times faster than

Stanford Core NLP, and it provides a "compatibility mode" in which it can parse sentences in the

same format as Stanford University's parser.

Nevertheless, RelEx project seems to be already stopped, moreover, none of the mentioned

systems contains the means of analysis at the level of pragmatics of text documents. The vast majority

of them are about equally successful in analyzing the tone of the text. Heuristics based on statistical

criteria using machine learning methods are mainly used. And here there is nothing unusual because

text message pragmatics (its assessment in terms of usefulness-neutrality-harmfulness) cannot be

https://en.wikipedia.org/wiki/MIT_License

determined without the use of knowledge base formulated as an optimal strategy of the intellectual

agent, as there is no starting point – the person with his goals and/or damages to be assessed.

Thus, it was decided to combine different libraries in the project as much as possible, preferring

the most standardized ones and those that do not impose unjustified restrictions on possible further

selection and development. As a core of the software package stays the OWL API library which

should help to reach the main aim – populate OWL ontology as a knowledge keeper and

simultaneously tool of text pragmatics evaluation.

A. USED TECHNOLOGIES

Despite the need to combine different NLP technologies due to the lack of full-fledged means of

extracting from the text description logic predicates necessary for ontology learning and/or knowledge

base population, one of them had to be taken as basic and supplemented by missing algorithms and

technologies. For the reasons stated above, the choice was made on the approach used in the Link

Grammar Parser. The main advantage of the method is simplicity and usability. Parsing mechanism is

separated from dictionaries describing language. Due to the use of dictionaries and the system of rules

of syntactic dependencies between words of the sentence, which can be dynamically edited and

supplemented in the learning process, this parser easily adapts to a given problem area, organically

combines with the ontology, actually becoming part of it. On the other hand, as mentioned earlier in

the parser's overview, the ability to recognize more than 100 types of meta-semantic relations between

words allows for detailed semantic analysis of the text.

Link Grammar Parser focuses on parsing syntactic dependencies between sentence words.

However, there are a number of significant differences: the edges of the formed relations graph are

not oriented. The parser also analyzes the dependencies between phrases, thus combining the

advantages of both approaches – constituent analysis and dependency parsing. As a result, the

recognized relations between words and phrases are not only syntactically but also contextually

dependent. Therefore, the developers have used their own system of notation for such dependencies,

which would, in their opinion, best suit their role in shaping the semantics of a sentence formed from

related words and phrases. In this regard, it is appropriate to call the syntactic dependencies classified

by the developers of LGP as meta-semantic relations (MSR).

As combined identifiers of such meta-semantic relations, special symbolic sequences are used –

connectors that correspond to a specific type of connection. An either ‘+’ or ‘-’ sign is attached to

each connector on the right to indicate the direction of relation. For example, if the word W1 is

assigned the connector A+ and the word W2 is assigned the connector A-, then in the syntactic

structure of a sentence consisting of two words W1 and W2, the connection A will be established

between the words W1 and W2. In this case, the sentence “W2 W1” will not receive any

interpretation, because W2 is assigned MSR A-, which forms a connection only to the left, and the

word W1 is assigned A+, which forms a connection only to the right.

LinkParser performs the analysis in two stages: the first stage – construction of set of syntactic

representations of one sentence in English. The parser considers all variants of meta-semantic

relations between words, choosing among them those which satisfy criteria of projectivity

(connections should not intersect) and connectivity (the resulting graph should contain as few

components as possible).

For example, for the following dictionary:

the: D+

white: A+

horse: D- & A- & S+

was: S- & PP+

tired: PP-

the phrase “The white horse was tired” will be parsed as follows:

+------D-----+

| +---A--+-S--+-PP-+

| | | | |

The white horse was tired

Here, the algorithm distinguishes four pairs of words connected by the corresponding MSR: D (the

- horse), А (white - horse)), S (horse - was), PP (was - tired).

In the second stage of analysis, the program divides the constructed graph into so-called domains,

each of which contains links belonging to the corresponding fragment of the sentence (atomic

statement). For example, in the sentence You think that I am happy, two domains "You think" and

"that I am happy" will be selected. Then for each domain conditions of type are checked: if in the

domain there is ‘A’ relation there should (or should not) be a relation ‘B’. Thus, it is possible to check

presence/absence in the domain of one relation depending on presence/absence of other relation.

A few MSR can be attributed to one word. Their combination may be subject to certain conditions,

reflected in the dictionary by notation similar to that used in regular expressions, namely:

& – "asymmetric conjunction": "W: A+ & B+" means some word X, with which the word W

forms a connection A, must be earlier in the text than the word Y, with which the word W forms a

connection language B;

or – "disjunction": "W: A+ or B-" means the word W can form either a connection A to the right

or a connection B to the left;

{} – "optional": "W: A+ & {B+}" means after the word W formed the right connection A, it may

or may not form the connection B;

@ – "unlimited" means that the connection can be formed an unlimited number of times.

Formulas can be assigned to a single word or a whole class of words. For example, the connector

(A) that connects adjectives with nouns is assigned to all adjectives at once. Similarly, the formulas

are assigned to 23 categories of English words, distinguished by morphological (degrees of

comparison of adjectives and adverbs, grammatical number (singular-plural) nouns, etc.) and basic

syntactic features (transitivity, bi-transitivity, etc.).

Traditional relation extraction approach uses extraction templates to distinguish predefined set of

relations, training documents and testing documents as well [33]. Here it is proposed to build

extraction templates using patterns, automatically constructed from set of most used word-MSR-word

pairs. LGP parser gives us all needed preliminary information to build such patterns.

The choice of a particular method took into account the features of the problem facing the system

as a whole, the initial stage of learning, as well as the architecture of the system, namely the presence

of an ontology as both a means and objectives of such learning:

1) terminological TBox facts should contain statistical templates of semantic connections, by

which the system will recognize a potential binary predicate;

2) search-recognition-learning should be purposeful, in the direction of solving some specific

problem (set of problems) given by the ontology of the subject area;

3) the applied algorithms should have the minimum complexity because of need of their repeated

in a long cycle of check of expected usefulness of the received fact.

The processing of NLT in this way should consist in the sequential transformation of sentences of

the text into predicates of descriptive logic in terms of a pre-formed (learned in the same way)

ontology.

B. ALGORITHM

The general flowchart of data transformations for extracting semantic relations from text is

presented on the Figure 3, corresponding block-diagram of the algorithm is presented on the Figure 4.

Software implementation of the method of ontology learning involves recognizing semantic

relations in NLT sentences, building on their basis DL predicates, identifying their logical

interdependence in order to form appropriate rules and assert the identified facts and rules into the

ontology.

To solve this task it is necessary to take into account the following statements:

1. A prerequisite for identifying a semantic relation is the presence of a verb phrase. Its presence is

determined by means of direct constituent analysis, and the type – corresponding to the verb phrase

meta-semantic relation. All conjunctions to the right of the conjunction 'S *' indicate a verb phrase.

2. The words that accompany (which are pointed to by) these symbolic sequences of meta-

semantic relations determine the type of semantic relation, i.e, the name of the predicate encoded in

the sentence. These words are usually verbs: "knows", "has", "belongs", "refers", or verb phrases

"belongs to", "consists of", etc.

Figure 3: General flowchart of data transformation for a separate relation extraction using Link
Grammar parser and WordNet.

3. Adjectives are interpreted as properties and can also be recognized in sentences through the

semantic relation "has a property".

4. To recognize the semantic relation, the following steps should be performed:

- parse sentences using LGP;

- find a verb phrase through constituent parsing taking into account the connection symbols to the

right of "Ss" MSR;

- find the verbs indicated by these symbols;

- find the subject of the action (subject in the sentence), which indicates the symbol "Ss";

- find the object of action (obviously, the definition in the sentence), i.e., the subject to which the

action is directed;

- check in the ontology the presence of this type of semantic connection and, in its absence, create

it;
- check the presence in the ontology of entities that mean the object and subject of action. There are different

options (see Table 3 below).

Table 3
Options for ontology learning under different conditions of presence in the ontology of components
of the detected predicate

Existing in the ontology

Possible action
Relation Subject Object

1 + + + Assert in ontology

2 + + Add an unknown concept to the ontology

3 + + Add an unknown concept to the ontology

4 + Ignore

5 Ignore

Figure 4. A block-diagram of the algorithm of ontology updating by a separate DL predicate using
Link Grammar parser and WordNet.

In case (5), obviously, the sentence is ignored. In case (4) also nothing to connect: so, for example,

if the known ontology connection ‘IS-A’ is used, which connects two unknown ontologies terms: X

and Y, such statement will also have to be ignored. In cases (2) and (3) it is possible to introduce the

concept into the ontology through a known semantic relation.

5. A distinction should be made between ontology as a set of admissible semantic relations

between concepts and the knowledge base, as a set of facts and rules about a given model of reality.

6. Relations can be unconditional and conditional. Conditional relations are written as rules –

implication of predicates. Unconditional connections are a partial case of conditional ones and are

recorded as facts in the form of separate predicates.

7. It is necessary that the recognition of semantic relations is based on the data of the learned

ontology which, among other things, would contain the concept of semantic relation and its features-

properties.

Based on the above arguments, a semi-controlled machine learning method using the naive Bayes

classifier was chosen. To do this, we used the LGP analysis of the NLT sentence, which resulted in a

graph of meta-semantic relationships between the words.

In the first step, the ontology recognizes the words of this sentence as concepts of a given domain.

Next, the results of parsing identify the roles of recognized words in the sentence. The next step is to

build a feature vector of each of the recognized concepts in relation to its role in this sentence. This

vector of features recognizes the type of semantic relations in a sentence. The ontology statistics is

accordingly updated which is one of ontology learning stages. Since the basis of the semantic relation

in a sentence is a verb phrase, the analysis begins with it.

Figure 5. Relation extraction template implemented

When analyzing another sentence, the system recognizes or does not recognize the verb phrase

selected by the direct constituent analysis of this sentence. If it does not recognize, it enters it into the

ontology as a new type of relation and creates its pattern (see Figure 5) with the ability to calculate

statistics. If it recognizes, it adds an existing pattern to the statistics. If in the ontology there are

several semantic relations with the given verb, the system by means of procedure of recognition on

statistics of patterns decides to what type of relation this sentence (the given verb phase) concerns.

The classical relation was used to recognize the type of semantic relation by the naive Bayes

classifier:

 () () ()
()

j

iij

ji
XP

hPh|XP
X|hP = (1)

where hi – i-th relation hypothesis; Xj – feature vector (pattern) of j-th semantic relation; ()
ihP –

unconditional probability (frequency of occurrence) of the i-th type of semantic relation; ()
jXP –

probability of appearance of the j-th feature vector (frequency of occurrence of the j-th pattern);

()
ji X|hP – probability that the i-th type of semantic relation takes place in the presence of the j-th

feature vector; ()
ij h|XP – the probability of the appearance of the j-th feature vector, provided that

there is the i-th type of semantic relation.

 The naive Bayes classifier is used, for which a feature vector is considered statistically

independent, and therefore the probability of co-occurrence of features is considered equal to the

product of the probabilities of independent appearance of each of the features:

 () ()∏
1

∝
N

k

ij,kij h|xPh|XP
=

. (2)

Then the probability of belonging to the class hi, provided that the set of features Xj is close to:

 () () ()∏
1

∝
N

k

iij,kji hPh|xPX|hP
=

, (3)

that is, we are looking for a hypothesis about the present semantic relation h*:

() ()∏
1

N

k

iij,k
i

* hPh|xPmaxargh
=

= , (4)

where N – the number of features of the pattern.

This method was implemented as a Java software using the Protégé-OWL API and Link Parser

API as part of the overall CROCUS project. After preprocessing the text document is divided into

separate sentences and for each of the sentences it is sequentially parsed by LGP, the results of which

are passed to the procedure of ontology updating. According to the specification, all statistics of the

features of semantic relations are stored in the appropriate domain ontology, which provides the

ability to self-learning and appropriate adaptability to user needs. The scheme of storage of features is

given in Figure 6. Adaptability is provided by weighing of each stored features according to its

occurrence during ontology learning. For this purposes every element of a pattern descriptor has its

own counter: Wml – for MSR name; Sml – for the concept, which participates in a descriptor as a

subject; Oml – for the concept, which participates as an object (see Figure 6). All of them are stored in

ontology as an integer type datatype property (see Table 4). This way we can estimate all needed

conditional probabilities using only data from the learned ontology.

Figure 6. Schema of recorded in ontology the pattern of a semantic relation as a set of
descriptors.

A recursive procedure of adding of new concepts to the ontology during its learning was

elaborated and applied with help of WordNet API. Each time new word, not represented in the

learned ontology by correspondent concept, appears in a learning text the procedure retrieves all (but

no more than N most frequent) correspondent synsets from the WordNet database, then retrieves there

his hypernym and checks its presence in the ontology. If not, procedure recursively repeats until all

kind of the hypernyms of the original word will find their hypernym concept in the learned ontology.

For set of obtained concepts the total importance weight WT of each of them are compared to select

the highest one, for which all previously unknown hyponyms up to original word are sequentially

added to the ontology as correspondent subclasses.

It is possible thanks to using the method of weighting of ontology concepts and relations,

developed by authors [34]. According to this method:
i
j

i
j

i
j

i
j WnWsWoW ++= (5)

1. The total weight 𝑊𝑇𝑗
𝑖

 of the ontology class is equal to the sum of its own weight , the

weight of the subclasses and the weight of the adjacent non taxonomic classes (associated by

a semantic relation, other than "is-a"):

 where: ∑ +=
k

k,j
i
k

i
j LWcWs 1 – the weight of k subclasses of the j-th class of the i-th level of the taxonomy;

111 +++ += i
k

i
k

i
k WsWoWc – the weight of the class 1+i

kWc ; k,jL – the weight of the relation between

classes jC and kC .

2. At the moment of adding a new subclass to the i+1st level, it is assigned its own weight 1+i
jWo

equal to half of the class's own weight of the upper (i-th) level. The weight of the class i
jWc and all

parent classes up to the root increases by the weight of the newly created subclass:

im,WoWcWc i
j

m
j

m
j ≤∀+= +1 . (6)

3. When establishing a relation
21 k,kL between the concepts k1 and k2, an edge appears between the

corresponding vertices of the ontology graph, and the weight Wc2 is added to the weight of the

adjacent classes Wn1, and vice versa, the weight of the new adjacent class Wc1 is added to Wn2:

∑=
k

k,jkj LWcWn (7)

4. The weight of an instance in the knowledge base is equal to the total weight (5) of its class in

the ontology.

5. The weight of a relation importance is equal to value of its mentions counter (see Figure 7).

Figure 7. A block-diagram of the algorithm of semantic relations weights updating during
ontology learning.

The developed method and correspondent algorithm is the basis for automatic recalculation of the

weight of ontology classes, instances and relations between them during its filling and adaptation to a

given subject area during operation with the aim to optimize structure and volume of automatically

generated ontology [35].

i

jWo

i

jWs i

jWn

5. IMPLEMENTATION

Ontology learning tools and methods, described above, had been implemented as the software

CROCUS (Cognition of Relations Over Concepts Using Semantics).

It is based on Protégé-OWL API and OWL API with functions, realized by LGP API, WordNet

API and some other Java libraries. It allows combining work with both OWL1 and OWL2 ontology

formats, depending of the task.

The first recognition level – which concept corresponds to a NLT word – is built with help of

WordNet: all possible meaning of the word is represented by a set of synsets, which title name and

attributes are compared with the names and corresponding attributes of concepts in the ontology [36].

If it is absent CROCUS proposes two options: 1) to choose from the hypernyms, proposed by the

WordNet (see: Figure 8), or 2) to let the software choose one automatically based on criteria of most

general concept from the subset of known of the set of proposed by the WordNet.

Figure 8. The window of manual hypernym choosing.

It is possible thanks to automated ontology concept weighting during learning process. A concept

is as high at the ontology taxonomy as more general it is. A level of concept place in the taxonomy of

the ontology is unambiguously determined by its Wo weight. Therefore Wo could be interpret as a

comparative level of concept generality.

Often a hypernym concept of the looked NLT word is also absent at the ontology. In that case the

looking procedure is repeated recursively for each founded hypernym of each synset WordNet

representation of the word. As a result of such a search using the WordNet taxonomy, a search tree

with a high vertex index is formed (see, for example, the number of hypernyms, suggested by

WordNet for the word “thinking” in Figure 8), which leads to the need to calculate the semantic

similarity coefficients for the number of concepts equal to the number of terminal vertices of the

whole obtained search tree. For reasons of conciseness of the ontology the system chooses the branch

of the search tree with the highest Wo terminal node parameter. All the non-terminal concept nodes of

the search tree branch also then added to the ontology as subclasses in a backward sequence up to the

word from the NLT.

All the learned parameters of the ontology, which provide it adaptability to a certain domain

and/or user needs, are saved inside this ontology as RDF datatype properties. The place of storage and

assignment of parameters is summarized in the Table 4.

Table 4.
Weighting parameters of OWL ontology classes and individuals

Title Carrier Carrier address* Aim

Wo Class <Class_name> Own weight

Ws Class <Class_name> Subclasses weight

Lisa Class <Class_name> Is-a relation weight

Wml Individual "default"+<MSR> MSR counter

Oml Individual "default"+<sem.relation>+<MSR>+”object”
+<concept>+<POS>

A counter of using a
concept as an object in a
MSR for a certain
semantic relation

Sml Individual "default"+<sem.relation>+<MSR>+”subject”
+<concept>+<POS>

A counter of using a
concept as an subject in
a MSR for a certain
semantic relation

Mx Individual "default"+<sem.relation> Semantic relation
counter

* – all address elements are separated by underline sign

The learning procedure is implemented in LearnSemRelation.java class, which contains the

methods:

- findSuperClass();

- addSubClass();

- setDataProperty();

- addPattern();

- readPattern(),

and a set of 15 other auxiliary methods like classExist(), getInstanceMaxNumber(),

relationStatisticsView() etc.

The key method addPattern() takes a set of descriptors, produced by the

SupplementedLGParser.java class, and performs a sequence of steps:

1) needed standard concepts is adding to the ontology;

2) “default_”-kind auxiliary individuals is adding;

3) learning sentences representative individuals is generated;

4) new semantic relation ontology class is created;

5) correspondent default-individual is created with the datatype RDF property Mx=1;

6) an abstract MSR concept is created or updated;

For each obtained descriptor (see Figure 6):

- consequently MSR subject and object concepts are adding to an ontology recursively (as

described above) and/or, if any of them already exists, default auxiliary individuals, mentioned in

Table 4, are created;

- Wml, Oml and Sml datatype properties of the correspondent individuals are updating;

- importance weights Wo, Ws, Wn are recalculating with accordance with (5)…(7) to choose right

superclass during next learning steps.

A set of all needed functions are implemented in the CROCUS system. The main user interface of

the system is presented on the Figure 9. The most commonly used functions of the system are moved

to the toolbox of the front panel:

- Process text is a complex procedure of ontology learning by parsing text using Link Grammar

parser as a set of sentences with the same semantic relation which should be sequentially

processed recursively updating the ontology with help of WordNet lexical database;

- Parse sentence is a similar to text processing procedure except it is manual and under one

separate sentence;

- Verify ontology opens separate dialog interface with possibility of observation of all main

values and parameters of the learned adaptive ontology: concepts, relations, weights, properties

values etc.;

- Estimate is a procedure of forced up-down recalculation of concept weights;

- Analyze – is a mode of automated recognition of semantic relation using Bayesian classifier,

described above.

According to the main aim of the software CROCUS it assists in automated and semi-

automated ontology learning by natural language text on the level of semantic relations,

terminological TBox axioms and facts/predicates. A learned adaptive ontology processed by such

learning procedures will be ready to distinguish semantic meaning of the NLT sentences without

an expert participation.

Figure 9. CROCUS main interface.

Current state of a learned ontology can be monitored in a separate window, shown at the

Figure 10. There are hierarchical structure of the ontology, weights of the learned concepts Wo

and Ws, evaluated by the method, mentioned above on section 4, main ontology statistics etc.

Figure 10. Ontology parameters monitoring interface of the CROCUS system. An initial state of
the ontology.

6. EXPERIMEMTAL RESULTS

An almost empty ontology had been used to test the process of ontology learning from text using

the Link Grammar parser and WordNet API. An initial metrics, provided by the Protégé 3.4. is

presented at the Figure 11.

Figure 11. A basic metrics of the initial ontology.

Learning texts had been selected from a corpus of scientific paper abstracts in the common

Material Science and Computer Engineering domain. Random first 20 sentences which using each

learned semantic relation had been adopted and applied to learn an ontology to recognize the 3 kind of

relations:

• consist-of;

• is-a;

• shows.

The selection of semantic relation kind was random with taking into account the statistics of their

using in the domain abstracts: in the middle of 1/3 top popular relations (see: Figure 12).

Figure 12. Histogram of semantic relations occurrence in the used text corpus.

When a new word, not represented in the ontology by a correspondent concept, appeared in a

learning text the recursive procedures of linking it to an ontology hypernym (findSuperClass-

addSubClass), mentioned in the previous section, were applied.

Despite choosing the highest Wo parameter of the hypernym candidate to be a superclass i.e. most

general concept from synsets, proposed by the WordNet taxonomy, the algorithm builds long

hierarchy chains for each new word (see, for example, Figure 13).

1456

381
362

358
317

302
289

235
230

223
204

171
160

136
127

110
103

99
88

60 51 51 46 35 33 24 23 23 22 16 13 13 11 9 7 4 4 3 3 2 1 1 1 1 1
0

200

400

600

800

1000

1200

1400

1600

is
_a

u
se

s

sh
o

w
s

re
la

te
d

_t
o

p
ar

t_
o

f

p
ro

ce
ss

_o
f

as
so

ci
at

e
d

_w
it

h

ef
fe

ct
_o

f

m
ea

su
re

s

ev
al

u
at

io
n

_o
f

co
n

si
st

s_
o

f

co
n

ta
in

s

m
et

h
o

d
_o

f

p
er

fo
rm

s

re
su

lt
_o

f

d
eg

re
e_

o
f

ca
u

se
s

p
ro

d
u

ce
s

in
d

ic
at

es

p
ra

ct
ic

e
s

af
fe

ct
s

an
al

yz
e

s

ex
h

ib
it

s

lo
ca

ti
o

n
_

o
f

is
su

e
_i

n

p
ro

p
er

ty
_o

f

co
n

n
ec

te
d

_t
o

m
ea

su
re

m
e

n
t_

o
f

o
cc

u
rs

b
ra

n
ch

_o
f

in
te

ra
ct

s_
w

it
h

p
re

ve
n

ts

tr
ea

ts

d
ia

gn
o

se
s

ad
ja

ce
n

t_
to

co
m

p
lic

at
es

m
an

ag
e

s

ca
rr

ie
s_

o
u

t

tr
av

er
se

s

b
ri

n
gs

_a
b

o
u

t

d
is

ru
p

ts

in
te

rc
o

n
n

e
ct

s

p
re

ce
d

es

su
rr

o
u

n
d

s

tr
ib

u
ta

ry
_

o
f

Figure 13. The backward chain of the word ‘observation’ hypernyms, added as subclasses to
existing in the ontology superclass ‘process’.

During a learning process the number of superclasses, which should be added to the ontology

simultaneously (previously) with the new concept from the learned text gradually decreases, like it

could be seen on the Figure 14. On the Figure 15 it is presented the data of learned descriptors on the

example of “is-a” semantic relation pattern, structure of which was shown at the Figure 6. The

correspondent numerical data for the learned three kind of relations after learning by 20 sentences for

each is provided in the Table 5.

Table 5. Number of learned pattern descriptors

Sem.

relation

Desc

1

Desc

2

Desc

3

Desc

4

Desc

5

Desc

6

Desc

7

Desc

8

Desc

9

Desc

10

Consist-of 27 19 13 8 6 3 3 3 2 2

Is-a 22 11 9 8 6 5 4 4 4 3

Shows 22 12 12 12 4 4 3 3 3 3

Figure 14. Number of superclasses of the learned word, added from the WordNet to the ontology
on each sequential step of the ontology learning procedure.

Figure 15. Increasing number of “is-a” pattern descriptors during the process of learning by
20 sentences.

0

5

10

15

20

25

2019181716151413121110987654321

Descriptor1

Descriptor2

Descriptor3

Descriptor4

Descriptor5

Descriptor6

Descriptor7

Descriptor8

Descriptor9

Descriptor10

Testing classification experiments had been executed with aim to examine the developed software

and the algorithm, described above in previous section, based on the naïve Bayes classifier and the set

of learned semantic relation pattern descriptors, mentioned in the Table 5. The results are presented as

a print-screen copy of the results of the working CROCUS software (see Figure 16).

Figure 16. Using naïve Bayes classifier and the same set of learned pattern descriptors for
recognition a kind of semantic relation in testing NLT sentences.

7. CONCLUSION

In this study, the system of automated and semi-automated ontology learning form text had been

developed using Carnegie Mellon Link Grammar Parser and WordNet API. A combination of two

different methods to distinguish semantic relations in NLT sentences had been applied: analysis of the

sentence constituent trees – by means of Link Grammar Parser for explicit meta-semantic relations

recognition and Naïve Bayes supervised learning – for direct recognition semantic relations with help

of additional meta-semantic data, obtained on the previous step. Developed approach was

implemented in the Java desktop application using WordNet API, OWL API and Protégé-OWL API.

Experimental results were compared to expert analysis and had shown good recognition reliability.

REFERENCES

[1] Manning, C. D., Raghavan, P., & Schultze, H. (2008). Introduction to Information Retrieval.

Cambridge University Press, Cambridge, UK.

[2] Ivokhin, E.V., Oletsky, O.V. Restructuring of the Model “State–Probability of Choice” Based on

Products of Stochastic Rectangular Matrices. Cybern Syst Anal. Vol.58 (2), pp.242-250 (2022).

https://doi.org/10.1007/s10559-022-00456-z

[3] Toward an Architecture for Never-Ending Language Learning. A. Carlson, J. Betteridge,

B. Kisiel, B. Settles, E.R. Hruschka Jr. and T.M. Mitchell. In Proceedings of the Conference on

Artificial Intelligence (AAAI), 2010.

[4] Mitchell, T. & Kisiel, B. & Krishnamurthy, J. & Lao, Ni & Rivard, Kathryn & Mohamed, T. &

Nakashole, N. & Platanios, Emmanouil Antonios & Ritter, A. & Samadi, M. & Settles, B. &

Cohen, W. & Wang, Richard & Wijaya, D. & Gupta, A. & Chen, Xinlei & Saparov, A. &

Greaves, M. & Welling, J. & Gardner, M.. (2018). Never-ending learning. Communications of

the ACM. 61. 103-115. 10.1145/3191513.

[5] Russell, S. Human Compatible: Artificial Intelligence and the Problem of Control.- Penguin

Publishing Group. – 352 p. – 2019

[6] Yates, A., Banko, M., Broadhead, M., Cafarella, M., Etzioni, O., Soderland, S. TextRunner: Open

Information Extraction on the Web. Proceedings of Human Language Technologies: The Annual

Conference of the North American Chapter of the Association for Computational Linguistics

(NAACL-HLT), Pp. 25-26, 2007.

[7] Behnke, G., Bercher, P., Biundo, S., Glimm, B., Ponomariov, D., Schiller, M.: Integrating

ontologies and planning for cognitive systems. In: Proceedings of the 28th International

Workshop on Description Logic (DL 2015). CEUR Workshop Proceedings (2015)

[8] France-Mensah, Jojo, and William J. O’Brien. “A Shared Ontology for Integrated Highway

Planning.” Advanced Engineering Informatics 41 (2019): n. pag. Advanced Engineering

Informatics. Web.

[9] Lucas Martínez, N.; Martínez-Ortega, J.-F.; Castillejo, P.; Beltrán Martínez, V. Survey of Mission

Planning and Management Architectures for Underwater Cooperative Robotics Operations. Appl.

Sci. 2020, 10, 1086.

[10] Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE mobile

computing and communications review, 5(1), 3-55.

[11] Brunstein, Ada "Annotation Guidelines for Answer Types". LDC Catalog. Linguistic Data

Consortium, 2002,

[12] Sekine, S., Kiyoshi Sudo and Chikashi Nobata. “Extended Named Entity Hierarchy.” LREC

(2002).

[13] Ritter, A.; Clark, S.; Mausam; Etzioni., O. (2011). Named Entity Recognition in Tweets: An

Experimental Study (PDF). Proc. Empirical Methods in Natural Language Processing

[14] Derczynski, Leon and Diana Maynard, Giuseppe Rizzo, Marieke van Erp, Genevieve Gorrell,

Raphael Troncy, Johann Petrak, and Kalian Botcheva (2014). «Analysis of named entity

recognition and linking for tweets». Information Processing and Management 51(2): Pp. 32-49.

[15] Taylor A., Marcus M., Santorini B. (2003) The Penn Treebank: An Overview. In: Abeillé A. (eds)

Treebanks. Text, Speech and Language Technology, vol 20. Springer, Dordrecht.

https://doi.org/10.1007/978-94-010-0201-1_1

[16] Sennrich, R., Haddow, B., and Birch, A., “Neural Machine Translation of Rare Words with

Subword Units”, <i>arXiv e-prints</i>, 2015.

[17] Miller G.A. Wordnet: A lexical database for English / G.A. Miller // Communications of the

ACM Vol. 38, No. 11. – 1995. – Pp. 39–41.

[18] Salton, G., Wong, A. and Yang, C. S.. 1975. A vector space model for automatic indexing.

Commun. ACM 18, 11 (Nov. 1975), 613–620.

[19] Anh-Dung Vo, Quang-Phuoc Nguyen, and Cheol-Young Ock. 2018. Automatic Knowledge

Extraction for Aspect-based Sentiment Analysis of Customer Reviews. In Proceedings of the

https://doi.org/10.1007/s10559-022-00456-z

10th International Conference on Computer Modeling and Simulation (ICCMS 2018).

Association for Computing Machinery, New York, NY, USA, 110–113.

[20] Cambria, E; Schuller, B; Xia, Y; Havasi, C (2013). "New avenues in opinion mining and

sentiment analysis". IEEE Intelligent Systems. 28 (2): 15–21. CiteSeerX 10.1.1.688.1384

[21] Bloomfield, Leonard. 1933. Language. New York: Henry Holt ISBN 0-226-06067-5, ISBN 90-

272-1892-7

[22] Chomsky, Noam 1957. Syntactic Structures. The Hague/Paris: Mouton.

[23] Jurafsky D and Martin JH. Speech and language processing: an introduction to natural language

processing, computational linguistics, and speech recognition 2009. Upper Saddle River, NJ:

Pearson Prentice Hall, 2009

[24] Schmitt, X., Kubler, S., Robert, J., Papadakis, M., LeTraon, Y. A Replicable Comparison Study

of NER Software: StanfordNLP, NLTK, OpenNLP, SpaCy, Gate. Sixth International Conference

on Social Networks Analysis, Management and Security (SNAMS), 2019, Pp.338-343.

[25] Carlson, L., Marcu, D. and Okurowski, M.(2003), Building a discourse-tagged corpus in the

framework of rhetorical structure theory, in J. van Kuppevelt and R. Smith (eds), Current

Directions in Discourse and Dialogue, Kluwer Academic Publishers, pp. 85–112.

[26] Lin, D.(1998), Automatic retrieval and clustering of similar words, Proceedings of the 17th

international conference on Computational linguistics, Association for Computational

Linguistics, Morristown, NJ, USA, pp. 768–774.

[27] Juan Soler-Company, Leo Wanner, On the role of syntactic dependencies and discourse relations

for author and gender identification, Pattern Recognition Letters, Vol. 105, 2018, Pp. 87-95.

[28] Bohnet, B., Nivre, J., A transition-based system for joint part-of-speechtagging and labeled non-

projective dependency parsing, in: Proceedingsof the 2012 Joint Conference on Empirical

Methods in Natural LanguageProcessing and Computational Natural Language Learning,

Association for Computational Linguistics. 2012. Pp. 1455–1465.

[29] Cunningham, H. GATE, a General Architecture for Text Engineering. Computers and the

Humanities 36, 223–254 (2002).

[30] Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H. Evolving GATE to Meet New

Challenges in Language Engineering. Natural Language Engineering. 10 (3/4), Pp. 349-373.

2004.

[31] Fundel-Clemens, Katrin & Küffner, Robert & Zimmer, Ralf. (2007). RelEx – Relation extraction

using dependency parse trees. Bioinformatics (Oxford, England). 23. 365-71.

10.1093/bioinformatics/btl616.

[32] Sleator, Daniel & Temperley, David. (1995). Parsing English with a Link Grammar. CoRR.

abs/cmp-lg/9508004.

[33] Maynard, D., Bontcheva, K., & Augenstein, I. (2016). Natural language processing for the

semantic web. Synthesis Lectures on the Semantic Web: Theory and Technology, 6(2), 1–194.

[34] Lytvyn V., Vysotska V., Dosyn D., Burov Y. Method for ontology content and structure

optimization, provided by a weighted conceptual graph // Webology. 2018. Vol. 15, Iss. 2. P. 66–

85.

[35] Problems of Ontology Structure and Meaning Optimization and Theirs Solution Methods / Vasyl

Lytvyn, Oksana Oborska, Victoria Vysotska, Dmytro Dosyn, Andriy Demchuk, Yevhen Burov,

Petro Kravets, Nazar Oleksiv // Computational linguistics and intelligent systems : proceedings

of the 4nd International conference, 23-24 April 2020, Lviv, Ukraine. — Lviv : Lviv Politechnic

Publishing House, 2020. — Vol 2 : Proceedings of the 4nd International conference, COLINS

2020. Workshop, Lviv, Ukraine April 23-24, 2020. — P. 21–40.

 [36] O.Oletsky. On Constructing Adjustable Procedures for Enhancing Consistency of Pairwise

Comparisons on the Base of Linear Equations. CEUR Workshop Proceedings, 2021, 3106, pp.

177–185

