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Abstract  
This article dwells process of ML-model development for detecting paraphrasing by binary 

classification of texts pair. For this study, the following semantic similarity metrics or 

indicators have been selected as features: Jacquard coefficient for shared N-grams, cosine 

distance between vector representations of sentences, Word Mover Distance, distances 

according to WordNet dictionaries, prediction of two ML-models: Siamese neural network 

based on recurrent and Transformer type - RoBERTa. Developed software uses principle of 

model stacking and feature engineering. Additional features indicate semantic affiliation of 

sentences or normalized number of common N-grams. Created model shows excellent 

classification results on PAWS test data: weighted accuracy (precision) – 93%, weighted 

completeness (recall) – 92%, F-measure (F1-score) – 92%, accuracy (accuracy) – 92%. Results 

of study have shown that Transformer-type NNs can be successfully applied to detect 

paraphrasing in a pair of texts with fairly high accuracy without need for additional feature 

generation. Fine-tuned NN RoBERTa (with additional fully connected layers) is less sensitive 

to pairs of sentences that are not paraphrases of each other. This model specificity may 

contribute to incorrect accusations of plagiarism or incorrect association of user-generated 

content. Additional features increase both overall classification accuracy and model sensitivity 

to pairs of sentences that are not paraphrases of each other. 

 

Keywords  1 
Machine learning, deep learning, model, WordNet, text, content, rewrite identification, 

paraphrasing detection, natural language processing, semantic similarity, vector embedding of 

words, text analysis, text classification 

1. Introduction 

Process of paraphrasing consists in text rewriting to change words and sequence while preserving 
original meaning. Rewrite detection plays important role in various NLP tasks, including plagiarism 

detection, authorship detection, use in QA systems, text summarization, machine translation, general 

text analysis, etc. More general task of semantic similarity measuring of texts is important in NLP field. 
Paraphrased plagiarism is one of the most difficult problems plagiarism detection systems face. Most 

plagiarism detection systems are designed to detect common words and minor changes, but are unable 

to detect major semantic and structural changes. Therefore, many cases of rewriting remain unnoticed. 
Paraphrase generation means transforming natural language sentence into new sentence that has the 

same semantic meaning but different syntactic or lexical form. Detection and generation of paraphrases 

are used in the following areas: 

 Detection of copyright infringement - check for plagiarism, identification of text authors; 

 Combination of duplicate content generated by users on information resources; 
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 Combination of duplicate records of the same topic or question, which allows to obtain greater 

completeness (recall) for relevant content when searching; 

 Machine translation (simplification of sentences); 

 QA – obtaining additional information by generating request options for receiving answers 
from the database and paraphrasing the answers; 

 Text summarization (a subtype of paraphrasing); 

 Natural language generation (sentence rewriting); 

 Change of writing style. 

Detection of paraphrases is closely related to NLP task of semantic similarity evaluation of text. 

While machine learning model (ML-model) returns probability of paraphrasing or result of binary 
classification of sentences pairs, ML-model for evaluating semantic similarity returns degree of 

similarity according to certain metric, e.g. rating from 1 to 5 (SentEval task). When checking for 

paraphrasing or determining semantic similarity to main problems are the following: 

 Lack of common words, for example: Is there Quora user who have seen UFO? Have you seen 

alien?; 

 All words are common, for example: How did Portural team performed in match against 
Germany? How did Germany team perform in the match against Portugal?; 

 Manual marking of documents pairs – result of annotation is subjective depending on situation; 

 Spelling and syntactic errors, use of slang – incorrectly written words are identified by system 

as new or completely different from the correct meaning; 

 Homonyms - words have the same spelling, but semantic meaning depends on the context. 

Above-mentioned problems prevent rapid development of paraphrasing detection as one of tasks in 
NLP field. Main methods of detecting paraphrasing include the following: 

 Vector space model, basis of which is vectorization or text embedding and calculation of 

distance/similarity between two texts (Jaccard coefficient, Euclidean distance, cosine distance, 

Word Mover distance, etc.); 

 Artificial neural models of deep learning (convolutional, recurrent, Siamese, encoder-decoder, 
transformers with an attention algorithm, etc.); 

 Calculated distances and results of NN-classification as separate features of final classifier 

training. 

One of the first approaches to measure semantic similarity between textual content is vector space 

model (VSM) for task of information retrieval domain [1]. Purpose of VSM is to represent each entity 
of collection (letters in words, words in sentences, sentences in content, content in corpus) as point in 

n-dimensional space, that is, as vector in VSM [2]. The closer the points are located in this space, the 

more they are semantically similar, and vice versa. For a given set of k texts D={D1, D2,…, Dk}, text 
Di is presented in the form of vector Di=(wi1, wi2, …, win). In classical word-based VSM, each dimension 

corresponds to one term/word from set of texts. Weight is determined on the basis of various weighing 

schemes; Bag-of-Words and TF-IDF are commonly used in word-based VSMs. Similarity between two 

texts Di and Dj is calculated by Jacquard coefficient, Euclidean distance, cosine distance, etc. Main 
disadvantages of this model are high dimensionality, sparsity and problems with the dictionary. 

Therefore, there are various modifications and generalizations of VSM. Like the previous methods in 

deep learning, documents or texts are presented as vectors using the Doc2Vec method. In addition, 
words are also represented as vectors based on the Word2Vec method [3]. There are options for learning 

the vector representation of words based on the matrix decomposition method, for example, LSA. 

Another algorithm uses methods based on context, for example, skip-grams, Continuous Bag of Words. 
These vectors are compared using the cosine distance or some other measure of similarity. 

Emergence of Word2Vec model forced researchers to create other vector models such as Doc2Vec, 

FastText, GloVe, USE, and ELMO. All of these models are *2Vec models because they transform text 

(in the form of words, phrases, sentences, sections, and entire documents) into vector form, creating n-
dimensional vector spaces. Training a neural network (NN-training) with texts from large unlabelled 

corpora leads to the creation of VSM using arbitrary parameters, the most important of which are 

dimension of vector space, the minimum word frequency, learning rate, and size of observation 
window/context of each word. Word2Vec consists of two sub-models: CBOW (continuous bag of 



 

 

words), which predicts skipped word if we give model the context of skipped word, while skip-gram 
predicts the context of the given word. 

Task of paraphrasing can be divided into two subtasks: detection and generation of paraphrasing. 

In the task of detecting paraphrases, result is probability from 0 to 1, where value close to 1 means 

pair of sentences as paraphrases of each other, 0 - values that differ in semantic load. 
Use of deep NNs for NLP has grown significantly in recent years. Siamese, convolutional, recurrent, 

complex model architectures based on combination of convolutional and recurrent NNs, transformers, 

etc. are used in research to identify paraphrases. Accuracy of model depends on such factors as number 
of classes into which the data are distributed, choice of traditional or deep learning methods and their 

combination with word vectorization (nesting) and TPP methods. When building IS for determining 

paraphrasing in text for new data set, it is necessary to evaluate not only various methods and 
architectures of ML models, but also TPP algorithms and text representation in numerical format and 

possible combinations to obtain the best possible quality (accuracy) of functioning of typical IS rewrite 

identification. 

The study object is process of rewriting detection in text using optimal pipeline, which includes TPP, 
vectorization or words nesting, selection and features generation, binary classification using certain 

ML-algorithm and further processing of the obtained results to detect paraphrasing on informational 

sources Scientific novelty consists in NN application with new architecture, review of state-of-the-art 
methods and comparison of pipeline different stages will make it possible to determine such a 

combination, which will allow obtaining qualitative model for determining paraphrasing in text for 

selected control data sets. Designed IS will improve process of identifying rewrites in text. IS can be 
used by moderators of information resources and social networks to evaluate support of publication 

quality and combine data by topics or questions. In addition, paraphrasing detection can be module to 

existing systems for checking texts for plagiarism. 

The research purpose is to develop IT for paraphrasing detection, which will simplify and at the 
same time improve texts checking for plagiarism or combining data on information resources on the 

same topics or questions. Designed system should detect duplicates for paraphrasing by searching for 

similar texts. To achieve the goal, the following tasks have been chosen: 

 Develop and describe functional requirements of designed system according to methodology 
of Rational Unified Process and Unified Model Language; 

 Analyze the state-of-the-art methods used for detection of paraphrasing; 

 Develop and describe NNs with different architectures (convolutional, recurrent, Siamese NNs, 

etc.); 

 Choose the most optimal model in context of TPP (text pre-processing), vector embedding or 

vectorization, feature selection and generation, ML algorithm and relevant parameters; 

 Implementation of relevant IS identification of rewrite and corresponding approbation of 
obtained results. 

2. Related work 

Most information systems that check for plagiarism compare parts of sentences or common words, 

but paraphrasing detection is still relevant task in the field of natural language processing and is not 
implemented in most online platforms and applications. In addition, existing plagiarism checking 

systems cannot detect paraphrasing and indicate the original source with sufficient accuracy [4]. 

So, detection of paraphrasing is urgent problem, and currently in most academic works, researchers 

use deep learning methods and architecture of speech models that have millions of parameters. 
However, the history of solving this problem originates from simpler methods of calculating the 

semantic difference as the distance between two terms in the WordNet database [5]. This is database of 

semantic connections between words (synsets). Conjunctions contain synonyms, hyponyms (subtype), 
meronyms (part), etc. Hierarchical structure of database makes it possible to calculate the semantic 

relation of individual words using various formulas. In the work [6], approach based on semantic 

relatedness values of words from the WordNet dictionary is proposed. Method is based on the idea of 

comparing a pair of words according to a part of speech. 



 

 

Researchers have used six different semantic similarity distances based on WordNet [7-12]. 
Maximum similarity is looked for only within word classes with the same part of speech. To implement 

bidirectionality, arithmetic mean of two values of proposed function is used, the value of which depends 

on the value of maximum similarity of a pair of words and their specificity. Similarly, all the six 

distances can be combined by averaging indicators of final evaluation of semantic similarity. According 
to work [7], semantic similarity of words depends on the length of the shortest path between synsets as 

graph nodes. According to work [8], word similarity is defined as the intersection of sets of definition 

words corresponding to given terms. Distance function in the work [9] depends on the depth of two 
concepts in taxonomy and the depth of the nearest common ancestor, according to work[10] - on the 

probability of meeting a common ancestor in a large corpus, according towork [11-12] - on the 

probability of meeting both a common ancestor and two synsets being compared. 
Authors in the work [13] have proposed new algorithm for measuring semantic relatedness of short 

sentences using methods based on the corpus (pointwise mutual information and latent semantic 

analysis) or on the above-mentioned distances according to data from WordNet. Formula of semantic 

relatedness of sentences combines metrics of similarity of a pair of words and their specificity. This 
formula is potentially a good indicator of input texts smilarity, as the obtained values of precision, 

accuracy, completeness and F-measure are better compared to the basic approach of measuring the 

cosine distance between two input sentences converted to vector format based on TF-IDF. 
In the work [14], method for determining semantic relatedness is proposed, which generates a 

semantic profile for words based on the main conceptual features collected from encyclopedic 

knowledge. Main idea of model is that the meaning of word is determined by concepts that are in the 
direct context. This method consists of two main steps. First, based on Wikipedia, annotated corpus of 

main conceptual words with relevant references is created. Next, the corpus is used to measure semantic 

similarity of words and texts. 

In the work [15], formula of cosine distance between vectors was adapted to calculate semantic 
similarity of texts. Proposed algorithm uses word similarity information obtained from WordNet 

dictionaries. To calculate the similarity between pairs of sentences, cosine distance between the vectors 

representing sentences and semantic similarity matrices containing information about similarity of word 
pairs obtained from six hierarchy-based semantic distances of WordNet are used. Each sentence is 

represented as a binary vector (with elements equal to 1 if the word is presented in the sentence and 0 

otherwise). 

In the work [16], comparative study has been conducted between vector embeddings of words 
obtained using NN and traditional vector representations of words based on counting co-occurrences. 

Authors have performed two small-scale tasks (parsing word meanings and sentence similarity) and 

two large-scale ones (identifying paraphrasing and tagging dialogue acts). For the task of recognizing 
paraphrases, researchers have used cosine distance between vectors. Use of vector embeddings of words 

obtained using NN significantly improves the quality of the model for detecting paraphrasing and 

tagging dialogue acts, but does not give a significant increase in accuracy in solving small-scale tasks. 
In the work [17], authors have proposed method for measuring semantic similarity of texts using 

corpus-based measurement of semantic similarity of words (pointwise mutual information) and 

normalized and modified version of the longest common sequence (LCS) string matching algorithm. 

Research focuses on measuring the similarity between two sentences or between two short paragraphs. 
Method is evaluated on the basis of Microsoft Paraphrase Corpus (MSRP) data. 

In the work [18], process of text checking for plagiarism has been improved using various NLP 

algorithms: number of identical 3-grams, Language Model Probability, Longest Common Subsequence, 
Dependency Relations Matching. Obtained features have been used to train a naive Bayesian classifier 

in two categories depending on presence of plagiarism and in four categories depending on level and 

type of paraphrasing. Experimental results are satisfactory for classifying documents in the corpus into 
two categories (rewritten and unique): 37 out of 38 non-plagiarized documents are correctly classified, 

and only a few plagiarized documents are classified as non-plagiarized (5 out of 57). Distinguishing 

between the three different levels of plagiarism proved to be a much more difficult task. The 

unsatisfactory accuracy of the plagiarism classification model depends both on the complexity of the 
task and on the possible error of the annotators. 

In works [19-20] two systems have been developed for determining semantic similarity of short 

sentences pairs. All word similarity measures are based on WordNet. To calculate the similarity score 



 

 

for a pair of words, authors took the maximum similarity score for all possible pairs of concepts - 
WordNet synsets and used the NLTK library to calculate the Leacock and Chodorow and Lin similarity 

measures. For corpus-based word similarity, authors used a distributive lexical semantic model. They 

used latent semantic analysis (LSA) on a large corpus to estimate distributions. The system is trained 

to predict sentence similarity scores using a support vector regression model measuring several 
characteristics of the degree of overlap of common words, syntactic similarity, and semantic proximity 

of words. 

In the work [21], method for identifying the presence of plagiarism using paraphrasing is presented. 
This method uses the classic ML algorithm - logistic regression. In this system, certain features of 

vocabulary, syntax, semantics, and structure, which are obtained from the "suspicious" document and 

the original, act as signs. Features of the lexicon include: Dice Coefficient (the number of common 
symbols), Jaro Distance, Jaccard Coefficient (the ratio of common terms to the total number of terms), 

Levenshtein Distance, adapted Manhattan Distance, N-gram Distance - an analogue of Manhattan 

Distance for N-grams, Soundex Distance. Syntactic features include POS N-gram Distance and Noun 

Ratio, semantic features – Semantic Similarity Distance, structural features – Stopword N-gram 
Distance, Word Pair Order, String Length Ratio. Experimental results on the PAN@CLEF2013 dataset 

show that using different types of features leads to more accurate results. 

The article [22] has proposed new Bi-CNN-MI deep learning architecture for rewrite 
detection/identification by comparing sentences at multiple levels of detail (unigrams, N-grams, and 

sentences) based on a convolutional NN and modelling interaction features at each level. Resulting 

features are input features for a binary classifier based on logistic regression. 
In the work [23], system is presented for solving problem of paraphrasing detection by revealing 

differences between sentences and evaluating how different the sentences are. This method also makes 

it possible to detect paraphrasing that contains a small amount of additional information. Method of 

support vectors was used as the classification algorithm. 
In the work [24], classical ML algorithms (support vector method, naive Bayes classifier, maximum 

entropy classifier) were compared. Signs are data on the lexical and semantic relatedness of sentences. 

The "word overlap" feature group contains the ratio of the number of identical N-grams to the total 
number of words in the sentences. The lexical group of features also includes skip-grams and longest 

common subsequence. Semantic features include noun/verb semantic similarity measure – the number 

of common nouns or verbs, proper name – the number of common proper names. Semantic feature 

cardinal number allows to capture numbers with comparison "greater than" and "less than", as well as 
numbers written in words. According to results of research, the best indicators are achieved using 

method of support vectors. 

In the work [25] it was shown that the quality metrics of machine translation (BLEU, NIST, WER, 
PER) can be used as features in the system of definition and detection of paraphrases for training the 

classifier and obtaining quality results. In addition, the researchers developed a classifier based on 

Position independent word error rate (PER) and information on the distribution of parts of speech in 
sentences. 

In the work [26], authors have re-examined the hypothesis that metrics developed for automated 

evaluation of quality of machine translation can be used as features of classifier for the detection of 

paraphrasing. The results showed that the meta-classifier, whose features are only machine translation 
quality metrics, significantly outperforms the accuracy indicators obtained in previous studies. A total 

of three classic machine learning algorithms were used for classification: logistic regression, SMO 

implementation of the support vector method, and a variation of the nearest neighbour algorithm. 
Machine translation quality metrics include: BLEU, NIST, TER, TERp, METEOR, SEPIA. Using the 

TERp metric alone provides good results and outperforms many other classification methods based on 

multiple complex features. 
In the work [27] authors have developed a system for detecting paraphrasing in short texts based on 

deep learning methods. Architecture of classifier is based on layers of convolution and recurrent (long-

short term memory) NNs that process the obtained result. The result of processing by recurrent NNs is 

a semantic representation of a sentence, so the features of the final classifier are the difference between 
two output vectors from recurrent NNs. Convolutional NN transforms the pairwise similarity matrix of 

all words into a vector of semantic similarity of sentences, which is used as features for the classifier. 

Additional features are the cosine distance between the vectors of two sentences, the average value of 



 

 

the distance between nouns, verbs, adjectives, calculated on the basis of WordNet, the ratio of the 
number of common uni-, 2-, 3-grams to the total number of N-grams, etc. 

In the work [28], approach to identification of paraphrasing based on recursive autoencoders that 

examine feature vectors for phrases using syntactic trees is presented. These features are used to 

measure the similarity of words and phrases between two sentences. Since the sentences are of arbitrary 
length, the resulting similarity matrix is of variable size. Added a new dynamic pooling layer that 

computes fixed-size representations from variable-size arrays. This representation was used as input to 

the classifier. 
In the study [29], in contrast to the creation and selection of large number of features, recurrent NN 

with long-short-term memory layers was used. NN receives sentences of variable length as input and 

learns the regression task of predicting the degree of semantic relatedness of a pair of sentences. The 
NN has a Siamese architecture and is trained using the Mean Squared Error loss function. To represent 

words in the form of vectors, pre-trained word2vec vector embeddings obtained on large unlabelled 

data corpora were used. 

Authors in the work [30] have combined Siamese recurrent NN with bidirectional recurrent networks 
with long-short-term memory layers at the symbol level. Such a model is insensitive to spelling errors, 

substitution of synonyms and redundant words. 

In the work [31], several different types of Siamese NNs were tested for the problem of paraphrasing 
detection: LSTM, Bi-directional LSTM, GRU, Bi-directional GRU, LSTM + Attention, GRU + 

Attention, GRU + Capsule + Flatten. The best results are obtained for NN with cells of the gated 

recurrent unit type. 
In the work [32], Siamese NN with long-short-term memory was used to classify a pair of Arabic 

texts according to whether they are paraphrases of each other. For the vector representation of words, 

the researchers used the method of vector embedding of the word2vec family, which is called Glove. 

To calculate the semantic similarity of texts, the cosine distance between two vector representations of 
sentences was used. 

In the work [33], Siamese NN was used to detect paraphrases in Telugu texts. Most of the data was 

collected manually from various newspapers. In addition, the researchers compared three methods of 
vector embedding (Word2Vec, Glove, Fasttext) and their combination. The best accuracy on the test 

data set is achieved for the combination of these three methods. 

In the work [34], deep learning approach with reinforcement for the generation of paraphrases is 

presented. New structure for solving this problem is described, which consists of a generator and an 
estimator. Generator, built as an ML model based on recurrent NNs of the sequence-to-sequence 

architecture, paraphrases the input sentence. Evaluator classifies whether two sentences are paraphrases 

of each other. Generator is first trained using deep learning and then further tuned using reinforcement 
learning in which the evaluator provides a reward. To train the ratter, researchers propose two methods 

based on teacher-directed learning and inverse reinforcement learning, respectively, depending on the 

type of training data. 
In the work [35], SimAll system was developed that combines methods based on tape comparison, 

corpus, and knowledge, and supports English and Arabic languages. In total, the system supports 61 

algorithms for evaluating the semantic similarity of sentences, the evaluation results of each algorithm 

after normalization belong to the interval [0, 1]. User must choose the method of aggregation of the 
results: average, sum or maximum value. Knowledge-based metrics include 6 semantic similarity 

distances: Path (path), Leacock & Chodorow (lch), Wu & Palmer, Resnik (res), Lin (lin), Jiang & 

Conrath (jcn). Metrics are available for English only. 
In the work [36], two variants of the LSTM tree model are proposed for processing dependency trees 

or syntactic trees. The created models were tested on the task of determining the degree of semantic 

similarity of two sentences. 
In the work [37] authors have developed system combining convolutional and recurrent NNs for 

measuring the semantic similarity of sentences. Researchers have used convolutional network to 

account for the local context of words and an LSTM to account for the global context of sentences. This 

combination of networks helps preserve relevant information about the sentences and improves the 
computation of sentence similarity. 

In the work [38], large-scale corpus of parallel data was presented using deep learning models 

BERT, RoBERTa, Longformer of the Transformer architecture. Data set includes paragraphs from 



 

 

scientific works in arXiv, theses, as well as Wikipedia articles and their paraphrased counterparts (1.5 
million paragraphs in total). Deep learning architecture of Transformer makes it possible to accurately 

classify original and paraphrased texts using static vector embeddings (fastText) [39]. RoBERTa model 

achieved the best results in the task of detecting paraphrases. 

In the work [40], new approach to creation of parallel corpora of paraphrased texts using generative 
NNs of the Transformer architecture was proposed and applied. According to research results, while 

NN-generated datasets can improve the accuracy of paraphrasing detection systems, a smaller but 

human-generated dataset improves the classification accuracy even more. 
In the work [41], additional fine-tuning of the BERT deep learning model of the Transformer 

architecture was applied. BERT model has 110 million parameters in the basic version, 340 million in 

the "big" [42]. Pre-setting BERT consists of two tasks. The first task is language modelling, for which 
the model must predict a randomly selected and masked token. Another task is predicting the next 

sentence, where the model has to determine whether two sentences are consecutive. Additional 

adjustment of the model for the main task occurs with the help of a suitable data set. 

In the work [43], metric of distance between documents, Word Mover's Distance, was presented 
based on vector embeddings. Word Mover’s Distance measures the difference between as the minimum 

distance that the word vector embeddings of the first sentence “must travel” to the word vector 

embeddings of the second sentence. 

3. Methods and materials 

Information system concerning paraphrasing detection is intended for moderators of information 

resources and social networks to evaluate and maintain the quality of publications and group data by 

topic or question [44-63]. In addition, the paraphrasing detection algorithm can be added to existing 
plagiarism text checking systems. It is important to give example of requirements description in the 

context of IS verification of the academic works uniqueness. Functioning of information system is 

ensured by the scientific director, text author, person responsible for checking the text and software. 
Supervisor (or teacher) checks all stages of author writing of his work and conducts TPP before 

automated check for originality. Author actively interacts with the manager and responds to his 

criticism, corrects the work according to his comments and then submits his work for review. 

Responsible person uploads the text to the program and receives the result, informs the author and the 
scientific supervisor, forms a report. Precedent stakeholders and their requirements: 

 Software for checking texts must meet the specified system requirements, must ensure 

maximum accuracy when checking results and generating reports; must authenticate the user, verify 

operation and return the result, store the result in user account. 

 Author wants to receive confirmation of originality of work for its publication or protection; 
must write the text, prepare the work according to the requirements and submit it for further 

processing. 

 Person responsible for the check must receive the result of the automated check, make sure that 

the program correctly identified the copied fragments and the original sources of the paraphrased 
sentences. 

IS user: person responsible for verification, who will use the IS to check the texts for uniqueness. 

Prerequisites of the precedent: 

 Scientific work must be properly designed and submitted in one of the formats supported by 

the system; 

 Computer that will be used for the check, connected to the Internet and with the necessary 
software installed; 

 Person responsible for the check must be successfully authorized. 

Basic successful scenario: 

 Person responsible for the check loads the text into the program and receives the result. 

 Result of examination is subject to additional analysis regarding the number of identified 

matches and the adequacy of references to primary sources. 
Alternative streams: 

 Error in the operation of the program: 



 

 

1. Person responsible for the check contacts the technical support service (developer) and reports 
an error in the program. 

2. Developer fixes the error and provides a new version or provides information on how to fix it 

yourself. (return point). 

Post-conditions: data on the result of the check are entered into the database. 
Special requirements: IS must accurately set the percentage of text uniqueness, highlight parts of the 

text according to their types (copied text, original text, paraphrased text, quotation or incorrect 

indication of the original source) and provide a list of sites (works) with a percentage of coincidence, 
fully support Ukrainian and English languages, easy to install, publicly available, support various 

formats (.txt, .doc, .docx, etc.). 

In the usage diagram (Fig. 1), main actors are users and applications that implement system functions 
in different ways. This diagram does not depict detailed use cases such as user registration, file upload, 

or administrator interaction with the system, which in turn includes system configuration, NN training, 

and choice of paraphrasing detection methods (Figures 2-3). Individual user of platform can use the 

system as an application to check for plagiarism and uniqueness of content. Such a system can be used 
to check the academic integrity of students and researchers. In addition, the plagiarism checker can be 

used to identify the author of the text. Thanks to the additional check for the presence of paraphrasing, 

such a system will have greater completeness (recall). In this case, the share of correctly indicated 
sources from all true sources will increase. 

 

 
Figure 1: Use case diagram of rewrite detection IS 

 

Information resource (including social networks) can use the system to reduce sparsity of content 
by combining publications or questions related to one common topic. Also, these resources can use the 

paraphrasing detection system to establish the author of the text. Both machine translation applications 

and QA systems can use the functionality of the proposed IS to simplify the input message. In addition, 
QA systems can also apply paraphrasing detection for more advanced search for answers to questions. 

To construct class diagram, seven main classes are defined: Individual User (system user), 

Document (a document whose uniqueness must be checked), Paraphrase Detection Software (an 
application for plagiarism checking), User Database (user database), Documents Database (document 

database ), Data Processing Server, ML Model. Class diagram in Fig. 5 indicates the use of the system 

only by an individual user to check the uniqueness of his own texts. Application class diagram of the 

paraphrasing detection system used by third-party applications must define additional methods for 



 

 

communicating with the host application using queries. The user can download and modify the 
document, check it and get the results. Plagiarism checker application class denotes a program that 

implements a user interface and basic plagiarism checking methods by comparing tapes. Such a 

program can be installed locally on a computer or implemented as an online platform. Application sends 

requests to the computing server and user database. 
 

 
Figure 2: Diagram of IS classes for detection of paraphrasing in the text 

 

 
Figure 3: Sequence diagram of paraphrasing detection system 

 
Data processing server includes methods for document comparison using ML algorithms and applies 

vector nesting or document classification to find nearest neighbors, since pairwise comparison of text 

with all documents available in the database is too resource-intensive. Data processing server must also 
calculate additional features that will be used as input to the classifier. Such additional features can be 

the total number of named entities or parts of speech (Fig. 3). Calculation of such features will require 



 

 

additional implementation of special parsers. Sequence diagram shows the temporal aspects of the 
interaction of system components. Bypassing system settings, registration and user login, after 

uploading the file, the next step is to check the texts for uniqueness using basic algorithms based on the 

comparison of tapes and their fragments. For a more detailed check for the presence of paraphrasing, 

the document must first be classified or converted to a vector representation. This approach is used in 
order to save computing resources and reduce the time of processing a request. 

Important internal system settings include number of documents that will be compared with the user. 

Too many  documents will slow down the check process, very few will reduce its accuracy and 
completeness. Results of determining degree of semantic similarity or binary classification are returned 

and should be visualized together with  results of previous simple check. 

 
Figure 4: The first part of activity diagram creating paraphrasing detection system 

 



 

 

Important part of developing system for automatic detection of paraphrasing is the creation and 
training of ML model for task of text classification. To obtain maximum quality of verification, it is 

necessary to investigate various methods of calculating distances, ML-algorithms, TPP-methods. 

Activity diagram is divided into two parts (Fig. 4-5) and indicates all possible branches during TPP 

and system construction, respectively. So, the system developers face a branching system of all possible 
methods and their combinations. In the case of binary classification, it is first necessary to make sure 

that the volume of the corpus is sufficiently large and balanced, since the numerical advantage of 

records of a certain class can lead to a biased solution of artificial NN. 

 
Figure 5: The second part of activity diagram creating paraphrasing detection system 

 

If there is not enough data, methods of generating artificial data or changing existing records are 
used. After that, it is needed to remove "noise", which can be extra symbols that do not contain 

meaningful load. Short texts, especially social media posts, are more likely to contain emoji. Emoji can 

indicate tonal or emotional colouring of the text, so system developers can replace them with 



 

 

appropriate words or remove them. The next step is to break the sentences into tokens. Stop words do 
not contain semantic colouring, so their removal is optional. The next steps of TPP include 

lemmatization (initial word form), stemming (word stem), correcting spelling errors, and removing 

digits. As with stop-word removal, applying the above steps is optional, but may have different effects 

on classification accuracy. After TPP, dataset is divided into training and training samples. 
Fig. 5 shows all main methods and their combinations for binary classification of sentences pair 

depending on whether they are paraphrases of each other. System developers can apply single metric 

to the final decision or aggregate multiple values using ML methods such as logistic regression or 
random forest. 

To simplify the diagram appearance, it partially lacks guarding conditions for transition between 

activities. "Notes" indicate additional possible ramifications of choosing the method of calculating the 
distance according to WordNet, method of aggregating distances, vector nesting of words, 

classification. Layout diagram of the automatic detection of paraphrasing system (Fig. 6) shows the 

data processing server processors and two databases. User has access to functionality of system using 

graphical interface of downloaded program or online platform. Database stores information about users 
and documents. Data processing server contains modules of ML-model, basic plagiarism check and 

vector attachment or document classification. Alternative to the deployment scheme is to use personal 

computer own computing resources to analyse the data, however, given that to obtain reliable result, it 
is necessary to apply several stages of validation, especially with the use of ML methods and the 

comparison of documents stored in the database. Such an architecture is not appropriate. 

 
Figure 6: Deployment diagram of automatic paraphrasing detection 

 

For ML, the most popular languages are Python, R, Java, C++. Advantage of Python over other 
languages for creating a paraphrasing recognition system is its support for a large number of libraries 

for: 

 Working with ML methods: Scikit-Learn; 

 Creating artificial NNs, deep learning: TensorFlow, Keras, PyTorch; 

 Natural language processing: NLTK, spaCy, WordNet; 

 Working with arrays, matrices: NumPy; 

 Working with tables: pandas; 

 Data visualization (including interactive): Matplotlib, seaborn, Plotly. 

Scikit-Learn library supports TPP, data dimensionality reduction, selection of ML models for 
regression, classification or cluster analysis. However, Scikit-Learn does not have comprehensive 

support for building deep learning models. To create artificial NNs, Keras library was chosen, which 

serves as a high-level API for TensorFlow 2. Keras allows to build sequential models in the form of a 
graph, the vertices of which are layers of a certain type with a given number of nodes. Also, with the 

help of Keras, it is possible to combine results of the work of several separate parts of the NN for their 

further processing, such a structure is not linear. TensorFlow makes it possible to import a trained ML 

model for further use in other applications. TensorFlow also supports low-level tensor operations using 



 

 

CPUs, GPUs, and tensor processing units. NLTK library in this study is used for TPP: tokenization, 
stop-word removal, stemming, lemmatization. Also, with the help of functions from this library, it is 

possible to detect the most popular N-grams and parts of the language of individual tokens, recognize 

named entities, etc. Additional libraries that simplify working with natural language include Regex and 

emoji - for using regular expressions and replacing emoji with words, respectively. Jupyter Notebook 
is a convenient tool for working on data research and ML applications, which allows to run the written 

code in small fragments - cells. One online service that allows to use Jupyter Notebook without a local 

installation is Google Colab. This service makes it possible to use GPU and TPU graphics processors, 
which significantly speed up NN training. 

The dataset Paraphrase Adversaries from Word Scrambling [44], part of PAWS-Wiki Labeled 

(Final) have been selected for training and testing the ML-model, as well as constructing features. 
PAWS-Wiki contains 65,401 pairs of sentences, 44.2% of which are paraphrases of each other. Since 

various studies use different methodologies to determine semantic similarity and detect paraphrasing 

(from calculating the number of shared N-grams to applying deep ML methods) [45], in order to obtain 

the highest classification accuracy, it is necessary to compare and (or) combine different algorithms for 
measuring the semantic similarity of sentences. For this study, the following semantic similarity metrics 

or indicators have been selected as features: Jaccard coefficient for shared N-grams, cosine distance 

between vector representations of sentences, Word Mover's Distance [43], distances according to 
WordNet dictionaries [1-2], prediction of two ML- models: Siamese NN based on recurrent and 

Transformer type – RoBERTa [46]. 

N-gram is a sequence of n words. In the context of detecting paraphrases in a text, the number of 
common N-grams, normalized to the total number of N-grams in both sentences, helps to detect 

semantically similar sentences that are close in semantic load, but are not paraphrases, since the second 

sentence is obtained by permuting the words in the first sentences, and, accordingly, has a completely 

different meaning.  Jaccard coefficient for two sets is calculated as follows: 

J (A, B) = |A∩B|/|A∪B|. (1) 
To calculate N-grams in each sentence, sentences are first reduced to lower case, all separators and 

additional characters are removed. Total Jacquard coefficients for 2-, 3-, and 4-grams were calculated. 

There is a wide variety of methods for obtaining vector embeddings of words GloVe, Word2Vec: 
CBOW / Skip-Gram, fastText. The research used vector embeddings of the deep learning model BERT 

[42] for NLP of the Transformer architecture. The basic BERT model has 110 million configurable 

parameters, the advanced version has 345. Feature of the Transformer architecture is the presence of 
attention mechanism, thanks to which data is processed simultaneously (as opposed to recurrent NN, 

where data is perceived sequentially). In addition, feature of BERT is the pre-training of NNs to solve 

two tasks: predicting a certain word in a sentence and determining whether the second sentence is a 

logical continuation of the first. In [42], this ML model is pre-trained on unlabelled data from 
BooksCorpus (800 million words) and English Wikipedia (2,500 million words). Pre-learning and the 

attention mechanism make it possible to obtain contextual vector embeddings of words. Using pre-

trained model, vector representation matrix for each sentence has the following dimension: torch.Size 
([1, 128, 768]), where 1 is the number of sentences in the batch, 128 is the maximum sentence length, 

and 768 is the dimension of the vector nesting. For the vector presentation of sentences, data are 

averaged for each word in the sentence, resulting in a nested vector with a length of 768 values.  

Formula for calculating the cosine distance: 

С = (∑Ai Bi)/((∑Ai
2)1/2 (∑Bi

2)1/2). (2) 
This feature potentially detects semantically similar sentences, but sentences with the same words 

that are not paraphrases will have a small cosine distance. Word Mover Distance applies vector nesting 

to calculate the semantic distance between sentences. WMD distance measures the difference between 
two text documents as the minimum distance that the word vector embeddings of one document must 

"travel" to reach the points of the word vector embedding of the other document. Similar to the previous 

feature, such a distance metric will allow detection of semantically similar pairs of words, but will not 
help to detect examples of unparaphrased sentences with rearranged words. To measure semantic 

similarity of sentences, two metrics of the semantic distance of synsets according to WordNet 

dictionaries are used: Leacock and Chodorow [1], Wu and Palmer [2]. According to Leacock and 
Chodorow [7], the semantic similarity of words is determined using the following formula: 



 

 

siml_ch = -log (length/(2*D)), (3) 
where length is the length of the shortest path between two concepts (number of nodes), D is the 
maximum depth of the corresponding taxonomy. 

The semantic distance function of Wu and Palmer [9] depends on the depth of two concepts 

d(concepti)depth(concepti)  in the taxonomy and the depth of their nearest common ancestor d(LCS): 

simwu_p = 2*d(LCS)/(d(concept1) + d(concept2)). (4) 
Since in WordNet the distance is calculated for each pair of synsets separately, the approach in the 

work [3] is used to represent the distance between two sentences. To implement bidirectionality, the 

arithmetic mean of two values of a certain distance is used, the value of which depends on the maximum 

similarity of a pair of words. However, word specificity is not taken into account in this case (no 
multiplication by TF-IDF value). Thus, to calculate the distances between pair of sentences, it is needed 

to compare each word of the first with each word of the second. 

Siamese NNs use special loss functions because this type of NN learns such intrinsic vector 
representations of the data that identical records will have a small cosine or Euclidean distance. In this 

study, the contrastive loss function was calculated for the Euclidean distance: 

L = 0.5 (1-Y) E2 + 0.5 Y {max (0, m-E)}2, (5) 
where E is the value of Euclidean distance between the predicted vector representations of records, Y is 
the true value, m is the threshold of records belonging to the same class: the predicted distance between 

vector representations of different classes must not be < m, m = 2. 

4. Experiments 

Since training sample of PAWS-Wiki data set contains 49,401 records and calculation of each 
feature requires significant computing resources, a repository with the corresponding processing script 

and calculation results was first created for each feature. Project has the following structure (Fig. 7). 

 

 
Figure 7: Structure of the project repository Figure 8: Merging of files with attributes 

 



 

 

For each feature, there is a distances repository containing the corresponding processing results. 
Each such a repository contains three files - results of processing the test, training, and validation 

samples, respectively. For training NN (Siamese with recurrent connections and RoBERTa), computing 

resources of Google Colab were used, so predictions of Siamese NN were loaded locally, and in the 

case of RoBERTa, only saved weights in .ckpt format were loaded, processing and classification took 
place locally. The merge.py file is created to merge all features (Fig. 8), resulting in the data type of the 

Pandas DataFrame library. The same data is stored in .csv format in the data/feature’s repository for 

further processing. From Fig. 9-13 it can be seen that predictions of NN RoBERTa almost completely 
coincide with the true labels corresponding to a pair of words. Since the other indicators are not integers 

and, by their principle, denote completely different signs, the logistic regression method was chosen for 

their unification. Its training is written in the train_model.py file, and the model itself (as well as other 
classical ML methods that were compared) is imported from the sklearn library. The file 

model_all_features.pkl contains the logistic regression weights, the model of which was trained on all 

generated features. Further processing of texts with the help of trained ML-models requires combining 

the calculation of all features, which is done in the main.py file. Corresponding functions and pre-
trained models are imported from the corresponding files. 

 

 
Figure 9: Example of input data 

 

 
Figure 10: Characteristics corresponding to the input data 

 

 
Figure 11: Characteristics corresponding to the input data 

 



 

 

 
Figure 12: Example of classification using RoBERTa ML model and functions imported from other files 

 

 
Figure 13: Creation of table with features Figure 14: Training of Siamese NN 

 

NN contains two layers of bidirectional long-short-term memory (LSTM), two hidden layers of fully 
connected neurons (512 and 128 neurons), output layer containing 16 neurons. Vector embeddings of 

words were obtained by direct propagation in the pre-trained NN BERT. NN was trained for 30 epochs 

on the training sample with validation after each epoch (Fig. 14). Significant difference between the 

loss functions on the training and validation samples indicates insufficient complexity of model 
(perhaps insufficient number of hidden layers or neurons). In addition, accuracy of classification may 

depend on the selected hyperparameters, setting of which requires additional training and testing of the 

model. For further classification, the NN weights are saved for the smallest value of the loss function 
(19th epoch). Pre-trained NN RoBERTa is improved analogue of BERT: its main difference is selection 

of hyperparameters during pre-training, increase in size of training corpus (16 GB of sentences from 

Books Corpus and English Wikipedia, CommonCrawl News dataset (63 million articles, 76 GB), Web 

text corpus (38 GB), Stories from Common Crawl (31 GB)), applying dynamic token masking to word-
in-a-sentence prediction task: word to be predicted in a given sentence changes with each epoch. 

RoBERTa has 124 million adjustable parameters (Fig. 15). Since result of direct propagation is vector 

sentence embedding matrix with the dimension [batch size, max sentence length, embedding 
dimension], hidden and fully connected output layer with 256 and 1 neurons, respectively, is added for 

further classification. To find the vector representation of sentences, the average value for each 

coordinate of the nesting vectors is obtained. The resulting matrix of weights between the obtained 
vector representations of words and a hidden layer with 256 neurons will have a dimension of 768*256, 

between the hidden layer and the output layer - 256*1. The activation function of the last layer is the 

sigmoid, the loss function is the binary cross-entropy. Pre-trained NN is further fine-tuned for the task 

of detecting paraphrasing in the text using training and validation samples. In total, NN was additionally 
trained for 50 epochs, the weights were preserved under the condition of the smallest value of the loss 

function on the validation sample (Fig. 16). 

 



 

 

 
Figure 15: Total number of NN parameters  Figure 16: Loss function during NN training 

 

For the final combination of features, both the probabilities of two records belonging to a certain 

class and the predictions themselves are selected. Decision threshold = 0.5, i.e. �̂� = 1 if p(y') > 0.5. The 

final table contains 10 features with the above metrics for each pair of sentences present in the selected 

dataset. These indicators are calculated for training, test and validation samples. 

5. Results 

To reduce the load on computing resources, another logistic regression model was trained without 

such features: prediction of Siamese NN and WordNet distance according to Wu and Palmer. 

Classification accuracy on the test sample increased from 92.4625% to 92.5%. For classification using 
NN RoBERTa, the data is provided in the following format: word indices, binary mask denoting part 

of the useful signal, true label corresponding to a pair of records as in Fig. 17. To obtain other signs, 

the data is reduced to the lower case, all symbols except letters are removed (Fig. 18). For prediction, 

the weights of the previously trained classifier (logistic regression) are loaded as shown in Fig. 19-20. 
 

 
Figure 17: Input data format to RoBERTa neural network 

 

 
Figure 18: Received features for the test pair of sentences 

 



 

 

    
Figure 19: Pre-trained model      Figure 20: Prediction result 

 

Classification result obtained for the next sentence is shown in Fig. 21. Logistic network has 

correctly predicted that two sentences are not paraphrases of each other, even though most of the words 
in sentences are in common (Figure 22). For the next sentence, logistic regression also has correctly 

predicted the label, in this case the pair of sentences are paraphrases of each other shown in Fig. 22. 

 

 
Figure 21: The first test pair of sentences 

 

 
Figure 22: The second test pair of sentences 

 

Program does not require implementation of user interface, since its use is planned only as a module 
of the plagiarism detection system or aggregation of user-generated content. 

6. Discussions 

Classic ML-algorithm (logistic regression) was chosen for combining features and final 

classification. The results obtained are as follows: 

 Accuracy on the test data set is 92.462%, the area under the ROC curve is 97.05%, and the area 
under the Precision-Recall curve is 94.96%. 

 Accuracy on the validation data set - 93.71%, the area under the ROC curve is 97.66%, under 

the Precision-Recall curve - 96.12%. 

According to accuracy, completeness, F0.5-measure (Fig. 23) and discrepancy matrix (Fig. 24) 

results of classification of test data set, logistic regression erroneously marked almost twice as many 
negative records as positive than vice versa, positive ones as negative. This result may be a consequence 

of the difficulty of determining a non-paraphrased pair of sentences that were formed as a result of 

replacing several words with places. Such sentences are very close semantically, but have completely 
different meanings. 

 
Figure 23: Recall, accuracy, F-score for the test data set  Figure 24: Confusion matrix for test dataset 

 



 

 

According to bar chart in fig. 25, the most important features are RoBERTa ML model predictions, 
the cosine distance between solution vector representations, and the shortest path between WordNet 

dictionary synsets by Leacock and Chodorow. Significant coefficient of logistic regression, which 

corresponds to the predictions of the ML model, indicates its potential ability to qualitatively classify 

texts independently without the need to calculate additional features. Without applying deep learning 
methods, using only the logistic regression method to combine the results, we get: classification 

accuracy on the test data set is 71.15%, the area under the Precision-Recall curve is 73.6%. 

 
Figure 25: Weighting coefficients of logistic regression corresponding to certain signs of semantic 
similarity of a pair of sentences 

 

The most important feature for classification is the Jaccard coefficient for 3-grams (the normalized 
number of common 3-grams) and the cosine distance between vector representations of sentences. 

 
Figure 26: Weighting coefficients of logistic regression corresponding to certain signs of semantic 
similarity of a pair of sentences 

 



 

 

In contrast to the previous result of classification using deep learning methods, in this case most of 
the positive cases were classified as negative, i.e. the logistic regression model "has difficulties" in 

identifying paraphrases. Use of only one feature is not sufficient for the qualitative classification of a 

pair of sentences, since the predictions of such a model are close in probability to "blind" guessing: the 

accuracy of the results of the classification of the test data set using Word Mover's Distance is 55.7%, 
the cosine distance between vector representations of sentences is 55.7% , Siamese NN predictions are 

58%, while combining the same metrics with the Jaccard coefficient for 3-grams increases the 

classification accuracy to 70%, and applying the Jaccard coefficient for 2-grams adds another 1% 
accuracy. Despite the fact that these features can indicate the semantic similarity of sentences and can 

be used to detect pairs of similar sentences, the above-mentioned accuracy is not sufficient for full and 

high-quality detection of paraphrasing. 

 
Figure 27: Confusion matrix for test dataset 

 

Self-prediction of trained RoBERTa ML model is quite qualitative and has high quality indicators: 

accuracy – 91.96%, area under the Precision-Recall curve – 96.34%. 

 
Figure 28: ROC and Precision-Recall curves for classification results of RoBERTa deep learning model 

 

At the same time, RoBERTa classifies negative classes as positive classes much more (by 6 times) 
(Fig. 29), while significantly reducing the sensitivity / completeness (recall) to pairs of sentences that 

are not paraphrases of each other. When using such a model for plagiarism detection, more works will 

be misattributed as original sources, when used to aggregate user-generated content (questions, posts, 
forum threads), probability of misattributing a certain number of entries increases. In addition to 

comparison of ML methods, different number of features were tested simultaneously. Signs are selected 

depending on the appropriate weight of the logistic regression model. The best accuracy was obtained 

for the full set of features and the above algorithm. Other classical ML methods (tested naive Bayesian 
classifier, support vector method, random forest, k nearest neighbours multilayer perceptron) do not 



 

 

give a significant increase in training accuracy. Regarding development of project, the following 
conclusions can be drawn: 

  
Figure 29: Discrepancy matrix, accuracy, completeness, F-measure 

 

 For the method of stacking models and features, high indicators of accuracy, accuracy, 

completeness, F0.5-measure, areas under the ROC and Precision-Recall curves were obtained. 

 “Classical” features of semantic similarity used in many studies are indeed capable of detecting 
semantically similar sentences, but they are “powerless” in cases where the sentence has permuted 

words (or there are many common words) and, accordingly, the second sentence is not is a 

paraphrase of the first and has a completely different meaning. 

 Main premise of such a result is that the constructed features do not take into account the order 
of words in the sentence. To combat this, the Jaccard coefficient and the combination of features 

using classic ML methods are used. 

 Pre-trained ML models based on the Transformer architecture show excellent classification 

accuracy. At the same time, the RoBERTa NN trained in the process of working (with additional 
fully connected layers) is less sensitive to pairs of sentences that are not paraphrases of each other. 

This specificity of model may contribute to incorrect accusations of plagiarism or incorrect 

association of user-generated content. 

 Anti-plagiarism detection IS developers may be faced with choice between accuracy of 

classification and conservation of computing resources, since the calculation of features also 
contributes to the additional load on the computing device. 

 NNs of the Transformer architecture do not require additional feature generation and are able 

to detect paraphrasing with fairly high accuracy. The disadvantage of this type of NN is a significant 

number of parameters (a long time to calculate the results). 

 Transformer NNs have the advantage of pre-training models for “speech understanding” with 
the tasks of predicting the most likely words in a sentence and determining whether the second 

sentence is an idea continuation of the second. 

 For the task of detecting paraphrases, the NN is "fine-tuned" on the Paraphrase Adversaries 

from Word Scrambling data set. The advantages of the selected data set are 1) a large number of 

educational records - 49 thousand 2) balanced classes: 44.2% of all pairs of sentences are 
paraphrases of each other. 3) some of the examples were formed by replacing or permuting words, 

in which case the sentences are close semantically, but have completely different meanings. 

 Transformer NNs are used in many NLP tasks and can also be successfully used to detect 

paraphrasing in text with high accuracy. The only drawback of this type of networks is a significant 
number of configurable parameters 110+ million, training of such NN and its application require 

significant computing resources. 

7. Conclusions 

In the result of research ML-model for detecting paraphrasing by binary classification of texts pair 
has been developed. Software uses principle of model stacking and feature engineering. Additional 

features indicate the semantic affiliation of the sentences or the normalized number of common N-



 

 

grams. Created model shows excellent classification results on PAWS test data: weighted accuracy 
(precision) – 93%, weighted completeness (recall) – 92%, F-measure (F1-score) – 92%, accuracy 

(accuracy) – 92%. The study results have shown that Transformer-type NNs can be successfully applied 

to detect paraphrasing in a pair of texts with fairly high accuracy without the need for additional feature 

generation. Fine-tuned NN RoBERTa (with additional fully connected layers) is less sensitive to pairs 
of sentences that are not paraphrases of each other. This model specificity may contribute to incorrect 

accusations of plagiarism or incorrect association of user-generated content. Additional features 

increase both the overall classification accuracy and the model sensitivity to sentences pairs that are not 
paraphrases of each other. 
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