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Abstract  
This article dwells upon procedure for primary and exploratory analysis of data concerning 

programming languages popularity according to the PYPL index. Classical, but flexible 

methods of cluster and correlation analysis, and mathematical statistics have been used in data 

analysis. Examples of various researches in the field of popularity and development of 

programming languages have been provided, and based on open questions in this area, set of 

graphic results has been constructed by data analysis, which logically has resulted in 

conclusions regarding the selection of models and methods for further data forecasting. Integral 

part of the report information content consists of executable code examples in the R 

programming language, which can be used to conduct similar studies. 
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1. Introduction 

Achievements and development of modern technologies are the result of long-term people 

intellectual activity with aim of solving any problems that cause discomfort or impose restrictions on 

the desires, interests or the process of society and/or an individual flourishing. Computer systems 

capable of performing a huge number of arithmetic, logical and derivative operations in very short 
periods are vivid examples of this development achievements. 

Logically, in order to use the capabilities of these systems, it is necessary to have a tool for managing 

them, which is programming language. The spread, diversity, and popularity of information 
technologies have led to the existence of a wide class of people who use programming languages. 

Because of this, the question of specific programming languages popularity in different periods is 

widely discussed in the media and among the community of IT representatives. 

However, the question of popularity can be considered from different angles, the most logical of 
which is the statistical one. Primary statistical analysis of data on the popularity of various "living" 

languages will allow to see patterns and trends among developers in general. Also, mathematical 

processing of data will allow to build relative indicators of growth or decline in the popularity of 
languages. 

To achieve correct results, it is necessary to define clearly the tasks that will be considered in the 

work. Using the usual mathematical approach, it can be argued that it is necessary to conduct data 
analysis with: construction of statistics of various programming languages and in general for all, 
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research of regularities in the distribution of time data, detection of the presence or absence of linear 
relationships between the popularity of various programming languages, and also to distinguish groups 

programming languages depending on the dynamics of changes in their popularity [1-3]. For a high-

quality presentation of the results or the correct choice of the method, it is necessary to visualize the 

intermediate and final results. 

2. Related works 

Since the topic of programming and programming languages is broad, popular and interesting for 

society, analysis of the chosen topic is carried out in various forms - scientific articles and studies, 

journalistic articles, own investigations of corporations, communities, etc. Question of language 
popularity is raised to trace trends in language paradigms, settings, even syntax. 

First of all, it is necessary to mention the availability of ratings that publicize current state of the 

"market" of programming languages. For example, one of the most famous indices as ratings, TIOBE 
programming community index [3]. This rating is made exclusively for programming languages 

(Turing complete), based on the number of mentions in various search engines. It is obvious that this 

approach has significant drawbacks, because it takes into account unpopular articles and literature. 
Thus, this rating counts only the "noise" of the programming language in the network [1-5]. 

In contrast to this rating, more qualitative one has emerged - PYPL Popularity of Programming 

Language. This rating is formed by analyzing the number of searches for programming language 

courses in Google [2]. Data from this rating has more respect and authority among users. It is from this 
rating that the data that will be analyzed in the following parts of the work was formed. 

It is logical that such platforms as GitHub or StackOverflow can keep certain statistics on 

programming languages. 
Based on data from GitHub, the company creates an annual Github report, where it displays data on 

the number of repositories, pull requests, etc., by programming language. With the help of this 

information, it is possible to see a real picture of live projects and the technologies they use. 
In turn, several important ratings are formed from the data of StackOverflow, among them: 

popularity of programming languages, most favorite programming languages by developers, most 

willing languages. Based on these ratings, media representatives, specialists and users of programming 

languages create articles and blogs. For example, a rather popular magazine in IT – Medium published 
a general collection of analysis of ratings of programming languages [1]. This work reveals a lot of 

interesting information about the use and development of trends among developers and IT specialists, 

their professional preparation, formation of requirements for job vacancies or participation in project 
teams, recruiting and formation of requirements for IT projects [6-27]. However, many popular articles 

and works describe general aspects, so it is possible to highlight the place of this work among others – 

the work will offer a qualitative statistical analysis of the temporal evolution the popularity of 

programming languages for data forecasting based on machine learning [28-72], which will allow 
assessing the growth and decline of each language separately in a relative and absolute projection. 

3. Methods 

For the correct solution of the given problems, it is necessary correctly to select or create algorithms 
of methods. For primary statistical analysis, it is possible to build several different approaches to each 

problem. It is necessary to consider the algorithms of methods that will be used in the work in the future. 

The simplest methods used in the work are the calculation of time series statistics. For their 

calculation, the usual formulas and methods of mathematical statistics are used, which do not require 
special improvements for specific data. 

However, there is a cluster of algorithms and methods that need to be modernized or refined for 

specific data, or the methods have several options, and it is necessary to choose one of them. 
Several such methods belong to correlation analysis. For example, there is a need to present the 

algorithm for forming a correlation matrix with its visualization in the form of a heat map. 

S- algorithm for filling the correlation matrix and its visualization 

S1. Initialize unit matrix of the order of the number of attributes 



S2. Cycle through the cells of the matrix with incremental parameters i, j. 
S2.1. If i≠j belongs to the matrix - in cell i, j assigns the value of the Pearson correlation coefficient 

[4] between attributes i and j. 

S2.2. If i=j skip step. 

S3. Find the maximum and minimum of the matrix. 
S4. Create linear color change function from minimum to maximum. 

S5. Display table with colors according to the matrix cell values. 

However, work with matrices is not only found in correlation analysis, the use of matrix theory is 
also necessary in cluster analysis. One of the main tasks when performing clustering is to determine the 

next union node, which mathematically means finding the minimum among the elements of the lower 

(or upper) part of the matrix without taking into account the main diagonal. The algorithm that performs 
this task is shown in Fig. 1. 
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Figure 1: Block diagram of algorithm for finding the position of minimum element in symmetric matrix 

 

In this method, the use of double loops with conditions is enabled, and the overall estimate of the 

asymptotics of the algorithm is O(n), where n is the number of diagonal elements. However, for the 
general case, let m be the order of the matrix, then the complexity of the algorithm is estimated at 

𝑂 (⌊
𝑛2−𝑛

2
⌋). More general picture of the clustering method with the formation of a hierarchical structure 

involves the creation of a dendogram, but there is a problem of remembering the results of the clustering 



steps in the form of a certain data structure. For this purpose, we present a diagram of activities of the 
clustering algorithm with memorization of intermediate results (Fig. 2). 
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Figure 2: UML activity diagram for the hierarchical clustering method 

4. Experiments 

Experimental data for researching the popularity of programming languages is the time sequence of 
the PYPL index value for 28 programming languages. PYPL [1-5] index was mentioned in previous 

parts of the work, but the data itself was collected by Kaggle users, the corresponding access mode is 

https://www.kaggle.com/muhammadkhalid/most-popular-programming-languages-since-2004. 



The initial view of data in csv format is shown in Fig. 3. 

 
Figure 3: Part of the file with output data 

 
Unfortunately, the data readability is minimal in this form, but it can be improved by changing the 

view to the appropriate Fig. 4. It can be seen that the variables, that is, the columns, are each 

programming language and the date column, respectively, each line is a record of the date and the value 
of the PYPL index for that date. Accordingly, the size of the data is 207 by 29. In general, the dataset 

includes data from July 2004 to September 2021. And the programming languages considered in the 

data are: Abap, Ada, C/C++, C#, Cobol, Dart, Delphi.Pascal, Go , Groovy , Haskell, Java, JavaScript, 

Julia, Kotlin, Lua, Matlab, Objective.C, Perl, PHP, Python, R, Ruby, Rust, Scala, Swift, TypeScript, 
VBA, Visual.Basic. Such a data structure also corresponds to certain properties, for example, the sum 

of all values in one row equals 100, this is because the PYPL index itself displays data in 100% language 

breakdown. 
 

 
Figure 4: Part of data represented in the form of table 

 

R language was used for data experiments and graphing, as well as such packages as dplyr, ggplot2 
(in fact, most of the libraries from tidyverse), reshape2, zoo, etc. (Fig. 6-7). To begin with, the data 

must be read correctly, and the problem arises that the format of the date column does not correspond 

to the one available in R, so it must be converted to a new one, for example, October 2020 will be 
converted into 10 2020, which in turn will be converted into a Date data type with a value of 01.10. 

2020. The general function of reading data from a file and primary transformation: 



library(dplyr) 
library(ggplot2) 
library(reshape2) 
get_data_frame <- function() { 
    # correspondence of months in English by numbers 
    months_u_e <- c("January" = "1", "February" = "2", "March" = "3", "April" = "4", "May" 
= "5", "June" = "6", 
    "July" = "7", "August" = "8", "September" = "9", "October" = "10", "November" = "11", 
"December" = "12") 
    # opening a file in a dataframe 
    progs.df <- read.csv("Most Popular Programming Languages from 2004 to 2021.csv") 
    progs.df$Date %>% stringr::str_replace_all(pattern = months_u_e) -> progs.df$Date 
    rm(months_u_e) 
    # converting data string to a Date type 
    progs.df$Date <- zoo::as.Date(zoo::as.yearmon(progs.df$Date, "%m %Y")) 
    names(progs.df)[4] <- "C++" 
    names(progs.df)[5] <- "C" 
    progs.df %>% return 
} 
progs.df <- get_data_frame() 

 
Figure 5: Output of a fragment of the data window after it is loaded 

 
The first task set before the work involves the construction of statistics for each of the programming 

languages. It is necessary to go through the data columns and create a new dataframe with statistical 

parameters. 
 

library(moments) 
source("libs_config.r") 
# returns a set of statistical characteristics for the vector x 
statistical_characteristics <- function(x) { 
    c("mean" = mean(x), "median" = median(x), 
    "std" = sd(x), "var" = var(x), "min" = min(x), 
    "max" = max(x), "kurt" = kurtosis(x), "skew" = skewness(x)) %>% return 
} 
# use of function for all columns except date 
apply(progs.df[, 2:29], MARGIN = 2, FUN = statistical_characteristics) %>% 
t() %>% data.frame() %>% mutate(range = (max - min), variation = std/mean*100) %>% 
arrange(desc(mean)) -> stats.df 
 

 
Figure 6: Interactive console text with basic language statistics 

 

Although the R language has many built-in functions, it is possible to build your own more flexible 

functions, for example a simple histogram construction would look like this: 
ggplot(progs.df$R, aes(x = R)) + geom_hist() 



However, in order to achieve flexibility, it is necessary to correctly determine the number of columns 
(orthe step of the column), as well as experiment with the visual display, therefore, the following 

functions were created to build the histogram and the probability distribution function: 

 
source("task_1_stat\\create_statistics.r") 
# function of dividing a vector into intervals 
create_stat <- function(data.vec) { 
    r <- max(data.vec) - min(data.vec) 
    m <- ceiling(1+log2(length(data.vec))) 
    bin <- r/m 
    breaks <- seq(min(data.vec), max(data.vec), bin) 
    data.vec %>% sort %>% cut(by = bin, breaks = breaks) -> data.vec 
    list(data.vec, breaks) %>% return 
} 
# function of creating a histogram as a ggplot object 
create_histogram <- function(data.stats) { 
    (ggplot() + 
    geom_col(aes(x = head(data.stats[[2]], -1L), 
        y = as.integer(table(data.stats[[1]])), fill = levels(data.stats[[1]]))) + 
    labs(x = "R popularity", y = "count", fill = "Intervals") + 
    scale_fill_brewer(palette = 3, type = "div"))%>% return 
} 
# function of creating distribution function in the form of ggplot object 
create_distr_plot <- function(data.stats) { 
    breaks <- data.stats[[2]] 
    data.stats <- data.stats[[1]] 
    counts <- as.integer(table(data.stats)) 
    pdf <- rep(0,(length(counts)+1)) 
    for( i in seq(2,length(levels(data.stats)))) { 
        pdf[i] <- sum(counts[1:i])/length(data.stats) 
    } 
    pdf[length(counts)+1] <- 1 
    (ggplot(data.frame(x = breaks, y = pdf), aes(x = x, y = y)) + 
    geom_line(size = 1.5, alpha = 0.7, col = "#72007c") + 
    geom_point(size = 2.5, alpha = 0.8, col = "#470068") + 
    theme_light() + labs(x = "R popularity", y = "Probability")) %>% return 
} 
progs.df$R %>% create_stat -> stat 
stat %>% create_histogram -> hist.plot 
stat %>% create_distr_plot -> pdf.plot 

 

With this approach, it is possible to adjust easy  the number and colors of the columns, for example 

as in Fig. 7. 

 
Figure 7: Different histograms for one time series 

 



In addition, it is possible to adjust the graphs of the time series themselves, their combination and 
presentation, a script has been developed for this: 

 
progs.df[, c("Date", row.names(stats.df))] -> progs.df 
# returns  time series chart for languages indexed a through b 
gen_plot <- function(a,b, polar = F) { 
    progs.df[, c(1, a:b)] %>% melt(id = "Date") -> data.df 
    if(!polar) { 
        (ggplot(data = data.df, aes(x = Date, y = value, fill = variable, col = variable))+ 
        geom_line()) %>% return 
    } 
    else { 
        (ggplot(data = data.df, aes(x = Date, y = value, fill = variable, col = variable))+ 
        geom_line(size= 1.5) + coord_polar()) %>% return 
    } 
} 
lang_top1.plot <- gen_plot(2,5) + labs(col = "Programming Lang", y = "Popurality") 
lang_top2.plot <- gen_plot(6,9) + labs(col = "", y = "Popurality", x = "") 
lang_top3.plot <- gen_plot(10,13) + labs(col = "", y = "", x = "") 
lang_top4.plot <- gen_plot(14,17) + labs(col = "", y = "Popurality", x = "") 
lang_top5.plot <- gen_plot(18,21) + labs(col = "", y = "", x = "") 
lang_top6.plot <- gen_plot(22,25) + labs(col = "", y = "Popurality", x = "Date") 
lang_top7.plot <- gen_plot(26,29) + labs(col = "", y = "", x = "Date") 
(lang_top1.plot / 
(lang_top2.plot | lang_top3.plot) / 
(lang_top4.plot | lang_top5.plot) / 
(lang_top6.plot | lang_top7.plot)) -> main.plot 

 
When studying the dynamics of time series, the smoothing mechanism can be used, for example, for 

exponential and median filtering, the functions will look simple: 

 
# exponential smoothing 
expsmooth <- function(data, alpha){ 
  # smoothing factor 0.1 <= a <= 0.3 
  l = length(data) 
  y0 = data[1] 
  res <- c(alpha*data[1]+(1-alpha)*y0) 
  for(n in 2:l){ 
    res <- append(res, alpha*data[n]+(1-alpha)*res[n-1]) 
  } 
  return(res) 
} 
# median filtering 
medianfiltering <- function(data){ 
  l = length(data) 
  res <- c(data[1]) 
  for(n in 2:(l-1)){ 
    res <- append(res, max(c(min(c(data[n-1], 
data[n]))),c(min(c(data[n],data[n+1]))),c(min(c(data[n-1],data[n+1]))))) 
  } 
  res <- append(res, data[l]) 
  return(res) 
} 

But, for linear Kendel smoothing, there is a problem of redundancy in the construction of the 

smoothing function, for example, using all the parameters, the function will look like this: 

 
test_w7 <- function(data){ 
  if(length(data)<7){ 
    print("The array is too small") 
    return(NA) 
  } 
  l = length(data) 
  #y(1,2,3) 
  y1 = (13*data[1]+10*data[2]+7*data[3]+4*data[4]+data[5]-2*data[6]-5*data[7])/28 



  y2 = (5*data[1]+4*data[2]+3*data[3]+2*data[4]+1*data[5]+0*data[6]-1*data[7])/14 
  y3 = (7*data[1]+6*data[2]+5*data[3]+4*data[4]+3*data[5]+2*data[6]+data[7])/28 
  res <- c(y1,y2,y3) 
  for(val in 4:(l-3)){ 
    res <- append(res, (data[val-3]+data[val-2]+data[val-
1]+data[val]+data[val+1]+data[val+2]+data[val+3])/7) 
  } 
  #y(n, n-1, n-2) 
  yn2 = (data[l-6]+2*data[l-5]+3*data[l-4]+4*data[l-3]+5*data[l-2]+6*data[l-
1]+7*data[l])/28 
  yn1 = (-1*data[l-6]-0*data[l-5]+1*data[l-4]+2*data[l-3]+3*data[l-2]+4*data[l-
1]+5*data[l])/14 
  yn = (-5*data[l-6]-2*data[l-5]+data[l-4]+4*data[l-3]+7*data[l-2]+10*data[l-
1]+13*data[l])/28 
  res <- append(res, yn2) 
  res <- append(res, yn1) 
  res <- append(res, yn) 
  return(res) 
} 

However, as can be seen, the matrix of coefficients is a mirror image. It can be simply “reflected” 

and a function can be constructed for different w, with the first half of the matrix and the division 
coefficients known: 

 
# w = 7 
wequal7 <- function(data){ 
  p = 7 
  l = length(data) 
  if(l<p){ 
    print("The array is too small") 
    return(NA) 
  } 
  res <- c() 
  # values  
  values <- c( 
    13,10,7,4,1,-2,-5, 
    5,4,3,2,1,0,-1, 
    7,6,5,4,3,2,1 
  ) 
  addvalues <- c(28,14,28,7,28,14,28) 
  # values 
  mvalues <- matrix(values, nrow = p, byrow = F) 
  mvalues <- valuemirror(mvalues) 
  for(n in 1:((p-1)/2)){ 
    vres = 0 
    for(v in 1:p){ 
      vres <- vres + mvalues[v,n] * data[v] 
    } 
    res <- append(res, vres/addvalues[n]) 
  } 
  for(n in ((p+1)/2):(l-(p-1)/2)){ 
    vres = 0 
    for(v in 1:p){vres <- vres + mvalues[v,(p+1)/2] * data[n-1-(p-1)/2+v]} 
    res <- append(res, vres/addvalues[(p+1)/2]) 
  } 
  for(n in (l+1-(p-1)/2):l){ 
    vres = 0 
    for(v in 1:p){vres <- vres + mvalues[v,p-l+n] * data[l-p+v]} 
    res <- append(res, vres/addvalues[(p-l+n)]) 
  } 
  return(res) 
} 

From Fig. 8, it can be seen that the results are exactly the same, but the second option allows 

parameterizing the coefficients of Kendel's formula for any known w. 



   
Figure 8: Comparison of two smoothing graphs 

 
When conducting correlation analysis of time series, it is often necessary to build correlation 

matrices and display them in the form of heat maps, etc. However, the primary task is to construct a 

correlation field or dot plot, for example with ggplot2 it can be constructed as follows: 
 

source("libs_config.r") 
# кор. поле з лінією регресії для мов R та Julia 
gplot_cor_1 <- ggplot(progs.df, aes(x = R, y = Julia)) + 
    geom_point(aes(x = R, y = Julia), color="black", fill="#49ddd6", 
    shape=21, alpha=0.5, size=4, stroke = 1) + 
    geom_smooth(method=lm , color="#686868", fill="#0011f81f", se=F) 

 

This option allows to add an automatically calculated regression line to the graph using the lm() 

function. To build heat maps, it is necessary first to determine the correlation matrix, and then set the 

graphic display. It is important to choose the right color scheme in order quickly to determine high 
correlation coefficients. It is also possible to  adjust the display of the text. Examples of the correlation 

matrix are shown in Fig. 9. 

 
progs.df[, c("Python", "Java", "C", "Dart", "Julia", "R")] %>% cor() -> cor.matrix_mini 
cor.matrix %>% melt() -> heat.df 
cor.matrix_mini %>% melt() -> heat.df_mini 
heat.map_mini <- ggplot(data = heat.df_mini, aes(x = Var1, y = Var2, fill = value)) + 
  geom_tile(color = "white") #+ 
  scale_fill_gradient2(low = "#ca0033", high = "#0043fa", mid = "#ececec",  
    midpoint = 0, limit = c(-1,1), space = "Lab",  
    name="Cor coef") + labs(x = "", y = "") + geom_text(aes(label = round(value, 3))) 
     

 

 
Figure 9: Correlation heat maps 

 



The last element that must be completed according to the tasks set in the work is hierarchical 
clustering. To build a tree-like clustering, it is possible to use the built-in capabilities of the language: 

 
source("task_1_stat\\create_statistics.r") 
stats.df %>% apply(MARGIN = 2, FUN = function(x){return((x-min(x))/(max(x)-min(x)))}) -> 
stats.df 
stats.df %>% dist(method = "minkowski", p = 2) -> dist.m 
hclust(dist.m) -> hc 
plot(hc) 

As a result, it is possible to  get a dendogram from Fig. 10. 

 
Figure 10: Generated clustering dendogram using the hclust function 

 

However, there is a certain number of different methods of combining two clusters, and to achieve 

flexibility in the construction of clusters, it is necessary to define new clustering functions. So, the 

following functions have been developed for this work: 
 

# conversion of the minimum number into matrix indices 
convert_index <- function(index, n) { 
    i <- n-1 
    while(index > 0) { 
        index <- index - i 
        i <- i-1 
    } 
    c(n+index, n-i-1) %>% return 
} 
# property matrix normalization 
normalize <- function(data.df) { 
    data.df %>% apply(MARGIN = 2, FUN = function(x){return((x-min(x))/(max(x)-min(x)))}) 
%>% return 
} 
# returns the distance matrix according to the Minkowski metricgenerate_dist <- 
function(data.df, p = 2) { 
    data.df %>% dist(method = "minkowski", p = p) %>% as.matrix() %>% return 
} 
# the function of combining a new cluster with the deletion of two previous ones 
syntez_cluster <- function(dist.matrix, ij, alpha_i, alpha_j, beta, gamma, path) { 
    dist.matrix <- as.matrix(dist.matrix) 
    n <- dim(dist.matrix)[1] 
    i <- ij[1] 
    j <- ij[2] 
    cluster.name <- paste(rownames(dist.matrix)[i], colnames(dist.matrix)[j], sep = "|") 
    #paste(paste(rownames(dist.matrix)[i], colnames(dist.matrix)[j], sep=" + "), 
cluster.name, sep = " = ", dist.matrix[i,j]) %>% print 
    new.names <- c(colnames(dist.matrix), cluster.name) 
    dist.matrix %>% cbind(0) %>% rbind(0) -> dist.matrix 
    colnames(dist.matrix)[n+1] <- cluster.name 
    rownames(dist.matrix)[n+1] <- cluster.name 



    first <- strsplit(cluster.name, "[|]")[[1]][1] 
    write.table(data.frame(from = cluster.name, to = rownames(dist.matrix)[i], value = 
dist.matrix[i,j], origin = first), 
    file = path, col.names = F, row.names = F, append = T, sep = ",") 
    write.table(data.frame(from = cluster.name, to = rownames(dist.matrix)[j], value = 
dist.matrix[i,j], origin = first), 
    file = path, col.names = F, row.names = F, append = T, sep = ",") 
    dist.matrix %>% 
    calc_cluster_dist(i = i, j = j, n = n+1, alpha_i = alpha_i, alpha_j = alpha_j, beta = 
beta, gamma = gamma) %>% 
    return 
} 
# distance calculation function for a new cluster 
calc_cluster_dist <- function(dist.matrix, i, j, n, alpha_i, alpha_j, beta, gamma) { 
    # in general case, it is necessary that i > j, however, we work with a lower triangular 
matrix, where the condition is always fulfilled 
    #if (i < j) i <- (j - i) + (j <- i); 
    for (h in seq(n)[-i][-j]) { 
        dist.matrix[n, h] <- 
        dist.matrix[h, n] <- 
        sum(c(alpha_i, alpha_j, beta, gamma) * c(dist.matrix[h,i], dist.matrix[h,j], 
dist.matrix[i,j], abs(dist.matrix[h,i] - dist.matrix[h,j]))) 
    } 
    dist.matrix[-i,-i][-j,-j] %>% return 
} 

With this approach, it is possible to combine capabilities of libraries for working with graphs and 

get more informative dendograms. In addition, circular dendograms can be constructed. For example, 

the results of one clustering can be presented in two graphs from Fig. 11, while the construction code 

looks like this: 
library(igraph) 
library(ggraph) 
library(dplyr) 
# construction of dendogram with clustering 
create_dendogram <- function(dendo_df_file, dendo_name) { 
  dendo.df <- read.csv(dendo_df_file) 
  label.df <- data.frame(name = unique(c(dendo.df$from, dendo.df$to))) 
  label.df %>% mutate(origin = NA, dist = NA, programming = NA) -> label.df 
  for(i in seq_len(dim(label.df)[1])) { 
    if (label.df$name[i] %in% dendo.df$from) { 
      label.df$dist[i] = dendo.df$value[dendo.df$from == label.df$name[i]][1] 
    } 
    if (label.df$name[i] %in% dendo.df$to) { 
      label.df$origin[i] = dendo.df$origin[dendo.df$to == label.df$name[i]][1] 
      if(length(strsplit(label.df$name[i], "[|]")[[1]]) == 1) { 
        label.df$programming[i] = label.df$name[i] 
      } 
    } 
  } 
  dendo.g <- graph_from_data_frame(dendo.df, vertices = label.df) 
  dendogram.plot <- ggraph(dendo.g, layout = 'dendrogram', circular = F) + 
  geom_edge_elbow(aes(colour = origin), alpha=0.8, edge_width = 2) + 
  theme_graph(background = "white", plot_margin = margin(5, 5, 5, 5), base_size = 16) + 
  geom_node_point(aes(size = dist)) + 
  geom_node_point(aes(filter = leaf), alpha = 0.7, col = "black", size = 2) + 
  ylim(-1.6, NA) + 
  geom_node_text(aes(label = programming, filter = leaf, color = origin), angle=90 , 
hjust=1, nudge_y = -0.04) 
  dendogram.circ <- ggraph(dendo.g, layout = 'dendrogram', circular = T) + 
  geom_edge_elbow(aes(colour = origin), alpha=0.8, edge_width = 2) + 
  theme_graph(background = "white", plot_margin = margin(5, 5, 5, 5), base_size = 15) + 
  geom_node_point(aes(size = 1/dist), color = "#050022") + 
  geom_node_point(aes(filter = leaf, ), alpha = 0.7, col = "black", size = 3) + 
  ylim(-1, NA) + 
  geom_node_text(aes(label = programming, filter = leaf, filter = leaf, angle = angle), 
angle = 0, hjust = 1.1, vjust = 0.5) 



   
Figure 11: Normal and circular dendogram created by the script 

5. Results 

For the correct use of data, its filtering, sorting or clustering, it is necessary to conduct a classical 
intelligence analysis. If to build a graph with the data of all available programming languages, then the 

obtained result will not have a meaningful load, but in order to obtain a certain evolution of intelligence 

analysis, such a graph is shown in Fig. 12. 

 
Figure 12: Graph of time series of popularity of programming languages 

 

To improve the appearance and meaning of graphical display of data, it is necessary to divide 

languages into certain groups. It is best to do this according to statistical parameters. The following 
features are selected as the main statistical characteristics for these series: mean value, dispersion, 

standard deviation, median, minimum, maximum, range, coefficient of variation, skewness, and 

kurtosis. After sorting the data window by the average value, there is a possibility already to plot a set 

of graphs (Fig. 13-15) and get certain conclusions: 



 The most popular language today is Python, the value of the index for September 2021 is 29.48, 

that is, almost a third of all queries refer to this language, in addition, the average popularity level is 
12.26, and the maximum of 32.11 was reached in July 2020. 

 On average, the most popular language during the observation period is Java - the average value 

is 25.76, and the value of the index for today is 17.18. 

The average value of the top 10 programming languages, as well as the top ten in terms of the 

maximum, are shown as slices of the data frame in Fig. 13. In addition, the dynamics of changes in the 
popularity of the language can be considered in the polar coordinate system, as in Fig. 14. 

 

 

 
Figure 13: Execution of requests to print parts of the data window 

 
Figure 14: Time series graph of the second group of languages in the polar system 

 
For example, this graph shows the uniformity of the distribution of the popularity of the JavaScript 

language. However, for correct presentation of the hypothesis about the distribution, it is necessary to 

use the mechanism of construction of histograms and the distribution function. To conduct the 

experiment, consider the programming language R. From Fig. 4 shows that the popularity of the 
language grew up to a certain time, and then stabilized, and it is impossible to determine whether the 

time series is subject to a certain distribution. As a result of using the constructed functions, a histogram 

in Fig. 16 is represented. This histogram shows that the popularity of R language does not lend itself to 
standard density functions, however, it is possible to construct an empirical probability distribution 

function to get a higherlevel picture of the distribution of the data. For this, function has been created 

that uses the same parameters as the histogram. It can be seen that the distribution function does not 

have a clear picture to correspond to the known distributions, perhaps this is explained by the instability 
of the parameters that determine the popularity of a particular programming language. When examining 

the behavior of some time series, there is a problem of a large range of data in local intervals, for 

example, for the Dart programming language, the popularity in the period after 2011 (ie, from the first 
non-zero values) does not have a clear or convenient trend picture. 



 
Figure 15: Set of time series graphs divided into groups of 4 by the average value. 

 

a) b)  

Figure 16: a) Histogram of the time series of the popularity of the R language and b) Empirical 
probability distribution function for a time series. 

 



Smoothing mechanism was used to highlight the trend line close to the initial data. The following 
smoothing methods were used in the work (Fig. 17-19): 

 Moving average: by 3, 7, 11, 13, 15 points and 7 points of the neo-oil formula; 

 Exponential: at alpha 0.2 and 0.3; 

 Median filtering. 

The results of applying smoothing methods are shown in Fig. 17 – linear moving average, and Fig. 

19 - non-linear and median. As was shown in the Experiments section, smoothing functions can be of 

different levels of complexity. From the graph in Fig. 17, it can be seen that when smoothing at points 
11, 13, 15, a strong distortion is obtained, and when three points are used, the difference is minimal. To 

investigate the effectiveness of the moving average method, we calculate the correlation coefficient for 

real data and smoothing at w=5 and w=13. The corresponding calculations are shown in Fig. 18. 
Nonlinear smoothing is shown in Fig. and has the best-fitting form, and it rejects most outliers. The 

worst result can be considered when using the exponential method with alpha equal to 0.2, and as can 

be seen from Fig. 19, the correlation coefficient is 0.83. If considering the obtained results, there is 
general cyclical one might say sinusoidal dynamics of development of language popularity. Two main 

peaks may have occurred during the release of the popular framework in the Dart language - Flatter, in 

general, the cyclical dynamics has a tendency to grow. 

 
Figure 17: Graphic display of moving average methods with different number of points 

 



 
Figure 18: Results of correlation coefficients calculation 

 
Figure 19: Graphical results of smoothing by non-linear methods  

 

In order to consider the development of the popularity of all languages at the same time, it is first 

necessary to simplify the task and consider the relationship between the development of some languages 

(Fig. 20). To do this, first consider certain logical assumptions: 
1. New programming languages (Go, Dart, Julia, Nim, etc.) usually do not affect the popularity of 

old languages, because new languages solve modern problems, and established languages have their 

permanent niche. From this it can be assumed that there is no definite linear relationship between Dart 
and C#. 

2. Programming languages Java and Python are considered the biggest "enemies", completely 

different style in syntax, speed, community, etc. However, it is quite logical to assume that the growth 

of the popularity of the Python language has a strong influence on the popularity of Java, in particular, 
it should decrease. 

3. Since data analysis, data science, artificial intelligence and neural networks are currently the most 

popular for discussion and development in IT, languages such as R or Julia are constantly increasing in 
popularity, and therefore there should be a direct linear relationship between the popularity of these 

languages, and both should grow. 

If we interpret the logical assumptions in the language of correlation analysis, then the first 
assumption speaks about the absence of a linear relationship between the data and the correlation 

coefficient approaching zero, the second - there is a negative linear relationship with a correlation 

coefficient equal to -1, and the last one about a positive linear relationship connection with a coefficient 

of +1. In order to confirm these hypotheses, correlation fields were first constructed. To finally confirm 
the hypothesis, it is necessary to calculate the correlation coefficient. 



 
Figure 20: a) Correlation field for Dart and C languages and regression line for b) Python and Java 
languages and c) Julia and R languages 

 

From the graphical representation of the dependence, it can be already seen that the initial 
assumptions are correct, however, to achieve accuracy, a heat map was constructed based on the 

correlation matrix for the languages described above. From the map in Fig. 20 it is visible that the 

correlation coefficient between Dart and C languages is close to zero, namely 0.082, and between Julia 
and R the coefficient is equal to 0.906. The most interesting thing is the behavior of the correlation 

coefficient for Java, it is less than zero in almost all languages, and therefore there is a tendency to 

decrease the popularity of the language in comparison with all other languages. However, Java and 
Python have the highest coefficient by module, which confirms the second hypothesis. 

However, there is a certain problem in the presence of correlation relations between each language, 

and not all of them have a certain logic. To study the general behavior of languages with each other, it 

is possible to build a general heat map, which is shown in Fig. 21-22. 

 
Figure 21: Heat map of the correlation matrix 

 

After analyzing the correlation coefficients of all languages with each other, there is an assumption 
that, in fact, the dependencies between languages should be considered at a higher level, for example, 

taking into account the connections between the purposes of languages, trends in the modern IT market, 

etc. But it is possible individually to study the popularity dynamics of certain programming language. 

The growing popularity of the Python language has been mentione, and graphically it is also visible. 
However, there is another statistical method for checking the presence of trend in a time series - 

autocorrelation. Using the acf function of the R language, autocorrelation was calculated at a lag of 0-

23. The result is presented in the form of a graph in Fig. 21-22. It can be seen from the correlogram that 
even at the last lag the coefficient is above 0.5, and it is quite obvious that the time series has a linear 

trend. 



 
Figure 22: Correlation heatmap for all programming languages from experimental data 

 

The logical conclusion of the intelligence analysis of data on the popularity of programming 

languages is to conduct a simple cluster analysis. In the course of the task, clustering was carried out 
with different parameters, namely with different metrics and unification strategies. In all cases, the 

Minkowski metric was used, with a variable parameter p. Two graphical approaches were used to 

display the results - conventional dendograms and circular ones. The vertices of the union are marked 
on ordinary dendograms proportional to the distance to the union, that is, the greater the distance, the 

larger the vertex, and in circular dendograms it is inversely proportional. In addition, the dendograms 

have a colored grouping, which is tied to the programming languages that are the initial nodes for a 
particular cluster. 

1. Clustering at p = 2, the nearest neighbor joining strategy is a classic approach to clustering. As 

can be seen from the dendogram in Fig. 23, a different number of clusters can be distinguished at 

different levels, but those programming languages that were added at the very end - Ada, PHP, Haskell, 
Java and Python - are distinguished. These languages are unique enough to be clustered by the residual 

principle, that is, with this metric and clustering strategy, these languages have no relatives. On the 

other hand, some languages had a sufficiently small distance between them, for example, Go and 
TypeScript have a metric of about 0.09, which is why they form the first cluster. According to the 

colors, Go is the starting vertex for the final cluster. 



 
Figure 23: Dendogram of clustering 1 

 

2. Clustering at p = 2, the unification strategy is flexible at αi = αj = 0.3535, β= 0.293, γ = 0. When 
using another unification strategy, we have a slightly different clustering, which in general does not 

have a fundamental difference from the previous one. The main difference is the appearance of PHP 

and Java language integration node before entering the common terminal cluster. Another difference is 

the new initial vertices, if in the previous configuration it was the Go language, then in this case Groovy 
(for less popular languages) and PHP (for the most popular) dominate. 

 
Figure 24: Dendogram of clustering 2 

 



3. Clustering at p = 3, pooling strategy of the far-neighbor. With such parameters, different picture 
was obtained as a result of clustering. First, cluster of PHP, Java and Python languages was formed, 

which is the top 3 in terms of average value. Kotlin was added to the cluster with Dart, Rust, TypeScript, 

Go, which was not presented in this cluster with other parameters. In addition, Lua is now the main root 

for clusters. In addition, with such a configuration, the tendency to form clusters at the middle level 
remains, for example, languages C/C++, C# and JavaScript stick to one cluster almost always. 

 
Figure 25: Circular dendogram of clustering 3 

 

4. Clustering at p = 0.5, pooling strategy of the nearest neighbor. This clustering is interesting 

because of the parameter p, because it is less than 1. 

 
Figure 26: Circular dendogram of clustering 4 

 



From the diagram it can be seen that separate cluster of C, C++ and JavaScript languages, a large 
cluster of Scala, Julia, Cobol and Lua languages can be distinguished, and again a cluster of languages 

that are far from all others - Python, Java and PHP, which will be added at the end 

6. Discussions 

The first important note that characterizes all data in general is the complete diversity of data for 
each language. The dynamics of the development of the popularity of each language during one period 

are maximally diversified, but at the same time interconnected in a certain way. When examining the 

results, it was shown that it is possible to obtain the appearance of linear relationships between the 

popularity of different languages that have logical connections. However, some languages are not 
related to each other, their development and use are quite different, but there is a correlation between 

them. If we consider the heat map from Fig. 18, it can be seen that the popularity of Swift and R and 

Scala languages have a very high correlation, but in fact the languages are not related to each other, 
they operate in different niches. Correlation of languages speaks of simultaneous growth in popularity, 

and therefore can indicate general trends in the IT market, but not the specifics of each language. The 

question arises of building such a model that can take into account the dynamics of all languages at the 
same time, but at the same time the input data is only one variable - the date. Such a problem with the 

one-dimensionality of the input data gives rise to the need for a large amount of training data. 

To begin with, conducting exploratory analysis, it was proven that the data is complete, qualitative, 

suitable for some statistical tests. When constructing statistics, it can be seen that the data have various 
asymmetries and excesses, and do not lend themselves to normal distributions, in addition, most graphs 

of time series have obvious non-constancy. Therefore, it is impossible to select statistical parameters 

for the data that will fully describe them. In addition, it is necessary to maximally correspond to the 
limitations of the data, for example, the sum of all values by rows is equal to the constant 100. This 

means that approaches such as networks with marginalization or Bayesian neural networks are not 

suitable. In addition to the quality, but at the same time chaotic data, there is another problem - a small 
number of records. This problem rejects the possibility of using multilayer neural networks. 

However, it is possible to distinguish certain approaches to describe the data, but for this it is 

necessary to find a mathematical counterpart of the function that will describe the current state of the 

data. The first and main option is a vector function. For example, a parametric vector function with 

three coordinates v(t) = [sin t , t2, cos t] For our data, such a function will be 28-dimensional. The date 

will act as the parameter t in the data. 

Such a function will be able to accurately describe the current state of the data if we choose a function 
depending on t for each language, such as an approximation or interpolation polynomial. Smoothing 

functions can be used to reduce the number of input points. 

When constructing such a function, it is possible to conduct experiments with the search for 

dependencies, derivatives of different orders to study the function. However, if there is a problem of 
extrapolation, it is immediately possible to assert a large absolute error. 

The first way to reduce the number of calculations and the error is to use the clustering results. Some 

clustering languages have such small distances that they can be treated as a single variable. Then it is 
possible to get a function with fewer dimensions. A reduction in error will occur when clustering is 

used to generate interpolation nodes. 

However, it is still not possible to achieve a high predicted accuracy. Therefore, the next option is 
neuron-by-neuron of the network. Such neural networks differ from most in that they do not have a 

defined architecture at the beginning, but form it during the learning process, by adding a neuron or a 

layer. Such networks require many times less input data, but are not suitable for multidimensional 

results. To build a network that can produce vector of index values for the future with a small amount 
of input data, it is possible to use the approach of graph neural networks together with clustering. 

Dendogram is good initial network graph, and the distances between clusters can be used as coefficients 

when passing messages. When combining methods of graph and neuron-by-neuron networks, it is 
possible to get the smallest error when predicted. So, as a result of exploratory and cluster analysis, it 

was concluded that the data on the popularity of programming languages are suitable for research, but 

the methods of their analysis should be the most modern. 



7. Conclusions 

As a result of experimental and exploratory analysis of data concerning the programming languages 

popularity according to the PYPL index since 2004, the presence of various trends in the dynamics of 

the popularity of programming languages was revealed and the relationship between two different 
languages was established. In the case of a complex consideration of time series, a hypothesis was 

created regarding the complexity and absolute nonlinearity of the general trend using programming 

languages, which affects the choice of models for forecasting. Some programming languages have a 
sufficiently unique popularity that distinguishes them when constructing hierarchical cluster structures. 

Such languages are highly popular, have the most diverse fields of application and their own niches. 

An equally important result is the fact of conducting data research as such, because it indicates the 

correctness, integrity and informativeness of the data, due to which such data can be used for 
educational purposes. 
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