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Abstract  
The problem under review is improving the efficiency of the solution search for the Traveling 

Salesman Problem. We propose a shortest path neural network training method that executes 

a calibration of winner neuron weights and his neighbours based on the calculation of the centre 

of gravity, which allows paralleling the learning process and also utilizes the effective dynamic 

width of the topological neighbourhood (based on simulated annealing) for the calculation of 

topological neighbourhood function. A proposed modification to the single solution human-

based metaheuristic allows for potential integer solutions and utilizes a 2-opt permutation in 

local search neighbourhood creation and a 4-opt permutation in the case of global search. This 

will increase efficiency in the search for the optimal path by decreasing the computational 

complexity and increasing the accuracy of solutions.  
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1. Introduction 

A harsh socio-economic environment in Ukraine is a consequence of the war that Russia started 

and the direct cause of the increase in the destruction of civil infrastructure and, as a result, the loss of 

life and damage to property. Human and material recourse shortages are the cause for the integration of 

new information technologies that make it possible to increase the efficiency of rescue units’ 

performance. One of these tasks that requires using new models and methods is optimizing the time for 

the rescue units to travel to the location of destruction. 

There is an urgent need to develop methods aimed at solving combinatorial optimization problems 

used in intelligent computational systems. 

Optimization methods that find the exact solution have high computational complexity. Random 

search methods do not guarantee convergence. Optimization methods that find an approximate solution 

through local search have a high probability of hitting a local extremum. In this regard, there is a 
problem of insufficient efficiency of optimization methods, which needs to be addressed. 

Metaheuristics (or modern heuristics) and artificial neural networks are used to speed up finding a 

quasi-optimal solution to optimization problems and reduce the probability of hitting a local extremum. 
The object of inquiry. The process of finding solutions to optimization problems. 
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The subject of inquiry. Methods for finding a quasi-optimal solution based on metaheuristics and 

artificial neural networks. 

The paper aims to increase the efficiency of a quasi-optimal solution search to the travelling 

salesman problem using neural networks and metaheuristic methods. 

To achieve this goal, it is necessary to solve the following tasks: 

Create an optimization method on an artificial neural network. 

Create an optimization method based on single-solution human-based metaheuristics. 

Conduct a quantitative study of the proposed optimization method. 

2. Problem statement  

The problem of increasing the efficiency of solution search to the travelling salesman problem based 

on single-solution human-based metaheuristics is presented as the problem of finding local and global 

search operators localA  and globalA  respectively, its application provides a search for such a solution, 

under which min)( * xF  and minT . 
The problem of increasing the efficiency of searching for a solution to the travelling salesman 

problem based on a neural network is reduced to the problem of finding such a vector of parameters W 

that satisfies the criterion for the adequacy of the quasi-optimal solution search model 
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  i.e. they result in the minimum mean square error (the difference 

between the model output and the desired output), where 𝑃 is the power of the test set 𝑥𝜇.– -th - 

training input value, d𝑑𝜇.– -th - training output value.  

 

3. Literature Review  

The advantage of single-solution human-based metaheuristics is the ease of implementation, low 

computational complexity (no need to calculate a population of potential solutions), a small number of 

adjustable parameters and operators, and no requirement to model the behaviour of objects of different 

nature [1-3]. 
Existing metaheuristics suffer from one or more of the following disadvantages: 

 there is only an abstract description of the method, or the description of the method is focused 

on solving only a specific problem [4-5]; 

 the convergence of the method is not guaranteed [7-6]; 

 the influence of the iteration number on the process of finding a solution is not taken into 

account [8-9]; 

 the procedure for determining the values of parameters is not automated; [11-10] 

 there is no possibility of using non-binary potential solutions [13-12]; 

 insufficient accuracy of the method [14-15] ; 

 there is no possibility of solving problems of conditional optimization [16-17];  

This raises the problem of constructing efficient metaheuristic optimization methods. 

Existing neural networks suffer from one or more of the following disadvantages: 

 high probability of the learning and adaptation method hitting the local extremum[18-19]; 

 difficulty in determining the structure of the network since there are no algorithms for 

calculating the number of layers and neurons in each layer for specific applications [20-21]; 

 inaccessibility for human understanding of the knowledge accumulated by the network (it is 

impossible to represent the relationship between output and output in the form of rules) since they 

are distributed among all elements of the neural network and are presented in the form of its weight 

coefficients [22]; 

 the difficulty of forming a representative sample [23]; 

In this regard, the problem arises of constructing effective neural network optimization methods. 



4. Self-organizing feature map 

A one-dimensional self-organizing feature map (SOFM) [24-25] is a single-layer non-recurrent 

network. The neurons of the input layer correspond to the coordinates of the vertices. Before running 

the network, the neurons of the output layer correspond to the points of the multidimensional sphere (if 

the vertices are given on the plane, then these neurons correspond to the points of the ring), and after 

running the network, they correspond to the points in the obtained suboptimal path. In contrast to the 

classical learning method, in this paper, the weights of the winning neuron and its neighbours are 

adjusted not based on the Kohonen rule but based on calculation of the centre of gravity, which makes 

it possible to parallelize the learning process. [26-27]. In addition, unlike the classical learning method, 

this paper uses the effective dynamic width of the topological neighbourhood (based on simulated 

annealing) to calculate the topological neighbourhood function, which allows to explore the entire 

search space at the initial iterations and make the search directed at the final iterations, which ensures 

high search accuracy of this neural network. 

The training method consists of the following steps: 

1. Training iteration number 𝑛 = 1, initialization of all network weights 𝑤𝑖𝑗(𝑛), 𝑖 ∈ 1, 𝑀,𝑗 ∈

1, 𝑁ℎ so that the point with coordinates (𝑤𝑖1(𝑛), . . . , 𝑤𝑖𝑀(𝑛)) is located on the is on the surface of 

an M -dimensional sphere of radius 𝑅 ∈ (0,1], where 𝑀 – the number of input layer neurons (or the 

length of the vertex coordinate vector), 𝑁ℎ -the number of neurons in the output layer, usually 𝑀 ≤
𝑁ℎ ≤ 3𝑀. 

A set of vertex coordinates is specified {𝒙𝜇|𝒙𝜇 ∈ 𝑅𝑀}, 𝜇 ∈ 1, 𝑀, where 𝒙𝜇 – 𝜇 - vertex coordinate 

vector.  

Initial shortest distance 𝑑(𝑛) =0. 

The maximum number of iterations N is set. 

2. Calculation of the distance to all neurons of the network 

The distance 𝑑𝜇𝑗  from the  vertex to each j neuron is determined by the formula: 𝑑𝜇𝑗 =

∑ (𝑥𝜇𝑖 − 𝑤𝑖𝑗(𝑛))2𝑀
𝑖=1 , 𝜇 ∈ 1, 𝑀, 𝑗 ∈ 1, 𝑁ℎ 

3.  Calculation of the shortest distance and selection of the neuron with the shortest distance. 

The smallest distance is calculated 

𝑑𝜇 = 𝑚𝑖𝑛
𝑗

𝑑𝜇𝑗, 𝜇 ∈ 1, 𝑀, 𝑗 ∈ 1, 𝑁(1) 

and the winning neuron is selected 𝑗𝜇
∗  for which the distance 𝑑𝜇𝑗 is the shortest. 

 𝑗𝜇
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑗
𝑑𝜇𝑗, 𝜇 ∈ 1, 𝑀, 𝑗 ∈ 1, 𝑁ℎ. 

4. Setting the weights of the winning neuron 𝑗𝜇
∗  and its neighbours based on the calculation of the 

centre of mass of the j cluster. 

𝑤𝑖𝑗(𝑛 + 1) =
∑ ℎ𝑗,𝑗𝜇

∗ (𝑛)𝑥𝜇𝑖
𝑀
𝜇=1

∑ ℎ𝑗,𝑗𝜇
∗ (𝑛)𝑀

𝜇=1
, 𝑖 ∈ 1, 𝑀, 𝑗 ∈ 1, 𝑁ℎ, 

where ℎ𝑗,𝑗∗(𝑛) - is the topological neighbourhood function, which is equal to 1 for 𝑗 = 𝑗∗and 

decreases as the distance between the 𝑗 and 𝑗∗ neurons in the topological space increase. For 

example, 

ℎ𝑗,𝑗∗(𝑛) = {
𝑒𝑥𝑝 (−

𝜌2(𝑗, 𝑗∗)

2𝜎2(𝑛)
) , 𝜌(𝑗, 𝑗∗) < 𝜎(𝑛)

0, 𝜌(𝑗, 𝑗∗) ≥ 𝜎(𝑛)

 

𝜌(𝑗, 𝑗∗) = 𝑚𝑖𝑛{ |𝑗 − 𝑗∗|, 𝑁(1) − |𝑗 − 𝑗∗|}, 

𝜎(𝑛) – the effective width of the topological neighbourhood (the "diameter" of the topological 

neighbourhood function) decreases with time. In this paper, it is calculated based on simulated 

annealing  

𝜎(𝑛) = 𝜎0 𝑒𝑥𝑝 (−
1

𝑇(𝑛)
),  

𝑇(𝑛) = 𝛽𝑛𝑇(0), 

𝜎0 – initial effective width of the topological neighbourhood, 



𝑇(0) – start temperature, 

𝛽 – cooling rate. 

5. Checking the completion condition of training 

𝑑(𝑛 + 1) =
1

𝑀
∑ 𝑑𝜇

𝑀
𝜇=1 , 

If 𝑛 < 𝑁, then 𝑛 = 𝑛 + 1, go to step 2. 

6. Calculating the distance to all neurons in the network 

𝑑𝜇𝑗 = ∑ (𝑥𝜇𝑖 − 𝑤𝑖𝑗(𝑛))2𝑀
𝑖=1 , 𝜇 ∈ 1, 𝑀, 𝑗 ∈ 1, 𝑁ℎ 

7. Selecting the neuron with the shortest distance 

𝑗𝜇
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑗
𝑑𝜇𝑗, 𝜇 ∈ 1, 𝑀, 𝑗 ∈ 1, 𝑁ℎ 

The result is a vector of top-rank pairs ((1, 𝑗1
∗), . . . , (𝑀, 𝑗𝑀

∗ )) 

5. Iterated local search 

Iterated local search was proposed by Stutzle [28]. The algorithm consists of two phases - 

perturbation and local search. The use of a perturbation action makes it possible to avoid local optima 

in a local search. Too little perturbation makes the algorithm greedy. In this paper, the perturbation 

consists of the formation of a new solution by a permutation called "4-opt" (the current solution is 

randomly divided into 4 parts, which become in order 1,4,3,2), and the local search consists of the 

formation of a new solution by permutation called "2-opt" (the elements of the new solution, located 

between two randomly selected vertices, are rearranged in reverse order). 

The method consists of the following steps: 

1. Initialization 

1.1. Setting the maximum number of iterations 𝑁1; the maximum number of local search iterations 

𝑁2, where no new best solution is found; vertex vector lengths 𝑀. 

1.2. An ordered set of vertices is specified 𝑉 = {1, . . . , 𝑀} and the edge weight matrix [𝑑𝑖𝑗], 𝑖, 𝑗 ∈

1, 𝑀. 

1.3. Specifying the Cost Function (Goal Function) 

𝐹(𝑥) = 𝑑𝑥𝑀,𝑥1
+ ∑ 𝑑𝑥𝑖,𝑥𝑖+1

𝑀−1
𝑖=1 → 𝑚𝑖𝑛

𝑥
, 

where 𝑑𝑥𝑀,𝑥1
 – edge weight (𝑥𝑖 , 𝑥𝑖+1), 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑉, 

𝑥 – vertex vector. 

1.4. Set by randomly ordering the set 𝑉, the best vertex vector 𝑥∗. 

1.5. Local search based on 2-opt 

1.5.1. 𝑚 = 0 

1.5.2. Two vertices 𝑐1 и 𝑐2, are randomly selected from the vector 𝑥∗   and the selection of these 

vertices continues until the condition 1 < 𝑐2 − 𝑐1 < 𝑀 − 1 is satisfied.  

1.5.3. Based on the vector  

𝑥∗ = (𝑥1
∗, . . . , 𝑥𝑐1−1

∗ , 𝑥𝑐1
∗ , . . . , 𝑥𝑐2

∗ , 𝑥𝑐2+1
∗ , . . . , 𝑥𝑀

∗ )  

The vector is created  

𝑥 = (𝑥1
∗, . . . , 𝑥𝑐1−1

∗ , 𝑥𝑐2
∗ , . . . , 𝑥𝑐1

∗ , 𝑥𝑐2+1
∗ , . . . , 𝑥𝑀

∗ ), 

 

i.e. vertexes 𝑥𝑐1
∗ , . . . , 𝑥𝑐2

∗  are transmitted in reverse order. 

1.5.4. If 𝐹(𝑥) < 𝐹(𝑥∗), then 𝑥∗ = 𝑥, 𝑚 = 0, otherwise 𝑚 = 𝑚 + 1 

1.5.5. If 𝑚 < 𝑁2, then go to step 1.5.2. 

2. Iteration number 𝑛 = 1. 

3. Performing a perturbation (generation of a solution  �̑� from a solution  𝑥∗ based on 4-opt) 

3.1. Three vertices are randomly selected from the 𝑥∗  vector: 

𝑐1 = 2 + (𝑀/4) ∗ 𝑈(0,1), 𝑐2 = 𝑐1 + 1 + (𝑀/4) ∗ 𝑈(0,1), 

𝑐3 = 𝑐2 + 1 + (𝑀/4) ∗ 𝑈(0,1), 

where 𝑈(0,1) – a function that returns a uniformly distributed random number in a range [0,1] 
3.2. Based on the vector 

x∗ = (x1
∗ , . . . , xc1−1

∗ , xc1
∗ , . . . , xc2−1

∗ , xc2
∗ , . . . , xc3−1

∗ , xc3
∗ , . . . , xM

∗ )  



The vector is created 

x̑ = (x1
∗ , . . . , xc1−1

∗ , xc3
∗ , . . . , xcM

∗ , xc2
∗ , . . . , xc3−1

∗ , xc1
∗ , . . . , xc2−1

∗ ) 

4. Local search based on 2-opt 

4.1. m = 0 

4.2. Two vertices c1 и c2, are randomly selected from the vector x∗   and the selection of these 

vertices continues until the condition 1 < c2 − c1 < M − 1 is satisfied.  

4.3. Based on the vector  

x̑ = (x̑1, . . . , x̑c1−1, �̑�𝑐1, . . . , �̑�𝑐2, �̑�𝑐2+1, . . . , �̑�𝑀)  

The vector is created  

�̆� = (�̑�1, . . . , �̑�𝑐1−1, �̑�𝑐2, . . . , �̑�𝑐1, �̑�𝑐2+1, . . . , �̑�𝑀)   

i.e. the vertices  �̑�𝑐1, . . . , �̑�𝑐2 are rearranged in reverse order. 

 

4.4. If 𝐹(�̆�) < 𝐹(�̑�), then �̑� = �̆�, 𝑚 = 0, otherwise 𝑚 = 𝑚 + 1 

4.5. If 𝑚 < 𝑁2, then go to step 4.2. 

5. If 𝐹(�̑�) < 𝐹(𝑥∗), then 𝑥∗ = �̑� 

6. If 𝑛 < 𝑁1, then 𝑛 = 𝑛 + 1, go to step  3 

The result is 𝑥∗. 

6. Search with variable neighbourhood 

Variable neighbourhood search was proposed by Mladenović and Hansen [28] and used a local 

search in an growing neighbourhood. 

This algorithm is based on three principles: 

 is a local minimum for one neighbourhood, possibly not a local minimum for another 

neighbourhood; 

 the global minimum is a local minimum for all possible neighbourhoods; 

 local minima are relatively close to global minima. 

In this paper, the creation of a neighbourhood and a local search consists of the formation of a new 

solution by a permutation called "2-opt". 

The method consists of the following steps: 

An example of numbered list is as following. 

1. Initialization 

1.1. Setting the maximum number of iterations 𝑁1; the maximum number of local search iterations 

𝑁2, where no new best solution is found; maximum neighbourhood size  𝑁3; vertex vector lengths 

𝑀. 

1.2. An ordered set of vertices is specified 𝑉 = {1, . . . , 𝑀} and the edge weight matrix [𝑑𝑖𝑗], 𝑖, 𝑗 ∈

1, 𝑀. 

1.3. Specifying the Cost Function (Goal Function) 

𝐹(𝑥) = 𝑑𝑥𝑀,𝑥1
+ ∑ 𝑑𝑥𝑖,𝑥𝑖+1

𝑀−1
𝑖=1 → 𝑚𝑖𝑛

𝑥
, 

where 𝑑𝑥𝑀,𝑥1
 – edge weight (𝑥𝑖 , 𝑥𝑖+1), 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑉, 𝑥 – vertex vector. 

1.4. Is set by randomly ordering the set 𝑉, the best vertex vector𝑥∗. 

2. Iteration number 𝑛 = 0. 

3. Neighbourhood size𝑍 = 1 

4. Create a neighbourhood 𝑈𝑥∗ solutions 𝑥∗ based on 2-opt 

4.1. 𝑧 = 1 

4.2. Two vertices 𝑐1 и 𝑐2, are randomly selected from the vector 𝑥∗    and the selection of these 

vertices continues until the condition 1 < 𝑐2 − 𝑐1 < 𝑀 − 1 is satisfied.  

4.3. Based on the vector 

𝑥∗ = (𝑥1
∗, . . . , 𝑥𝑐1−1

∗ , 𝑥𝑐1
∗ , . . . , 𝑥𝑐2

∗ , 𝑥𝑐2+1
∗ , . . . , 𝑥𝑀

∗ )  

the vector is created 

𝑥𝑧 = (𝑥1
∗, . . . , 𝑥𝑐1−1

∗ , 𝑥𝑐2
∗ , . . . , 𝑥𝑐1

∗ , 𝑥𝑐2+1
∗ , . . . , 𝑥𝑀

∗ ) 

 i.e. the vertices 𝑥𝑐1
∗ , . . . , 𝑥𝑐2

∗     are rearranged in reverse order. 

4.4. If 𝑥𝑧 ∉ 𝑈𝑥∗, то 𝑈𝑥∗ = 𝑈𝑥∗ ∪ {𝑥𝑧}, 𝑧 = 𝑧 + 1 



4.5. If 𝑧 ≤ 𝑍, then go to step 4.2. 

5. Vector �̑� is randomly selected from the neighbourhood 𝑈𝑥∗  

6. Local search based on 2-opt 

6.1. 𝑚 = 0 

6.2. Two vertices 𝑐1 и 𝑐2, are randomly selected from the vector  �̑�  and the selection of these 

vertices continues until the condition 1 < 𝑐2 − 𝑐1 < 𝑀 − 1 is satisfied.  

6.3. Based on the vector 

�̑� = (�̑�1, . . . , �̑�𝑐1−1, �̑�𝑐1, . . . , �̑�𝑐2, �̑�𝑐2+1, . . . , �̑�𝑀)  

 the vector is created 

�̆� = (�̑�1, . . . , �̑�𝑐1−1, �̑�𝑐2, . . . , �̑�𝑐1, �̑�𝑐2+1, . . . , �̑�𝑀)  

i.e. the vertices�̑�𝑐1, . . . , �̑�𝑐2 are rearranged in reverse order. 

6.4. If 𝐹(�̆�) < 𝐹(�̑�), then �̑� = �̆�, 𝑚 = 0, otherwise 𝑚 = 𝑚 + 1 

6.5. If 𝑚 < 𝑁2, then go to step 6.2. 

7. If 𝐹(�̑�) < 𝐹(𝑥∗), then 𝑥∗ = �̑�, 𝑛 = 0, go to step 3, otherwise 𝑛 = 𝑛 + 1 

8. If 𝑍 < 𝑁3, then 𝑍 = 𝑍 + 1, go to step 4 

9. If 𝑛 < 𝑁1, then go to step 3 

The result is 𝑥∗. 

7. Greedy randomized adaptive search 

Greedy randomized adaptive search was proposed by Feo and Resende [29]. The algorithm consists 

of two phases - a greedy randomized procedure and a local search. The goal of the algorithm is to 

repeatedly generate random greedy solutions and then use a local search to bring these solutions closer 

to local optima. In this paper, local search consists of the formation of a new solution by a permutation 

called "2-opt". 

The method consists of the following steps: 

1. Initialization 
1.1. Setting the greediness parameter 𝛼 or a greedy randomized procedure, where 𝛼 ∈ [0,1] 
(where 𝛼 = 0 maximum greed) 

1.2. Setting the maximum number of iterations 𝑁1; the maximum number of local search iterations 

𝑁2, where no new best solution is found; vertex vector lengths 𝑀. 

1.3. An ordered set of vertices is specified 𝑉 = {1, . . . , 𝑀} and the edge weight matrix [𝑑𝑖𝑗], 𝑖, 𝑗 ∈

1, 𝑀. 

1.4. Specifying the Cost Function (Goal Function) 

1.5. 𝐹(𝑥) = 𝑑𝑥𝑀,𝑥1
+ ∑ 𝑑𝑥𝑖,𝑥𝑖+1

𝑀−1
𝑖=1 → 𝑚𝑖𝑛

𝑥
, 

where 𝑑𝑥𝑀,𝑥1
 – edge weight (𝑥𝑖 , 𝑥𝑖+1), 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑉, 𝑥 – vertex vector. 

Set by randomly ordering the set 𝑉, the best vertex vector 𝑥∗. 

2. Iteration number 𝑛 = 1. 

3. Running a greedy randomized procedure 

3.1. A vertex vcur    is randomly selected from the plurality of vertices.  

From a set of vertices V, a vertex is randomly selected vcurThe initialization of the set of forbidden 

vertices is Vtabu = {vcur}, number of forbidden vertices l = 1, x̑1 = vcur 

3.2. Creating a set of allowed vertices �̃� = 𝑉\𝑉𝑡𝑎𝑏𝑢, initialization of the set of restricted 

candidates  𝑉𝑅𝐶𝐿 = ∅, vertex number 𝑗 = 1 

3.3. 𝑑
𝑚𝑖𝑛 𝑚𝑖𝑛

𝑠∈1,|�̃�|
𝑣𝑐𝑢𝑟,𝑣𝑠

, 𝑑
𝑚𝑎𝑥 𝑚𝑎𝑥

𝑠∈1,|�̃�|
𝑣𝑐𝑢𝑟,𝑣𝑠

, 

3.4. If 𝑑𝑣𝑐𝑢𝑟,�̃�𝑗
≤ 𝑑𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛

, then 𝑉𝑅𝐶𝐿 = 𝑉𝑅𝐶𝐿 ∪ {�̃�𝑗} 

3.5. If 𝑗 < |�̃�|, then 𝑗 = 𝑗 + 1, go to step 3.3 

3.6. From a set  𝑉𝑅𝐶𝐿 a vertex is randomly selected 𝑣𝑐𝑢𝑟, 𝑉𝑡𝑎𝑏𝑢 = 𝑉𝑡𝑎𝑏𝑢 ∪ {𝑣𝑐𝑢𝑟}, �̑�𝑙+1 = 𝑣𝑐𝑢𝑟 

3.7. If 𝑙 < 𝑀, then 𝑙 = 𝑙 + 1, go to step 3.2 

4. Local search based on 2-opt 

4.1. 𝑚 = 0 



4.2. Two vertices 𝑐1 и 𝑐2, are randomly selected from the vector  �̑�   and the selection of these 

vertices continues until the condition 1 < 𝑐2 − 𝑐1 < 𝑀 − 1 is satisfied.  

4.3. Based on the vector 

x̑ = (x̑1, . . . , x̑c1−1, x̑c1, . . . , x̑c2, x̑c2+1, . . . , x̑M)  

the vector is created 

x̆ = (x̑1, . . . , x̑c1−1, x̑c2, . . . , x̑c1, x̑c2+1, . . . , x̑M)  

i.e. the vertices x̑c1, . . . , x̑c2 are rearranged in reverse order. 

4.4. If F(x̆) < F(x̑), then x̑ = x̆, m = 0, otherwise m = m + 1 

4.5. If m < N2, then go to step4.2. 

5. If F(x̑) < F(x∗), then x∗ = x̑ 

6. If n < N1, then n = n + 1, go to step 3 

The result is 𝑥∗. 

 

8. Guided local search 

Guided local search was proposed by Voudouris and Tsang [29]. The algorithm consists of two 

phases - local search and penalty modification. The use of a penalty function that increases the value of 

the goal function makes it possible to avoid local optima in local search. In this paper, local search 

consists of the formation of a new solution by a permutation called "2-opt". 

The method consists of the following steps: 

1. Initialization 

1.1. Setting the scaling factor of the penalty function 𝜆, and 𝜆 > 0 (for large  𝜆 the entire search 

space is explored, for small 𝜆 the search becomes directed) 

1.2. Setting the maximum number of iterations 𝑁1; the maximum number of local search 

iterations 𝑁2, where no new best solution is found; vertex vector lengths 𝑀. 

1.3. An ordered set of vertices is specified 𝑉 = {1, . . . , 𝑀} and the edge weight matrix [𝑑𝑖𝑗], 𝑖, 𝑗 ∈

1, 𝑀. 

1.4. Specifying the Cost Function (Goal Function) 

𝐹(𝑥) = 𝑑𝑥𝑀,𝑥1
+ ∑ 𝑑𝑥𝑖,𝑥𝑖+1

𝑀−1
𝑖=1 → 𝑚𝑖𝑛

𝑥
, 

where 𝑑𝑥𝑀,𝑥1
 – edge weight (𝑥𝑖 , 𝑥𝑖+1), 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑉, 

𝑥 – vertex vector. 

1.5. Specifying the penalty function 

𝐹𝑊(𝑥, 𝑤) = 𝑤𝑥𝑀,𝑥1
+ ∑ 𝑤𝑥𝑖,𝑥𝑖+1

𝑀−1

𝑖=1

 

where 𝑤𝑥𝑖,𝑥𝑖+1
– edge penalty (𝑥𝑖 , 𝑥𝑖+1), 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑉 

1.6. Specifying an Extended Cost Function (Goal Function) 

𝐹𝐴(𝑥, 𝑤) = 𝐹(𝑥) + 𝜆 ⋅ 𝐹𝑊(𝑥, 𝑤) → 𝑚𝑖𝑛
𝑥

 

1.7. Setting the utility function 

𝑓𝑈(𝑥, 𝑤, 𝑖) = {

𝑑𝑥𝑖,𝑥𝑖+1

1+𝑤𝑥𝑖,𝑥𝑖+1

, 1 ≤ 𝑖 < 𝑀

𝑑𝑥𝑀,𝑥1

1+𝑤𝑥𝑀,𝑥1

, 𝑖 = 𝑀
, 𝑖 ∈ 1, 𝑀 

1.8. Set by randomly ordering the set 𝑉, the best vertex vector 𝑥∗. 

1.9. The current solution is set �̑�, and �̑� = 𝑥∗. 

1.10. Penalties are initialized  

𝑤𝑖𝑗 = 0, 𝑖, 𝑗 ∈ 1, 𝑀 

2. Iteration number 𝑛 = 1. 

3. Local search based on 2-opt 

3.1. 𝑚 = 0 



3.2. Two vertices 𝑐1 и 𝑐2, are randomly selected from the vector  �̑�  and the selection of these 

vertices continues until the condition 1 < 𝑐2 − 𝑐1 < 𝑀 − 1 is satisfied.  

3.3. Based on the vector 

�̑� = (�̑�1, . . . , �̑�𝑐1−1, �̑�𝑐1, . . . , �̑�𝑐2, �̑�𝑐2+1, . . . , �̑�𝑀)  

the vector is created 

�̆� = (�̑�1, . . . , �̑�𝑐1−1, �̑�𝑐2, . . . , �̑�𝑐1, �̑�𝑐2+1, . . . , �̑�𝑀)  

i.e. the vertices �̑�𝑐1, . . . , �̑�𝑐2 are rearranged in reverse order. 

3.4. If 𝐹𝐴(�̆�, 𝑤) < 𝐹𝐴(�̑�, 𝑤), then �̑� = �̆�, 𝑚 = 0, otherwise 𝑚 = 𝑚 + 1 

3.5. If 𝑚 < 𝑁2, then go to step3.2. 

4. The penalties are modified 

4.1. 𝑖∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑖

𝑓𝑈(�̑�, 𝑤, 𝑖) 

4.2. If 1 ≤ 𝑖∗ < 𝑀, then 𝑤�̑�𝑖∗ ,�̑�𝑖∗+1
= 𝑤�̑�𝑖∗ ,�̑�𝑖∗+1

+ 1 

If 𝑖∗ = 𝑀, then 𝑤�̑�𝑀,�̑�1
= 𝑤�̑�𝑀,�̑�1

+ 1 

5. If 𝐹(�̑�) < 𝐹(𝑥∗), then 𝑥∗ = �̑�. 

6.  If 𝑛 < 𝑁1, then 𝑛 = 𝑛 + 1, go to step  3 

The result is 𝑥∗. 

 

9. Partial optimization metaheuristic under special intensification conditions 

Partial optimization metaheuristic under special intensification conditions was proposed by Taillard 

and Voss [30]. The algorithm consists of four phases - the choice of the number of the component (part) 

of the solution, the creation of a set of components closest to the selected one, the optimization 

procedure, and the analysis of the resulting solution. The larger the number of nearest components, the 

larger the neighbourhood. In the optimization procedure (for example, search with tabus), only the 

nearest components of the solution are changed (in the case of the problem of finding the optimal path, 

these are vertices). In this paper, the creation of a neighbourhood consists of forming a new solution by 

a permutation called "2-opt".The method consists of the following steps: 

1. Initialization 

1.1. Setting the maximum number of nearest components 𝑄, the maximum number of iterations 𝑁1; 

the maximum number of search iterations with tabus 𝑁2; the size of neighbourhood 𝑍; solution 

length  𝑀; maximum length of the tabu list 𝐿𝑚𝑎𝑥. 

1.2. An ordered set of vertices is specified 𝑉 = {1, . . . , 𝑀} and the edge weight matrix [𝑑𝑖𝑗], 𝑖, 𝑗 ∈

1, 𝑀. 

1.3. Specifying the Cost Function (Goal Function) 

𝐹(𝑥) = 𝑑𝑥𝑀,𝑥1
+ ∑ 𝑑𝑥𝑖,𝑥𝑖+1

𝑀−1
𝑖=1 → 𝑚𝑖𝑛

𝑥
, 

where 𝑑𝑥𝑀,𝑥1
 – edge weight (𝑥𝑖 , 𝑥𝑖+1), 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑉, 

𝑥 – vertex vector. 

1.4. Set by randomly ordering the set 𝑉, the best vertex vector 𝑥∗. 

1.5. The current solution is set  �̑�, and �̑� = 𝑥∗. 

1.6. Initialization of the set of tabu vertices 𝑉𝑡𝑎𝑏𝑢 = ∅. 

2. Iteration number 𝑛 = 1. 

3. The number of the solution component is randomly selected 𝑗, and �̑�𝑗 ∉ 𝑉𝑡𝑎𝑏𝑢 

4. Creating a set of vertex numbers 𝑉𝑈 

4.1. All vertices �̑�𝑖 are sorted by proximity to the vertex �̑�𝑗 

4.2. Q of the top (closest) vertices are selected, from which a set 𝑉𝑈 is created  

5. Optimization procedure - use of search with prohibitions 

5.1. Initializing the tabu list 𝑇 = ∅ 

5.2. Search iteration number with tabus 𝑚 = 1. 

5.3. Creating a neighbourhood 𝑈�̑� solution �̑� based on 2-opt 

5.3.1.  𝑧 = 1 



5.3.2. Two vertices 𝑐1 и 𝑐2, are randomly selected from the vector  �̑�   and the selection of these 

vertices continues until the condition 1 < 𝑐2 − 𝑐1 < 𝑀 − 1 ∧ 𝑐1, 𝑐2 ∈ 𝑉𝑈 is satisfied. 

5.3.3. Based on the vector 

�̑� = (�̑�1, . . . , �̑�𝑐1−1, �̑�𝑐1, . . . , �̑�𝑐2, �̑�𝑐2+1, . . . , �̑�𝑀)  

the vector is created 

𝑥𝑧 = (�̑�1, . . . , �̑�𝑐1−1, �̑�𝑐2, . . . , �̑�𝑐1, �̑�𝑐2+1, . . . , �̑�𝑀)  

i.e. the vertices �̑�𝑐1, . . . , �̑�𝑐2 are rearranged in reverse order. 

5.3.4. A pair of tabu edges is created  𝐸𝑧 = ((𝑐1 − 1, 𝑐1), (𝑐2 − 1, 𝑐2)) for the vertex vector 𝑥𝑧 

5.3.5. 𝑗 = 1 

5.3.6. If 𝑗 < 𝑀 ∧ (𝑥𝑧𝑗 , 𝑥𝑧,𝑗+1) ∈ 𝑇 or 𝑗 = 𝑀 ∧ (𝑥𝑧𝑀 , 𝑥𝑧1) ∈ 𝑇, then go to step  5.3.2 

5.3.7. If 𝑗 < 𝑀, then 𝑗 = 𝑗 + 1, go to step  5.3.6 

5.3.8. If 𝑥𝑧 ∉ 𝑈�̑�, then 𝑈�̑� = 𝑈�̑� ∪ {𝑥𝑧}, 𝑧 = 𝑧 + 1, 

5.3.9. If 𝑧 ≤ 𝑍, then go to step 5.3.3. 

5.4. From neighbourhood 𝑈�̑� a solution with the lowest price is selected 𝑥𝑧∗, i.e. 𝑧∗ =
𝑎𝑟𝑔 𝑚𝑖𝑛

𝑧
𝐹(𝑥𝑧) 

5.5. If 𝐹(𝑥𝑧∗) ≥ 𝐹(�̑�), then go to step  5.9 

5.6. �̑� = 𝑥𝑧∗ . 

5.7. A pair of edges is placed at the start of the tabu list  . 

5.8. If |𝑇| > 𝐿𝑚𝑎𝑥, then a pair of edges that were tabued earlier is pushed from the end of the tabu 

list 𝑇.  

5.9. If 𝑚 < 𝑁2, then 𝑚 = 𝑚 + 1, go to step  5.3 

6. If �̑� = 𝑥∗, then 𝑉𝑡𝑎𝑏𝑢 = 𝑉𝑡𝑎𝑏𝑢 ∪ {𝑗} (a stronger version is possible 𝑉𝑡𝑎𝑏𝑢 = 𝑉𝑡𝑎𝑏𝑢 ∪ 𝑉𝑈), 

otherwise 𝑥∗ = �̑�, 𝑉𝑡𝑎𝑏𝑢 = 𝑉𝑡𝑎𝑏𝑢\𝑉𝑈 (a weaker version is possible 𝑉𝑡𝑎𝑏𝑢 = ∅) 

7. If 𝑛 < 𝑁1 и |𝑉𝑡𝑎𝑏𝑢| < 𝑀, then 𝑛 = 𝑛 + 1, go to step  3 

The result is 𝑥∗. 

 

10.  Quantitative study  

The quantitative study of the proposed optimization methods was carried out using the Matlab 

package. For the traveling salesman problem, the search for a solution was carried out on the standard 

database berlin52. For this database, the optimal path length is 7542. 

In this paper, for a self-organizing feature map, the annealing temperature decrease function is 

determined by the formula 𝑇(𝑛) = 𝛽𝑛𝑇0 and is shown in Fig.1. In this case, the initial effective width 

of the topological neighbourhood is 1, the initial temperature is 106, and the cooling coefficient is 0.94. 

 
Figure 1: Annealing temperature decrease function 

 



The dependence (Fig. 1) of the annealing temperature on the iteration number shows that the 

annealing temperature decreases with an increase in the iteration number. 

In this case, the effective width of the topological neighbourhood according to the formula 𝜎(𝑛) =

𝜎0 𝑒𝑥𝑝 (−
1

𝑇(𝑛)
)and is presented in Fig.2 

 
Figure 2. Effective Width of Topological Neighbourhood 

 

The dependence (Fig. 2) of the effective width of the topological neighbourhood on the annealing 

temperature shows that the effective width of the topological neighbourhood decreases with decreasing 

temperature. 

The results of comparing the proposed SOFM learning method with the existing one based on the 

criteria of time and path length are presented in Table 1, where M is the number of input layer neurons 

(or the length of the vertex coordinate vector), N^h is the number of output layer neurons, N is the 

maximum number of iterations. 

 

Table 1 
Comparison of the proposed SOFM training method with the existing one based on the criteria of time 
and path length 

Criteria Head  Proposed method  Existing method  

Time 𝑀 ⋅ 𝑁 
(in case of use of GPU) 

𝑀 ⋅ 𝑁 ⋅ (𝑀 ⋅ 𝑁ℎ) 

Path length 7919 8510 

 

According to Table 1, the proposed teaching method gives a faster and more accurate result than the 

existing teaching method. 

In this paper, for single-solution human-based metaheuristics, the maximum number of iterations is 

100, and the neighbourhood size is 50. The penalty function scaling factor is 70, the greed parameter is 

0.3, the maximum number of nearest components is 10, and the maximum length of the prohibition list 

is 3. 

The results of the comparison of the proposed methods with the taboo search method based on the 

length of the path are presented in Table 2. 

Table 2 
Comparison of Proposed Single-Solution Human-Based Metaheuristics with Taboo Search Method 

№ п/п Metaheuristics Best path length found  

1 Iterative local search 8176 
2 Search with variable neighborhood 8154 
3 Greedy randomized adaptive search 8097 



4 Guided local search 8034 
5 Partial optimization metaheuristic under 

special intensification conditions 
7919 

6 Taboo Search 8296 

 

According to Table 2, the proposed single-solution human-based metaheuristics give a more 

accurate result than the taboo search, and the partial optimization metaheuristic under special 

intensification conditions is the most accurate. 

11.  Conclusions 

1. The urgent task of increasing the efficiency of methods for solving the traveling salesman 

problem was undertaken by creating methods based on artificial neural networks and single-solution 

human-based metaheuristics. 

2. The proposed modification of the learning method for a self-organizing feature map uses: 

 setting weights of the winning neuron and its neighbours based on the calculation of the centre 

of gravity, this allows for accelerating the training of this neural network due to parallelization (in 

case of GPU use); 

 the effective dynamic width of the topological neighbourhood for calculating the topological 

neighbourhood function, which allows to explore the entire search space at the initial iterations and 

make the search directed at the final iterations, this ensures high accuracy of the search through this 

neural network. 

3. A modification of single-solution human-based metaheuristics is proposed that allows potential 

integer solutions and uses a 2-opt permutation in the case of a local search neighbourhood creation, 

and a 4-opt permutation in the case of a global search, which allows adapting these metaheuristics 

to solve the traveling salesman problem. 

The proposed methods make it possible to expand the scope of application of the self-organizing 

feature map and single-solution human-based metaheuristics, which is confirmed by their adaptation to 

the traveling salesman problem and contributes improve efficiency of intelligent computational 

systems. 

Prospects for further research are the study of the implementation of the proposed method on a broad 

class of artificial intelligence problems. 
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