
Experimental and Exploratory Analysis of Programming
Languages Popularity According to the PYPL Index

Oleksandr Mediakov
1, Bohdan Korostynskyi 1, Victoria Vysotska

1,2, Oksana Markiv
1 and

Sofia Chyrun
1

1 Lviv Polytechnic National University, S. Bandera Street, 12, Lviv, 79013, Ukraine
2 Osnabrück University, Friedrich-Janssen-Str. 1, Osnabrück, 49076, Germany

Abstract
This article dwells upon procedure for primary and exploratory analysis of data concerning

programming languages popularity according to the PYPL index. Classical, but flexible

methods of cluster and correlation analysis, and mathematical statistics have been used in data

analysis. Examples of various researches in the field of popularity and development of

programming languages have been provided, and based on open questions in this area, set of

graphic results has been constructed by data analysis, which logically has resulted in

conclusions regarding the selection of models and methods for further data forecasting. Integral

part of the report information content consists of executable code examples in the R

programming language, which can be used to conduct similar studies.

Keywords 1
Cluster analysis, correlation analysis, programming languages, PYPL index, data forecasting,

data analysis, mathematical statistics

1. Introduction

Achievements and development of modern technologies are the result of long-term people

intellectual activity with aim of solving any problems that cause discomfort or impose restrictions on

the desires, interests or the process of society and/or an individual flourishing. Computer systems

capable of performing a huge number of arithmetic, logical and derivative operations in very short
periods are vivid examples of this development achievements.

Logically, in order to use the capabilities of these systems, it is necessary to have a tool for managing

them, which is programming language. The spread, diversity, and popularity of information
technologies have led to the existence of a wide class of people who use programming languages.

Because of this, the question of specific programming languages popularity in different periods is

widely discussed in the media and among the community of IT representatives.

However, the question of popularity can be considered from different angles, the most logical of
which is the statistical one. Primary statistical analysis of data on the popularity of various "living"

languages will allow to see patterns and trends among developers in general. Also, mathematical

processing of data will allow to build relative indicators of growth or decline in the popularity of
languages.

To achieve correct results, it is necessary to define clearly the tasks that will be considered in the

work. Using the usual mathematical approach, it can be argued that it is necessary to conduct data
analysis with: construction of statistics of various programming languages and in general for all,

MoMLeT+DS 2022: 4th International Workshop on Modern Machine Learning Technologies and Data Science, November, 25-26, 2022,

Leiden-Lviv, The Netherlands-Ukraine

EMAIL: Oleksandr.Mediakov.sa.2019@lpnu.ua (O. Mediakov); bohdan.korostynskyi.sa.2019@lpnu.ua (B. Korostynskyi);

victoria.a.vysotska@lpnu.ua (V. Vysotska); oksana.o.markiv@lpnu.ua (O. Markiv)

ORCID: 0000-0002-2580-3155 (O. Mediakov); 0000-0002-0545-6264 (B. Korostynskyi); 0000-0001-6417-3689 (V. Vysotska); 0000-0002-

1691-1357 (O. Markiv); 0000-0002-2829-0164 (S. Chyrun)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

research of regularities in the distribution of time data, detection of the presence or absence of linear
relationships between the popularity of various programming languages, and also to distinguish groups

programming languages depending on the dynamics of changes in their popularity [1-3]. For a high-

quality presentation of the results or the correct choice of the method, it is necessary to visualize the

intermediate and final results.

2. Related works

Since the topic of programming and programming languages is broad, popular and interesting for

society, analysis of the chosen topic is carried out in various forms - scientific articles and studies,

journalistic articles, own investigations of corporations, communities, etc. Question of language
popularity is raised to trace trends in language paradigms, settings, even syntax.

First of all, it is necessary to mention the availability of ratings that publicize current state of the

"market" of programming languages. For example, one of the most famous indices as ratings, TIOBE
programming community index [3]. This rating is made exclusively for programming languages

(Turing complete), based on the number of mentions in various search engines. It is obvious that this

approach has significant drawbacks, because it takes into account unpopular articles and literature.
Thus, this rating counts only the "noise" of the programming language in the network [1-5].

In contrast to this rating, more qualitative one has emerged - PYPL Popularity of Programming

Language. This rating is formed by analyzing the number of searches for programming language

courses in Google [2]. Data from this rating has more respect and authority among users. It is from this
rating that the data that will be analyzed in the following parts of the work was formed.

It is logical that such platforms as GitHub or StackOverflow can keep certain statistics on

programming languages.
Based on data from GitHub, the company creates an annual Github report, where it displays data on

the number of repositories, pull requests, etc., by programming language. With the help of this

information, it is possible to see a real picture of live projects and the technologies they use.
In turn, several important ratings are formed from the data of StackOverflow, among them:

popularity of programming languages, most favorite programming languages by developers, most

willing languages. Based on these ratings, media representatives, specialists and users of programming

languages create articles and blogs. For example, a rather popular magazine in IT – Medium published
a general collection of analysis of ratings of programming languages [1]. This work reveals a lot of

interesting information about the use and development of trends among developers and IT specialists,

their professional preparation, formation of requirements for job vacancies or participation in project
teams, recruiting and formation of requirements for IT projects [6-27]. However, many popular articles

and works describe general aspects, so it is possible to highlight the place of this work among others –

the work will offer a qualitative statistical analysis of the temporal evolution the popularity of

programming languages for data forecasting based on machine learning [28-72], which will allow
assessing the growth and decline of each language separately in a relative and absolute projection.

3. Methods

For the correct solution of the given problems, it is necessary correctly to select or create algorithms
of methods. For primary statistical analysis, it is possible to build several different approaches to each

problem. It is necessary to consider the algorithms of methods that will be used in the work in the future.

The simplest methods used in the work are the calculation of time series statistics. For their

calculation, the usual formulas and methods of mathematical statistics are used, which do not require
special improvements for specific data.

However, there is a cluster of algorithms and methods that need to be modernized or refined for

specific data, or the methods have several options, and it is necessary to choose one of them.
Several such methods belong to correlation analysis. For example, there is a need to present the

algorithm for forming a correlation matrix with its visualization in the form of a heat map.

S- algorithm for filling the correlation matrix and its visualization

S1. Initialize unit matrix of the order of the number of attributes

S2. Cycle through the cells of the matrix with incremental parameters i, j.
S2.1. If i≠j belongs to the matrix - in cell i, j assigns the value of the Pearson correlation coefficient

[4] between attributes i and j.

S2.2. If i=j skip step.

S3. Find the maximum and minimum of the matrix.
S4. Create linear color change function from minimum to maximum.

S5. Display table with colors according to the matrix cell values.

However, work with matrices is not only found in correlation analysis, the use of matrix theory is
also necessary in cluster analysis. One of the main tasks when performing clustering is to determine the

next union node, which mathematically means finding the minimum among the elements of the lower

(or upper) part of the matrix without taking into account the main diagonal. The algorithm that performs
this task is shown in Fig. 1.

start

i = n-1

index > 0

index = index - i

i = i-1

Output

n+index, n-i-

1

end

mat, n

index =

індекс_мін(m

_l)

m_l =

elements_under_the_ma

in_diagonal(mat)

The method of determining the

position of the minimal element of a

symmetric matrix without double

cycles

Figure 1: Block diagram of algorithm for finding the position of minimum element in symmetric matrix

In this method, the use of double loops with conditions is enabled, and the overall estimate of the

asymptotics of the algorithm is O(n), where n is the number of diagonal elements. However, for the
general case, let m be the order of the matrix, then the complexity of the algorithm is estimated at

𝑂 (⌊
𝑛2−𝑛

2
⌋). More general picture of the clustering method with the formation of a hierarchical structure

involves the creation of a dendogram, but there is a problem of remembering the results of the clustering

steps in the form of a certain data structure. For this purpose, we present a diagram of activities of the
clustering algorithm with memorization of intermediate results (Fig. 2).

Read a dataframe

from a file

Define a set of

statistics functions

Create a rectangular

matrix of properties

Fill in the properties

matrix

Create a square

matrix of distances

Normalize the

property matrix

Choose a metric

Fill in the distance

matrix

Find the minimum

element of the matrix

among the elements

below the main

diagonal

Create a new column

and row of the

distance matrix

Calculate the distance

from the merged

cluster

Delete two rows and

columns at the

intersection of the

mini element

Repeat the process

until the dimension

of the matrix is not

equal to 1

Write the name of the

new cluster and the

name of the variable

line in the file, space

between them

Write the name of the

new cluster and the

name of the variable

column in the file,

leave a space

between them

Read data from the

file into the graph

data structure

Graphically display

the graph in the form

of a dendogram

Figure 2: UML activity diagram for the hierarchical clustering method

4. Experiments

Experimental data for researching the popularity of programming languages is the time sequence of
the PYPL index value for 28 programming languages. PYPL [1-5] index was mentioned in previous

parts of the work, but the data itself was collected by Kaggle users, the corresponding access mode is

https://www.kaggle.com/muhammadkhalid/most-popular-programming-languages-since-2004.

The initial view of data in csv format is shown in Fig. 3.

Figure 3: Part of the file with output data

Unfortunately, the data readability is minimal in this form, but it can be improved by changing the

view to the appropriate Fig. 4. It can be seen that the variables, that is, the columns, are each

programming language and the date column, respectively, each line is a record of the date and the value
of the PYPL index for that date. Accordingly, the size of the data is 207 by 29. In general, the dataset

includes data from July 2004 to September 2021. And the programming languages considered in the

data are: Abap, Ada, C/C++, C#, Cobol, Dart, Delphi.Pascal, Go , Groovy , Haskell, Java, JavaScript,

Julia, Kotlin, Lua, Matlab, Objective.C, Perl, PHP, Python, R, Ruby, Rust, Scala, Swift, TypeScript,
VBA, Visual.Basic. Such a data structure also corresponds to certain properties, for example, the sum

of all values in one row equals 100, this is because the PYPL index itself displays data in 100% language

breakdown.

Figure 4: Part of data represented in the form of table

R language was used for data experiments and graphing, as well as such packages as dplyr, ggplot2
(in fact, most of the libraries from tidyverse), reshape2, zoo, etc. (Fig. 6-7). To begin with, the data

must be read correctly, and the problem arises that the format of the date column does not correspond

to the one available in R, so it must be converted to a new one, for example, October 2020 will be
converted into 10 2020, which in turn will be converted into a Date data type with a value of 01.10.

2020. The general function of reading data from a file and primary transformation:

library(dplyr)
library(ggplot2)
library(reshape2)
get_data_frame <- function() {
 # correspondence of months in English by numbers
 months_u_e <- c("January" = "1", "February" = "2", "March" = "3", "April" = "4", "May"
= "5", "June" = "6",
 "July" = "7", "August" = "8", "September" = "9", "October" = "10", "November" = "11",
"December" = "12")
 # opening a file in a dataframe
 progs.df <- read.csv("Most Popular Programming Languages from 2004 to 2021.csv")
 progs.df$Date %>% stringr::str_replace_all(pattern = months_u_e) -> progs.df$Date
 rm(months_u_e)
 # converting data string to a Date type
 progs.df$Date <- zoo::as.Date(zoo::as.yearmon(progs.df$Date, "%m %Y"))
 names(progs.df)[4] <- "C++"
 names(progs.df)[5] <- "C"
 progs.df %>% return
}
progs.df <- get_data_frame()

Figure 5: Output of a fragment of the data window after it is loaded

The first task set before the work involves the construction of statistics for each of the programming

languages. It is necessary to go through the data columns and create a new dataframe with statistical

parameters.

library(moments)
source("libs_config.r")
returns a set of statistical characteristics for the vector x
statistical_characteristics <- function(x) {
 c("mean" = mean(x), "median" = median(x),
 "std" = sd(x), "var" = var(x), "min" = min(x),
 "max" = max(x), "kurt" = kurtosis(x), "skew" = skewness(x)) %>% return
}
use of function for all columns except date
apply(progs.df[, 2:29], MARGIN = 2, FUN = statistical_characteristics) %>%
t() %>% data.frame() %>% mutate(range = (max - min), variation = std/mean*100) %>%
arrange(desc(mean)) -> stats.df

Figure 6: Interactive console text with basic language statistics

Although the R language has many built-in functions, it is possible to build your own more flexible

functions, for example a simple histogram construction would look like this:
ggplot(progs.df$R, aes(x = R)) + geom_hist()

However, in order to achieve flexibility, it is necessary to correctly determine the number of columns
(orthe step of the column), as well as experiment with the visual display, therefore, the following

functions were created to build the histogram and the probability distribution function:

source("task_1_stat\\create_statistics.r")
function of dividing a vector into intervals
create_stat <- function(data.vec) {
 r <- max(data.vec) - min(data.vec)
 m <- ceiling(1+log2(length(data.vec)))
 bin <- r/m
 breaks <- seq(min(data.vec), max(data.vec), bin)
 data.vec %>% sort %>% cut(by = bin, breaks = breaks) -> data.vec
 list(data.vec, breaks) %>% return
}
function of creating a histogram as a ggplot object
create_histogram <- function(data.stats) {
 (ggplot() +
 geom_col(aes(x = head(data.stats[[2]], -1L),
 y = as.integer(table(data.stats[[1]])), fill = levels(data.stats[[1]]))) +
 labs(x = "R popularity", y = "count", fill = "Intervals") +
 scale_fill_brewer(palette = 3, type = "div"))%>% return
}
function of creating distribution function in the form of ggplot object
create_distr_plot <- function(data.stats) {
 breaks <- data.stats[[2]]
 data.stats <- data.stats[[1]]
 counts <- as.integer(table(data.stats))
 pdf <- rep(0,(length(counts)+1))
 for(i in seq(2,length(levels(data.stats)))) {
 pdf[i] <- sum(counts[1:i])/length(data.stats)
 }
 pdf[length(counts)+1] <- 1
 (ggplot(data.frame(x = breaks, y = pdf), aes(x = x, y = y)) +
 geom_line(size = 1.5, alpha = 0.7, col = "#72007c") +
 geom_point(size = 2.5, alpha = 0.8, col = "#470068") +
 theme_light() + labs(x = "R popularity", y = "Probability")) %>% return
}
progs.df$R %>% create_stat -> stat
stat %>% create_histogram -> hist.plot
stat %>% create_distr_plot -> pdf.plot

With this approach, it is possible to adjust easy the number and colors of the columns, for example

as in Fig. 7.

Figure 7: Different histograms for one time series

In addition, it is possible to adjust the graphs of the time series themselves, their combination and
presentation, a script has been developed for this:

progs.df[, c("Date", row.names(stats.df))] -> progs.df
returns time series chart for languages indexed a through b
gen_plot <- function(a,b, polar = F) {
 progs.df[, c(1, a:b)] %>% melt(id = "Date") -> data.df
 if(!polar) {
 (ggplot(data = data.df, aes(x = Date, y = value, fill = variable, col = variable))+
 geom_line()) %>% return
 }
 else {
 (ggplot(data = data.df, aes(x = Date, y = value, fill = variable, col = variable))+
 geom_line(size= 1.5) + coord_polar()) %>% return
 }
}
lang_top1.plot <- gen_plot(2,5) + labs(col = "Programming Lang", y = "Popurality")
lang_top2.plot <- gen_plot(6,9) + labs(col = "", y = "Popurality", x = "")
lang_top3.plot <- gen_plot(10,13) + labs(col = "", y = "", x = "")
lang_top4.plot <- gen_plot(14,17) + labs(col = "", y = "Popurality", x = "")
lang_top5.plot <- gen_plot(18,21) + labs(col = "", y = "", x = "")
lang_top6.plot <- gen_plot(22,25) + labs(col = "", y = "Popurality", x = "Date")
lang_top7.plot <- gen_plot(26,29) + labs(col = "", y = "", x = "Date")
(lang_top1.plot /
(lang_top2.plot | lang_top3.plot) /
(lang_top4.plot | lang_top5.plot) /
(lang_top6.plot | lang_top7.plot)) -> main.plot

When studying the dynamics of time series, the smoothing mechanism can be used, for example, for

exponential and median filtering, the functions will look simple:

exponential smoothing
expsmooth <- function(data, alpha){
 # smoothing factor 0.1 <= a <= 0.3
 l = length(data)
 y0 = data[1]
 res <- c(alpha*data[1]+(1-alpha)*y0)
 for(n in 2:l){
 res <- append(res, alpha*data[n]+(1-alpha)*res[n-1])
 }
 return(res)
}
median filtering
medianfiltering <- function(data){
 l = length(data)
 res <- c(data[1])
 for(n in 2:(l-1)){
 res <- append(res, max(c(min(c(data[n-1],
data[n]))),c(min(c(data[n],data[n+1]))),c(min(c(data[n-1],data[n+1])))))
 }
 res <- append(res, data[l])
 return(res)
}

But, for linear Kendel smoothing, there is a problem of redundancy in the construction of the

smoothing function, for example, using all the parameters, the function will look like this:

test_w7 <- function(data){
 if(length(data)<7){
 print("The array is too small")
 return(NA)
 }
 l = length(data)
 #y(1,2,3)
 y1 = (13*data[1]+10*data[2]+7*data[3]+4*data[4]+data[5]-2*data[6]-5*data[7])/28

 y2 = (5*data[1]+4*data[2]+3*data[3]+2*data[4]+1*data[5]+0*data[6]-1*data[7])/14
 y3 = (7*data[1]+6*data[2]+5*data[3]+4*data[4]+3*data[5]+2*data[6]+data[7])/28
 res <- c(y1,y2,y3)
 for(val in 4:(l-3)){
 res <- append(res, (data[val-3]+data[val-2]+data[val-
1]+data[val]+data[val+1]+data[val+2]+data[val+3])/7)
 }
 #y(n, n-1, n-2)
 yn2 = (data[l-6]+2*data[l-5]+3*data[l-4]+4*data[l-3]+5*data[l-2]+6*data[l-
1]+7*data[l])/28
 yn1 = (-1*data[l-6]-0*data[l-5]+1*data[l-4]+2*data[l-3]+3*data[l-2]+4*data[l-
1]+5*data[l])/14
 yn = (-5*data[l-6]-2*data[l-5]+data[l-4]+4*data[l-3]+7*data[l-2]+10*data[l-
1]+13*data[l])/28
 res <- append(res, yn2)
 res <- append(res, yn1)
 res <- append(res, yn)
 return(res)
}

However, as can be seen, the matrix of coefficients is a mirror image. It can be simply “reflected”

and a function can be constructed for different w, with the first half of the matrix and the division
coefficients known:

w = 7
wequal7 <- function(data){
 p = 7
 l = length(data)
 if(l<p){
 print("The array is too small")
 return(NA)
 }
 res <- c()
 # values
 values <- c(
 13,10,7,4,1,-2,-5,
 5,4,3,2,1,0,-1,
 7,6,5,4,3,2,1
)
 addvalues <- c(28,14,28,7,28,14,28)
 # values
 mvalues <- matrix(values, nrow = p, byrow = F)
 mvalues <- valuemirror(mvalues)
 for(n in 1:((p-1)/2)){
 vres = 0
 for(v in 1:p){
 vres <- vres + mvalues[v,n] * data[v]
 }
 res <- append(res, vres/addvalues[n])
 }
 for(n in ((p+1)/2):(l-(p-1)/2)){
 vres = 0
 for(v in 1:p){vres <- vres + mvalues[v,(p+1)/2] * data[n-1-(p-1)/2+v]}
 res <- append(res, vres/addvalues[(p+1)/2])
 }
 for(n in (l+1-(p-1)/2):l){
 vres = 0
 for(v in 1:p){vres <- vres + mvalues[v,p-l+n] * data[l-p+v]}
 res <- append(res, vres/addvalues[(p-l+n)])
 }
 return(res)
}

From Fig. 8, it can be seen that the results are exactly the same, but the second option allows

parameterizing the coefficients of Kendel's formula for any known w.

Figure 8: Comparison of two smoothing graphs

When conducting correlation analysis of time series, it is often necessary to build correlation

matrices and display them in the form of heat maps, etc. However, the primary task is to construct a

correlation field or dot plot, for example with ggplot2 it can be constructed as follows:

source("libs_config.r")
кор. поле з лінією регресії для мов R та Julia
gplot_cor_1 <- ggplot(progs.df, aes(x = R, y = Julia)) +
 geom_point(aes(x = R, y = Julia), color="black", fill="#49ddd6",
 shape=21, alpha=0.5, size=4, stroke = 1) +
 geom_smooth(method=lm , color="#686868", fill="#0011f81f", se=F)

This option allows to add an automatically calculated regression line to the graph using the lm()

function. To build heat maps, it is necessary first to determine the correlation matrix, and then set the

graphic display. It is important to choose the right color scheme in order quickly to determine high
correlation coefficients. It is also possible to adjust the display of the text. Examples of the correlation

matrix are shown in Fig. 9.

progs.df[, c("Python", "Java", "C", "Dart", "Julia", "R")] %>% cor() -> cor.matrix_mini
cor.matrix %>% melt() -> heat.df
cor.matrix_mini %>% melt() -> heat.df_mini
heat.map_mini <- ggplot(data = heat.df_mini, aes(x = Var1, y = Var2, fill = value)) +
 geom_tile(color = "white") #+
 scale_fill_gradient2(low = "#ca0033", high = "#0043fa", mid = "#ececec",
 midpoint = 0, limit = c(-1,1), space = "Lab",
 name="Cor coef") + labs(x = "", y = "") + geom_text(aes(label = round(value, 3)))

Figure 9: Correlation heat maps

The last element that must be completed according to the tasks set in the work is hierarchical
clustering. To build a tree-like clustering, it is possible to use the built-in capabilities of the language:

source("task_1_stat\\create_statistics.r")
stats.df %>% apply(MARGIN = 2, FUN = function(x){return((x-min(x))/(max(x)-min(x)))}) ->
stats.df
stats.df %>% dist(method = "minkowski", p = 2) -> dist.m
hclust(dist.m) -> hc
plot(hc)

As a result, it is possible to get a dendogram from Fig. 10.

Figure 10: Generated clustering dendogram using the hclust function

However, there is a certain number of different methods of combining two clusters, and to achieve

flexibility in the construction of clusters, it is necessary to define new clustering functions. So, the

following functions have been developed for this work:

conversion of the minimum number into matrix indices
convert_index <- function(index, n) {
 i <- n-1
 while(index > 0) {
 index <- index - i
 i <- i-1
 }
 c(n+index, n-i-1) %>% return
}
property matrix normalization
normalize <- function(data.df) {
 data.df %>% apply(MARGIN = 2, FUN = function(x){return((x-min(x))/(max(x)-min(x)))})
%>% return
}
returns the distance matrix according to the Minkowski metricgenerate_dist <-
function(data.df, p = 2) {
 data.df %>% dist(method = "minkowski", p = p) %>% as.matrix() %>% return
}
the function of combining a new cluster with the deletion of two previous ones
syntez_cluster <- function(dist.matrix, ij, alpha_i, alpha_j, beta, gamma, path) {
 dist.matrix <- as.matrix(dist.matrix)
 n <- dim(dist.matrix)[1]
 i <- ij[1]
 j <- ij[2]
 cluster.name <- paste(rownames(dist.matrix)[i], colnames(dist.matrix)[j], sep = "|")
 #paste(paste(rownames(dist.matrix)[i], colnames(dist.matrix)[j], sep=" + "),
cluster.name, sep = " = ", dist.matrix[i,j]) %>% print
 new.names <- c(colnames(dist.matrix), cluster.name)
 dist.matrix %>% cbind(0) %>% rbind(0) -> dist.matrix
 colnames(dist.matrix)[n+1] <- cluster.name
 rownames(dist.matrix)[n+1] <- cluster.name

 first <- strsplit(cluster.name, "[|]")[[1]][1]
 write.table(data.frame(from = cluster.name, to = rownames(dist.matrix)[i], value =
dist.matrix[i,j], origin = first),
 file = path, col.names = F, row.names = F, append = T, sep = ",")
 write.table(data.frame(from = cluster.name, to = rownames(dist.matrix)[j], value =
dist.matrix[i,j], origin = first),
 file = path, col.names = F, row.names = F, append = T, sep = ",")
 dist.matrix %>%
 calc_cluster_dist(i = i, j = j, n = n+1, alpha_i = alpha_i, alpha_j = alpha_j, beta =
beta, gamma = gamma) %>%
 return
}
distance calculation function for a new cluster
calc_cluster_dist <- function(dist.matrix, i, j, n, alpha_i, alpha_j, beta, gamma) {
 # in general case, it is necessary that i > j, however, we work with a lower triangular
matrix, where the condition is always fulfilled
 #if (i < j) i <- (j - i) + (j <- i);
 for (h in seq(n)[-i][-j]) {
 dist.matrix[n, h] <-
 dist.matrix[h, n] <-
 sum(c(alpha_i, alpha_j, beta, gamma) * c(dist.matrix[h,i], dist.matrix[h,j],
dist.matrix[i,j], abs(dist.matrix[h,i] - dist.matrix[h,j])))
 }
 dist.matrix[-i,-i][-j,-j] %>% return
}

With this approach, it is possible to combine capabilities of libraries for working with graphs and

get more informative dendograms. In addition, circular dendograms can be constructed. For example,

the results of one clustering can be presented in two graphs from Fig. 11, while the construction code

looks like this:
library(igraph)
library(ggraph)
library(dplyr)
construction of dendogram with clustering
create_dendogram <- function(dendo_df_file, dendo_name) {
 dendo.df <- read.csv(dendo_df_file)
 label.df <- data.frame(name = unique(c(dendo.df$from, dendo.df$to)))
 label.df %>% mutate(origin = NA, dist = NA, programming = NA) -> label.df
 for(i in seq_len(dim(label.df)[1])) {
 if (label.df$name[i] %in% dendo.df$from) {
 label.df$dist[i] = dendo.df$value[dendo.df$from == label.df$name[i]][1]
 }
 if (label.df$name[i] %in% dendo.df$to) {
 label.df$origin[i] = dendo.df$origin[dendo.df$to == label.df$name[i]][1]
 if(length(strsplit(label.df$name[i], "[|]")[[1]]) == 1) {
 label.df$programming[i] = label.df$name[i]
 }
 }
 }
 dendo.g <- graph_from_data_frame(dendo.df, vertices = label.df)
 dendogram.plot <- ggraph(dendo.g, layout = 'dendrogram', circular = F) +
 geom_edge_elbow(aes(colour = origin), alpha=0.8, edge_width = 2) +
 theme_graph(background = "white", plot_margin = margin(5, 5, 5, 5), base_size = 16) +
 geom_node_point(aes(size = dist)) +
 geom_node_point(aes(filter = leaf), alpha = 0.7, col = "black", size = 2) +
 ylim(-1.6, NA) +
 geom_node_text(aes(label = programming, filter = leaf, color = origin), angle=90 ,
hjust=1, nudge_y = -0.04)
 dendogram.circ <- ggraph(dendo.g, layout = 'dendrogram', circular = T) +
 geom_edge_elbow(aes(colour = origin), alpha=0.8, edge_width = 2) +
 theme_graph(background = "white", plot_margin = margin(5, 5, 5, 5), base_size = 15) +
 geom_node_point(aes(size = 1/dist), color = "#050022") +
 geom_node_point(aes(filter = leaf,), alpha = 0.7, col = "black", size = 3) +
 ylim(-1, NA) +
 geom_node_text(aes(label = programming, filter = leaf, filter = leaf, angle = angle),
angle = 0, hjust = 1.1, vjust = 0.5)

Figure 11: Normal and circular dendogram created by the script

5. Results

For the correct use of data, its filtering, sorting or clustering, it is necessary to conduct a classical
intelligence analysis. If to build a graph with the data of all available programming languages, then the

obtained result will not have a meaningful load, but in order to obtain a certain evolution of intelligence

analysis, such a graph is shown in Fig. 12.

Figure 12: Graph of time series of popularity of programming languages

To improve the appearance and meaning of graphical display of data, it is necessary to divide

languages into certain groups. It is best to do this according to statistical parameters. The following
features are selected as the main statistical characteristics for these series: mean value, dispersion,

standard deviation, median, minimum, maximum, range, coefficient of variation, skewness, and

kurtosis. After sorting the data window by the average value, there is a possibility already to plot a set

of graphs (Fig. 13-15) and get certain conclusions:

 The most popular language today is Python, the value of the index for September 2021 is 29.48,

that is, almost a third of all queries refer to this language, in addition, the average popularity level is
12.26, and the maximum of 32.11 was reached in July 2020.

 On average, the most popular language during the observation period is Java - the average value

is 25.76, and the value of the index for today is 17.18.

The average value of the top 10 programming languages, as well as the top ten in terms of the

maximum, are shown as slices of the data frame in Fig. 13. In addition, the dynamics of changes in the
popularity of the language can be considered in the polar coordinate system, as in Fig. 14.

Figure 13: Execution of requests to print parts of the data window

Figure 14: Time series graph of the second group of languages in the polar system

For example, this graph shows the uniformity of the distribution of the popularity of the JavaScript

language. However, for correct presentation of the hypothesis about the distribution, it is necessary to

use the mechanism of construction of histograms and the distribution function. To conduct the

experiment, consider the programming language R. From Fig. 4 shows that the popularity of the
language grew up to a certain time, and then stabilized, and it is impossible to determine whether the

time series is subject to a certain distribution. As a result of using the constructed functions, a histogram

in Fig. 16 is represented. This histogram shows that the popularity of R language does not lend itself to
standard density functions, however, it is possible to construct an empirical probability distribution

function to get a higherlevel picture of the distribution of the data. For this, function has been created

that uses the same parameters as the histogram. It can be seen that the distribution function does not

have a clear picture to correspond to the known distributions, perhaps this is explained by the instability
of the parameters that determine the popularity of a particular programming language. When examining

the behavior of some time series, there is a problem of a large range of data in local intervals, for

example, for the Dart programming language, the popularity in the period after 2011 (ie, from the first
non-zero values) does not have a clear or convenient trend picture.

Figure 15: Set of time series graphs divided into groups of 4 by the average value.

a) b)

Figure 16: a) Histogram of the time series of the popularity of the R language and b) Empirical
probability distribution function for a time series.

Smoothing mechanism was used to highlight the trend line close to the initial data. The following
smoothing methods were used in the work (Fig. 17-19):

 Moving average: by 3, 7, 11, 13, 15 points and 7 points of the neo-oil formula;

 Exponential: at alpha 0.2 and 0.3;

 Median filtering.

The results of applying smoothing methods are shown in Fig. 17 – linear moving average, and Fig.

19 - non-linear and median. As was shown in the Experiments section, smoothing functions can be of

different levels of complexity. From the graph in Fig. 17, it can be seen that when smoothing at points
11, 13, 15, a strong distortion is obtained, and when three points are used, the difference is minimal. To

investigate the effectiveness of the moving average method, we calculate the correlation coefficient for

real data and smoothing at w=5 and w=13. The corresponding calculations are shown in Fig. 18.
Nonlinear smoothing is shown in Fig. and has the best-fitting form, and it rejects most outliers. The

worst result can be considered when using the exponential method with alpha equal to 0.2, and as can

be seen from Fig. 19, the correlation coefficient is 0.83. If considering the obtained results, there is
general cyclical one might say sinusoidal dynamics of development of language popularity. Two main

peaks may have occurred during the release of the popular framework in the Dart language - Flatter, in

general, the cyclical dynamics has a tendency to grow.

Figure 17: Graphic display of moving average methods with different number of points

Figure 18: Results of correlation coefficients calculation

Figure 19: Graphical results of smoothing by non-linear methods

In order to consider the development of the popularity of all languages at the same time, it is first

necessary to simplify the task and consider the relationship between the development of some languages

(Fig. 20). To do this, first consider certain logical assumptions:
1. New programming languages (Go, Dart, Julia, Nim, etc.) usually do not affect the popularity of

old languages, because new languages solve modern problems, and established languages have their

permanent niche. From this it can be assumed that there is no definite linear relationship between Dart
and C#.

2. Programming languages Java and Python are considered the biggest "enemies", completely

different style in syntax, speed, community, etc. However, it is quite logical to assume that the growth

of the popularity of the Python language has a strong influence on the popularity of Java, in particular,
it should decrease.

3. Since data analysis, data science, artificial intelligence and neural networks are currently the most

popular for discussion and development in IT, languages such as R or Julia are constantly increasing in
popularity, and therefore there should be a direct linear relationship between the popularity of these

languages, and both should grow.

If we interpret the logical assumptions in the language of correlation analysis, then the first
assumption speaks about the absence of a linear relationship between the data and the correlation

coefficient approaching zero, the second - there is a negative linear relationship with a correlation

coefficient equal to -1, and the last one about a positive linear relationship connection with a coefficient

of +1. In order to confirm these hypotheses, correlation fields were first constructed. To finally confirm
the hypothesis, it is necessary to calculate the correlation coefficient.

Figure 20: a) Correlation field for Dart and C languages and regression line for b) Python and Java
languages and c) Julia and R languages

From the graphical representation of the dependence, it can be already seen that the initial
assumptions are correct, however, to achieve accuracy, a heat map was constructed based on the

correlation matrix for the languages described above. From the map in Fig. 20 it is visible that the

correlation coefficient between Dart and C languages is close to zero, namely 0.082, and between Julia
and R the coefficient is equal to 0.906. The most interesting thing is the behavior of the correlation

coefficient for Java, it is less than zero in almost all languages, and therefore there is a tendency to

decrease the popularity of the language in comparison with all other languages. However, Java and
Python have the highest coefficient by module, which confirms the second hypothesis.

However, there is a certain problem in the presence of correlation relations between each language,

and not all of them have a certain logic. To study the general behavior of languages with each other, it

is possible to build a general heat map, which is shown in Fig. 21-22.

Figure 21: Heat map of the correlation matrix

After analyzing the correlation coefficients of all languages with each other, there is an assumption
that, in fact, the dependencies between languages should be considered at a higher level, for example,

taking into account the connections between the purposes of languages, trends in the modern IT market,

etc. But it is possible individually to study the popularity dynamics of certain programming language.

The growing popularity of the Python language has been mentione, and graphically it is also visible.
However, there is another statistical method for checking the presence of trend in a time series -

autocorrelation. Using the acf function of the R language, autocorrelation was calculated at a lag of 0-

23. The result is presented in the form of a graph in Fig. 21-22. It can be seen from the correlogram that
even at the last lag the coefficient is above 0.5, and it is quite obvious that the time series has a linear

trend.

Figure 22: Correlation heatmap for all programming languages from experimental data

The logical conclusion of the intelligence analysis of data on the popularity of programming

languages is to conduct a simple cluster analysis. In the course of the task, clustering was carried out
with different parameters, namely with different metrics and unification strategies. In all cases, the

Minkowski metric was used, with a variable parameter p. Two graphical approaches were used to

display the results - conventional dendograms and circular ones. The vertices of the union are marked
on ordinary dendograms proportional to the distance to the union, that is, the greater the distance, the

larger the vertex, and in circular dendograms it is inversely proportional. In addition, the dendograms

have a colored grouping, which is tied to the programming languages that are the initial nodes for a
particular cluster.

1. Clustering at p = 2, the nearest neighbor joining strategy is a classic approach to clustering. As

can be seen from the dendogram in Fig. 23, a different number of clusters can be distinguished at

different levels, but those programming languages that were added at the very end - Ada, PHP, Haskell,
Java and Python - are distinguished. These languages are unique enough to be clustered by the residual

principle, that is, with this metric and clustering strategy, these languages have no relatives. On the

other hand, some languages had a sufficiently small distance between them, for example, Go and
TypeScript have a metric of about 0.09, which is why they form the first cluster. According to the

colors, Go is the starting vertex for the final cluster.

Figure 23: Dendogram of clustering 1

2. Clustering at p = 2, the unification strategy is flexible at αi = αj = 0.3535, β= 0.293, γ = 0. When
using another unification strategy, we have a slightly different clustering, which in general does not

have a fundamental difference from the previous one. The main difference is the appearance of PHP

and Java language integration node before entering the common terminal cluster. Another difference is

the new initial vertices, if in the previous configuration it was the Go language, then in this case Groovy
(for less popular languages) and PHP (for the most popular) dominate.

Figure 24: Dendogram of clustering 2

3. Clustering at p = 3, pooling strategy of the far-neighbor. With such parameters, different picture
was obtained as a result of clustering. First, cluster of PHP, Java and Python languages was formed,

which is the top 3 in terms of average value. Kotlin was added to the cluster with Dart, Rust, TypeScript,

Go, which was not presented in this cluster with other parameters. In addition, Lua is now the main root

for clusters. In addition, with such a configuration, the tendency to form clusters at the middle level
remains, for example, languages C/C++, C# and JavaScript stick to one cluster almost always.

Figure 25: Circular dendogram of clustering 3

4. Clustering at p = 0.5, pooling strategy of the nearest neighbor. This clustering is interesting

because of the parameter p, because it is less than 1.

Figure 26: Circular dendogram of clustering 4

From the diagram it can be seen that separate cluster of C, C++ and JavaScript languages, a large
cluster of Scala, Julia, Cobol and Lua languages can be distinguished, and again a cluster of languages

that are far from all others - Python, Java and PHP, which will be added at the end

6. Discussions

The first important note that characterizes all data in general is the complete diversity of data for
each language. The dynamics of the development of the popularity of each language during one period

are maximally diversified, but at the same time interconnected in a certain way. When examining the

results, it was shown that it is possible to obtain the appearance of linear relationships between the

popularity of different languages that have logical connections. However, some languages are not
related to each other, their development and use are quite different, but there is a correlation between

them. If we consider the heat map from Fig. 18, it can be seen that the popularity of Swift and R and

Scala languages have a very high correlation, but in fact the languages are not related to each other,
they operate in different niches. Correlation of languages speaks of simultaneous growth in popularity,

and therefore can indicate general trends in the IT market, but not the specifics of each language. The

question arises of building such a model that can take into account the dynamics of all languages at the
same time, but at the same time the input data is only one variable - the date. Such a problem with the

one-dimensionality of the input data gives rise to the need for a large amount of training data.

To begin with, conducting exploratory analysis, it was proven that the data is complete, qualitative,

suitable for some statistical tests. When constructing statistics, it can be seen that the data have various
asymmetries and excesses, and do not lend themselves to normal distributions, in addition, most graphs

of time series have obvious non-constancy. Therefore, it is impossible to select statistical parameters

for the data that will fully describe them. In addition, it is necessary to maximally correspond to the
limitations of the data, for example, the sum of all values by rows is equal to the constant 100. This

means that approaches such as networks with marginalization or Bayesian neural networks are not

suitable. In addition to the quality, but at the same time chaotic data, there is another problem - a small
number of records. This problem rejects the possibility of using multilayer neural networks.

However, it is possible to distinguish certain approaches to describe the data, but for this it is

necessary to find a mathematical counterpart of the function that will describe the current state of the

data. The first and main option is a vector function. For example, a parametric vector function with

three coordinates v(t) = [sin t , t2, cos t] For our data, such a function will be 28-dimensional. The date

will act as the parameter t in the data.

Such a function will be able to accurately describe the current state of the data if we choose a function
depending on t for each language, such as an approximation or interpolation polynomial. Smoothing

functions can be used to reduce the number of input points.

When constructing such a function, it is possible to conduct experiments with the search for

dependencies, derivatives of different orders to study the function. However, if there is a problem of
extrapolation, it is immediately possible to assert a large absolute error.

The first way to reduce the number of calculations and the error is to use the clustering results. Some

clustering languages have such small distances that they can be treated as a single variable. Then it is
possible to get a function with fewer dimensions. A reduction in error will occur when clustering is

used to generate interpolation nodes.

However, it is still not possible to achieve a high predicted accuracy. Therefore, the next option is
neuron-by-neuron of the network. Such neural networks differ from most in that they do not have a

defined architecture at the beginning, but form it during the learning process, by adding a neuron or a

layer. Such networks require many times less input data, but are not suitable for multidimensional

results. To build a network that can produce vector of index values for the future with a small amount
of input data, it is possible to use the approach of graph neural networks together with clustering.

Dendogram is good initial network graph, and the distances between clusters can be used as coefficients

when passing messages. When combining methods of graph and neuron-by-neuron networks, it is
possible to get the smallest error when predicted. So, as a result of exploratory and cluster analysis, it

was concluded that the data on the popularity of programming languages are suitable for research, but

the methods of their analysis should be the most modern.

7. Conclusions

As a result of experimental and exploratory analysis of data concerning the programming languages

popularity according to the PYPL index since 2004, the presence of various trends in the dynamics of

the popularity of programming languages was revealed and the relationship between two different
languages was established. In the case of a complex consideration of time series, a hypothesis was

created regarding the complexity and absolute nonlinearity of the general trend using programming

languages, which affects the choice of models for forecasting. Some programming languages have a
sufficiently unique popularity that distinguishes them when constructing hierarchical cluster structures.

Such languages are highly popular, have the most diverse fields of application and their own niches.

An equally important result is the fact of conducting data research as such, because it indicates the

correctness, integrity and informativeness of the data, due to which such data can be used for
educational purposes.

8. References

[1] Devathon. Top 10 Best Programming Language Rankings. URL:

https://medium.com/@devathon_/top-10-best-programming-language-rankings-e49a0def796c
[2] PYPL PopularitY of Programming Language. URL: https://pypl.github.io/PYPL.html.

[3] TIOBE Index for October 2021. URL: https://www.tiobe.com/tiobe-index/.

[4] Victor A. Bloomfield. Using R for Numerical Analysis in Science and Engineering. Minneapolis,
USA: University of Minnesota, 2014.

[5] Most Popular Programming Languages Since 2004. URL:

https://www.kaggle.com/muhammadkhalid/most-popular-programming-languages-since-2004.
[6] I. Rishnyak, Y. Matseliukh, T. Batiuk, L. Chyrun, O. Strembitska, O. Mlynko, V. Liashenko, A.

Lema, Statistical Analysis of the Popularity of Programming Language Libraries Based on

StackOverflow Queries, CEUR Workshop Proceedings Vol-3171 (2022) 1351-1379.

[7] M. Fedorov, A. Berko, Y. Matseliukh, V. Schuchmann, I. Budz, O. Garbich-Moshora, M.
Mamchyn, Decision Support System for Formation and Implementing Orders Based on Cross

Programming and Cloud Computing, CEUR Workshop Proceedings Vol-2917 (2021) 714-748.

[8] D. Koshtura, V. Andrunyk, T. Shestakevych, Development of a Speech-to-Text Program for
People with Haring Impairments, CEUR Workshop Proceedings Vol-2917 (2021) 565-583.

[9] S. Tetiana, The method of education format ascertaining in program system of inclusive education

support, in: International Scientific and Technical Conference on Computer Sciences and

Information Technologies, CSIT, 2017, pp. 279-283.
[10] M.O. Medykovskyi, V.M. Teslyuk, O.B. Shunevych, The use of dynamic programming for the

problem of the uniform use of wind plants, Technical Electrodynamics 4 (2014) 135-137.

[11] M. Medykovskyy, V. Teslyuk, O. Shunevych, Optimization of wind power stations structure by
the dynamic programming method, Actual Problems of Economics, 152(2) (2014) 508-515.

[12] V. Litvinenko, P. Bidyuk, J. Bardachov, V. Sherstjuk, A. Fefelov, Combining clonal selection

algorithm and gene expression programming for time series prediction, in: Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications, 2005, pp. 133–138.

[13] V. Lytvyn, V. Vysotska, A. Rzheuskyi, Technology for the Psychological Portraits Formation of

Social Networks Users for the IT Specialists Recruitment Based on Big Five, NLP and Big Data

Analysis, CEUR Workshop Proceedings Vol-2392 (2019) 147-171.
[14] I. Rishnyak, O. Veres, V. Lytvyn, M. Bublyk, I. Karpov, V. Vysotska, V. Panasyuk,

Implementation models application for IT project risk management, CEUR Workshop Proceedings

Vol-2805 (2020) 102-117.
[15] A. Rzheuskyi, O. Kutyuk, V. Vysotska, Y. Burov, V. Lytvyn, L. Chyrun, The Architecture of

Distant Competencies Analyzing System for IT Recruitment, in: Proceedings of the International

Conference on Computer Sciences and Information Technologies, CSIT, 2019, pp. 254-261.
[16] M. Bublyk, V. Vysotska, L. Chyrun, V. Panasyuk, O. Brodyak, Assessing Security Risks Method

in E-Commerce System for IT Portfolio Management, CEUR Workshop Proceedings Vol-2853

(2021) 462-479.

[17] A. O. Karpyak, O. M. Rybytska, Cluster Analysis of Motivational Management of Personnel
Support of IT Companies, CEUR Workshop Proceedings Vol-3171 (2022) 1684-1693.

[18] V. Yunchyk, A. Fedonuyk, M. Khomyak, S. Yatsyuk, Cognitive Modeling of the Learning Process

of Training IT Specialists, CEUR Workshop Proceedings Vol-2917 (2021) 141-150.

[19] A. Rzheuskyi, O. Kutyuk, O. Voloshyn, A. Kowalska-Styczen, V. Voloshyn, L. Chyrun, S.
Chyrun, D. Peleshko, T. Rak, The intellectual system development of distant competencies

analyzing for IT recruitment, Advances in Intelligent Systems and Computing 1080 (2020) 696–

720. DOI: 10.1007/978-3-030-33695-0_47.
[20] L. Chyrun, P. Kravets, O. Garasym, A. Gozhyj, I. Kalinina, Cryptographic information protection

algorithm selection optimization for electronic governance IT project management by the analytic

hierarchy process based on nonlinear conclusion criteria, CEUR Workshop Proceedings Vol-2565
(2020) 205–220.

[21] V. Sokol, M. Bilova, A. Druzhynin, N. Cherkun, I. Perepelytsia, An Adaptive Algorithm for

Effective Selection of Training Content for IT Professionals, CEUR Workshop Proceedings, Vol-

2870 (2021) 1173-1183.
[22] L. Halkiv, O. Karyy, I. Kulyniak, Y. Kis, A. Tsapulych, The National System of Higher Education

and Government Procurement for Its Services as Activators of the Development of IT

Entrepreneurship, CEUR Workshop Proceedings Vol-2870 (2021) 1338-1349.
[23] V. Andrunyk, V. Pasichnyk, N. Antonyuk, T. Shestakevych, A Complex System for Teaching

Students with Autism: The Concept of Analysis. Formation of IT Teaching Complex, Advances

in Intelligent Systems and Computing 1080 (2020) 721-733.
[24] O. Duda, N. Kunanets, O. Matsiuk, V. Pasichnyk, Cloud-based IT infrastructure for "Smart City"

projects, in: Dependable IoT for Human and Industry: Modeling, Architecting, Implementation,

2018, pp. 389-410.

[25] M. Bublyk, O. Rybytska, A. Karpiak, Y. Matseliukh, Structuring the fuzzy knowledge base of the
IT industry impact factors, in: Computer sciences and information technologies, 2018, pp. 21–24.

[26] O. Veres, O. Oborska, A. Vasyliuk, Y. Brezmen, I. Rishnyak, Problems and peculiarities of the IT

project managment of ontological engineering for person psychological state diagnosing, CEUR
Workshop Proceedings Vol-2565 (2020) 162–177.

[27] O. Veres, et. al., Development and Operations - The Modern Paradigm of the Work of IT Project

Teams, in: International Scientific and Technical Conference on Computer Sciences and

Information Technologies, CSIT, 2019, 3, pp. 103–106.
[28] B.E. Kapustiy, B.P. Rusyn, V.A. Tayanov, Peculiarities of Application of Statistical Detection

Criteria for Problem of Pattern Recognition/Journal of Automation and Information Science 37(2)

(2005) 30-36.
[29] S. Babichev, et. al., A fuzzy model for gene expression profiles reducing based on the complex

use of statistical criteria and Shannon entropy, Advances in Intelligent Systems and Computing

754 (2018) 545-554.
[30] M. Voronenko, et. al., Analysis of the Effectiveness of an Investment Project Using Statistical

Bayesian Networks, in: International Conference on Advanced Computer Information

Technologies, ACIT, 2020, pp. 408–411.

[31] S. Babichev, O. Khamula, B. Durnyak, J. Škvor, Technique of gene expression profiles selection
based on sota clustering algorithm using statistical criteria and Shannon entropy, Advances in

Intelligent Systems and Computing 1246 (2021) 23–38.

[32] P. Bidyuk, I. Kalinina, A. Gozhyj, Methodology of constructing statistical models for nonlinear
non-stationary processes in medical diagnostic systems, CEUR Workshop Proceedings Vol-2753

(2020) 36–45.

[33] I. Gorbenko, A. Kuznetsov, Y. Gorbenko, S. Vdovenko, V. Tymchenko, M. Lutsenko, Studies on
Statistical Analysis and Performance Evaluation for Some Stream Ciphers, International Journal

of Computing 18(1) (2019) 82-88.

[34] R. Kaminskyi, N. Kunanets, A. Rzheuskyi, Mathematical support for statistical research based on

informational technologies, CEUR Workshop Proceedings Vol-2105 (2018) 449-452.
[35] I. Sokolovskyy, N. Shakhovska, Statistical modeling of diffusion processes with a fractal structure,

CEUR Workshop Proceedings Vol-2488 (2019) 145–154.

[36] M. Bublyk, V. Feshchyn, L. Bekirova, O. Khomuliak, Sustainable Development by a Statistical
Analysis of Country Rankings by the Population Happiness Level, CEUR Workshop Proceedings,

Vol-3171(2022) 817-837.

[37] I. Khomytska, V. Teslyuk, The Method of Statistical Analysis of the Scientific, Colloquial, Belles-

Lettres and Newspaper Styles on the Phonological Level, Advances in Intelligent Systems and
Computing 512 (2016) 149–163.

[38] I. Khomytska, V. Teslyuk, Authorship and Style Attribution by Statistical Methods of Style

Differentiation on the Phonological Level, Advances in Intelligent Systems and Computing 871
(2019) 105–118. doi: 10.1007/978-3-030-01069-0_8.

[39] A. Vasyliuk, Y. Matseliukh, T. Batiuk, M. Luchkevych, I. Shakleina, H. Harbuzynska, S.

Kondratiuk, K. Zelenska, Intelligent Analysis of Best-Selling Books Statistics on Amazon, CEUR
Workshop Proceedings Vol-3171 (2022) 1432-1462.

[40] T. Shestakevych, Modeling the Process of Analysis of Statistical Characteristics of Student Digital

Text, CEUR Workshop Proceedings Vol-2870 (2021) 657-669.

[41] M. Bublyk, Y. Matseliukh, Small-Batteries Utilization Analysis Based on Mathematical Statistics
Methods in Challenges of Circular Economy, CEUR Workshop Proceedings Vol-2870 (2021)

1594-1603.

[42] V. Vysotska, O. Markiv, S. Teslia, Y. Romanova, I. Pihulechko, Correlation Analysis of Text
Author Identification Results Based on N-Grams Frequency Distribution in Ukrainian Scientific

and Technical Articles, CEUR Workshop Proceedings Vol-3171 (2022) 277-314.

[43] B.O. Kapustiy, B.P. Rusyn, V.A. Tayanov, A new approach to determination of correct recognition
probability of set objects, Upravlyaushchie Sistemy i Mashiny 2 (2005) 8-12.

[44] A.B. Lozynskyy, I.M. Romanyshyn, B.P. Rusyn, Intensity Estimation of Noise-Like Signal in

Presence of Uncorrelated Pulse Interferences, Radioelectronics and Communications Systems

62(5) (2019) 214-222.
[45] N. Romanyshyn, Algorithm for Disclosing Artistic Concepts in the Correlation of Explicitness and

Implicitness of Their Textual Manifestation, CEUR Workshop Proceedings 2870 (2021) 719-730.

[46] V. Pasichnyk, T. Shestakevych, N. Kunanets, V. Andrunyk, Analysis of completeness, diversity
and ergonomics of information online resources of diagnostic and correction facilities in Ukraine,

CEUR Workshop Proceedings Vol-2105 (2019) 193-208.

[47] H. Zhengbing, V. Yatskiv, A. Sachenko, Increasing the Data Transmission Robustness in WSN

Using the Modified Error Correction Codes on Residue Number System, Elektronika ir
Elektrotechnika 21(1) (2015) 76-81.

[48] V. Yatskiv, N. Yatskiv, S. Jun, A. Sachenko, H. Zhengbing, The use of modified correction code

based on residue number system in WSN, in: Proceedings of the International Conference on
Intelligent Data Acquisition and Advanced Computing Systems, IDAACS. 2013, pp. 513-516.

[49] O. Veres, Y. Matseliukh, T. Batiuk, S. Teslia, A. Shakhno, T. Kopach, Y. Romanova, I.

Pihulechko, Cluster Analysis of Exclamations and Comments on E-Commerce Products, CEUR
Workshop Proceedings Vol-3171 (2022) 1403-1431.

[50] I. Lurie, V. Lytvynenko, S. Olszewski, M. Voronenko, A. Kornelyuk, U. Zhunissova, О. Boskin,

The Use of Inductive Methods to Identify Subtypes of Glioblastomas in Gene Clustering, CEUR

Workshop Proceedings Vol-2631 (2020) 406-418.
[51] Y. Bodyanskiy, A. Shafronenko, I. Klymova, Adaptive Recovery of Distorted Data Based on

Credibilistic Fuzzy Clustering Approach, CEUR Workshop Proceedings Vol-2870 (2021) 6-15.

[52] S. Babichev, B. Durnyak, I. Pikh, V. Senkivskyy, An Evaluation of the Objective Clustering
Inductive Technology Effectiveness Implemented Using Density-Based and Agglomerative

Hierarchical Clustering Algorithms, Advances in Intelligent Systems and Computing 1020 (2020)

532–553. Cham. https://doi.org/10.1007/978-3-030-26474-1_37.
[53] P. Bidyuk, A. Gozhyj, I. Kalinina, V. Vysotska, Methods for Forecasting Nonlinear Non-

Stationary Processes in Machine Learning, Communications in Computer and Information Science

1158 (2020) 470-485. DOI: 10.1007/978-3-030-61656-4_32.

[54] P. Bidyuk, A. Gozhyj, I. Kalinina, V. Vysotska, M. Vasilev, R. Malets, Forecasting Nonlinear
Nonstationary Processes in Machine Learning Task, in: Proceedings of the IEEE 3rd International

Conference on Data Stream Mining and Processing, DSMP, 2020, pp. 28-32. DOI:

10.1109/DSMP47368.2020.9204077.

[55] O. Soprun, M. Bublyk, Y. Matseliukh, V. Andrunyk, L. Chyrun, I. Dyyak, A. Yakovlev, M.
Emmerich, O. Osolinsky, A. Sachenko, Forecasting Temperatures of a Synchronous Motor with

Permanent Magnets Using Machine Learning, CEUR workshop proceedings 2631 (2020) 95–120.

[56] N. Koval, А. Tryhuba, I. Kondysiuk, I. Тryhuba, O. Boiarchuk, M. Rudynets, V. Grabovets, V.

Onyshchuk, Forecasting the Fund of Time for Performance of Works in Hybrid Projects Using
Machine Training Technologies, CEUR Workshop Proceedings Vol-2917 (2021) 196-206.

[57] R. Yurynets, Z. Yurynets, O. Budіakova, L. Gnylianska, M. Kokhan, Innovation and Investment

Factors in the State Strategic Management of Social and Economic Development of the Country:
Modeling and Forecasting, CEUR Workshop Proceedings Vol-2917 (2021) 357-372.

[58] Y. Tverdokhlib, V. Andrunyk, L. Chyrun, L. Chyrun, N. Antonyuk, I. Dyyak, O. Naum, D. Uhryn,

V. Basto-Fernandes, Analysis and Estimation of Popular Places in Online Tourism Based on
Machine Learning Technology, CEUR Workshop Proceedings Vol-2631 (2020) 457-470.

[59] I. Bodnar, M. Bublyk, O. Veres, O. Lozynska, I. Karpov, Y. Burov, P. Kravets, I. Peleshchak, O.

Vovk, O. Maslak, Forecasting the Risk of Cervical Cancer in Women in the Human Capital

Development Context Using Machine Learning, CEUR Workshop Proceedings Vol-2631 (2020)
491-501.

[60] L. Podlesna, M. Bublyk, I. Grybyk, Y. Matseliukh, Y. Burov, P. Kravets, O. Lozynska, I. Karpov,

I. Peleshchak, R. Peleshchak, Optimization Model of the Buses Number on the Route Based on
Queueing Theory in a Smart City, CEUR Workshop Proceedings Vol-2631 (2020) 502-515.

[61] V. Lytvynenko, et. al., Hybrid Methods of GMDH-Neural Networks Synthesis and Training for

Solving Problems of Time Series Forecasting, Advances in Intelligent Systems and Computing
1020 (2020) 513–531.

[62] P. Bidyuk, A. Gozhyj, I. Kalinina, V. Gozhyj, Analysis of uncertainty types for model building

and forecasting dynamic processes, Advances in Intelligent Systems and Computing 689 (2018)

66-78.
[63] P. Bidyuk, A. Gozhyj, Y. Matsuki, N. Kuznetsova, I. Kalinina, Modeling and forecasting economic

and financial processes using combined adaptive models, Advances in Intelligent Systems and

Computing 1246 (2021) 395–408.
[64] V. Hnatushenko, V. Hnatushenko, N. Dorosh, N. Solodka, O. Liashenko, Non-relational approach

to developing knowledge bases of expert system prototype, Naukovyi Visnyk Natsionalnoho

Hirnychoho Universytetu 2 (2022) 112-117. https://doi.org/10.33271/nvngu/2022-2/112.

[65] R. Sytnyk, V. Hnatushenko, V. Hnatushenko, Decentralized Information System for Supply Chain
Management Using Blockchain, in: International Workshop on Intelligent Information

Technologies and Systems of Information Security, CEUR Workshop Proceedings Vol-3156

(2022) 587-598.
[66] T. Basyuk, A. Vasyliuk, Approach to a subject area ontology visualization system creating, CEUR

Workshop Proceedings Vol-2870 (2021) 528–540.

[67] T. Basyuk, A. Vasyliuk, Design and Construction of a Popularizing Internet Resources System
Using External Ranking Factors, CEUR Workshop Proceedings Vol-3171 (2022) 437–450.

[68] A. Vasyliuk, T. Basyuk, Construction features of the industrial environment control system, CEUR

Workshop Proceedings Vol-2870 (2021) 1011–1025.

[69] O. Mediakov, T. Basyuk, Specifics of Designing and Construction of the System for Deep Neural
Networks Generation, CEUR Workshop Proceedings Vol-3171 (2022) 1282–1296.

[70] V. Davydov, D. Hrebeniuk, Development the resources load variation forecasting method within

cloud computing systems, Advanced Information Systems 4(4) (2020) 128–135.
https://doi.org/10.20998/2522-9052.2020.4.18.

[71] S. Krepych, I. Spivak, Forecasting system of utilities service costs based on neural network,

Advanced Information Systems 4(4), (2020) 102–108. https://doi.org/10.20998/2522-
9052.2020.4.14.

[72] S. Semenov, C. Weilin, L. Zhang, S. Bulba, Automated penetration testing method using deep

machine learning technology, Advanced Information Systems 5(3) (2021) 119–127.

https://doi.org/10.20998/2522-9052.2021.3.16.

https://www.scopus.com/sourceid/5100152904?origin=resultslist
https://www.scopus.com/sourceid/5100152904?origin=resultslist
https://www.scopus.com/sourceid/5100152904?origin=resultslist

	1. Introduction
	2. Related works
	3. Methods
	4. Experiments
	5. Results
	6. Discussions
	7. Conclusions
	8. References

