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Abstract
In this paper, we propose TEDL, a two-stage learning approach to quantify uncertainty for deep learning models in classification
tasks, inspired by our findings in experimenting with Evidential Deep Learning (EDL) method, a recently proposed uncertainty
quantification approach based on the Dempster-Shafer theory. More specifically, we observe that EDL tends to yield inferior
AUC compared with models learnt by cross-entropy loss and is highly sensitive in training. Such sensitivity is likely to
cause unreliable uncertainty estimation, making it risky for practical applications. To mitigate both limitations, we propose a
simple yet effective two-stage learning approach based on our analysis on the likely reasons causing such sensitivity, with
the first stage learning from cross-entropy loss, followed by a second stage learning from EDL loss. We also re-formulate the
EDL loss by replacing ReLU with ELU to avoid the Dying ReLU issue. Extensive experiments are carried out on varied sized
training corpus collected from a large-scale commercial search engine, demonstrating that the proposed two-stage learning
framework can increase AUC significantly and greatly improve training robustness.
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1. Introduction
Uncertainty quantification of deep learning models has
been a hot topic in the community ever since the rise
of deep learning, and the demand for effective uncer-
tainty quantification methods is becoming increasingly
urgent in the recent decade as deep learning continue to
reshape many industries. Search recommendation, as per-
haps the most radically reshaped industry, often relies on
many different deep learning models to give accurate rec-
ommendations, which makes uncertainty quantification
especially important since unreliable predictions could
accumulate in the system and finally lead to inaccurate
or even embarrassing recommendation results.

To make machine learning models aware of their own
prediction confidence, many uncertainty quantification
approaches have been proposed [1], including single
deterministic methods, Bayesian methods and ensem-
ble methods, etc., among which the single deterministic
methods could be further grouped into internal or exter-
nal methods depending on whether additional compo-
nents are required for uncertainty estimation. We present
a brief review on this topic in Section 2. In this paper, we
are particularly interested in single deterministic meth-
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ods, especially internal approaches, since such methods
typically need only a single forward pass on a determin-
istic network to estimate uncertainty, and hence does
not require stochastic DNN or ensemble models, making
both training and inference more efficient.

More specifically, instead of considering the model
outputs as a pointwise maximum-a-posteriori (MAP) es-
timation, internal single deterministic methods usually
interpret model outputs as parameters of a prior distri-
bution over all the possible predictions, and then give
prediction by taking the expected value over the prior
distribution. For classification tasks, Dirichlet distribu-
tion is often chosen as prior since it is the conjugate prior
of the categorical distribution. Meanwhile, statistical dis-
tance metrics such as Kullback-Leibler (KL) divergence
are often included in their loss functions due to the need
to optimize on parameters of distributions [2, 3].

However, the efficiency of such methods comes with
a cost. As mentioned in [1], they are typically more
sensitive towards training settings such as initialization,
hyper-parameters, training data, etc., which is what we
observed when apply EDL [2], a recently proposed single
deterministic method, to practical scenarios.

To be more specific, in our experiments we identify sev-
eral issues in the EDL method. Firstly, as shown in Figure
2, when applied to binary classification tasks, the ROC
AUC achieved by the EDL method is significantly lower
than that obtained by cross-entropy loss, and such gap
cannot be bridged by simply adding more training sam-
ples. Secondly, EDL tends to be sensitive to initialization
and some hyper-parameters, where improper settings
may lead to significantly degraded AUC and unreliable
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Figure 1: A schematic illustration of the proposed TEDL method. (a) The original EDL method transforms the model outputs
to strictly positive values using ReLU activation and learns to quantify uncertainty via the EDL loss in Equation (1), which
yields inferior AUC and is sensitive to training. (b) The proposed TEDL method employs a two-stage learning strategy to
decompose the original problem into two easier sub-problems and tackle one at a time: the first stage learns to make good
pointwise estimations via cross-entropy loss; and then the second stage will learn to quantify uncertainty using the pointwise
estimation as anchor points, with ReLU replaced by ELU to avoid the Dying ReLU issue.

uncertainty estimation.
To see this more clearly, in Figure 5 (the orange curve)

we summarize the per epoch ROC AUC obtained in EDL
training with different 𝜆, a hyper-parameter controlling
how close the Dirichlet prior is to a uniform distribution.
As we can see, the AUC of EDL suffers in the beginning
under all the four settings, and in some cases (for example
when 𝜆 = 0.5) there is no signs of improvement at all.
In cases where AUC does improve, its final AUC is still
significantly lower than that from the proposed method
(the green curve). On the other hand, consider evaluating
AUC on validation samples with uncertainty lower than
a certain threshold: If the learnt uncertainty is of high
quality, smaller thresholds should indicate higher confi-
dence, and hence should be associated with higher AUC.
However, this is not always the case for EDL, as shown
in the first row of Figure 6. Besides, we also observe that
when a large 𝜆 is used (for example 𝜆=0.75), there would
be a higher risk of running into the Dying ReLU problem
where all outputs are zero, leading to an AUC that similar
to a random guess. All these issues make it risky to apply
methods like EDL into real-world applications.

To fix these issues, we firstly present an analysis in this
paper on the likely reasons causing the above issues in
Section 3, and based on our analysis, we further propose
TEDL, short for Two-stage Evidential Deep Learning, as
a simple but effective training framework to mitigate all
the aforementioned issues in a single shot. As we will see
in Section 3, the basic idea of TEDL is to transform the
difficult uncertainty quantification problem into two sub-
problems that are much easier to tackle, i.e., 1) finding a
reasonably good pointwise estimation of the categorical
distribution, and 2) leveraging this pointwise estimation
as an anchor point for estimating the Dirichlet prior of

categorical distribution, based on which we can quantify
uncertainty.

The overall training framework of TEDL is illustrated
in Figure 1, where two stages are needed: in the first stage,
we train our classification model with cross-entropy loss,
in order to obtain a model that is able to output reason-
able pointwise estimations of the categorical distribution.
And then in the second stage, we initialize the model
from the weights obtained in the previous stage, and go
through the same training corpus by learning with the
reformulated EDL loss where ReLU is replaced by ELU.
As shown in Section 4, compared with the EDL baseline,
TEDL can achieve higher AUC across all evaluation set-
tings and effectively avoid the risk of running into Dying
ReLU problem. More importantly, TEDL also shows sig-
nificantly improved robustness towards training settings,
making it more reliable for practical applications.

It is also worth to mention that we name our proposed
method following EDL mainly due to the convenience of
experimentation, as it is proposed recently and is easy
to implement with code open-sourced by the authors.
However, our analysis in Section 3 also applies to other
single deterministic uncertainty quantification methods
suffering from similar issues, and hence the two-stage
learning framework we propose in this paper could be
readily extended to those methods as well.

2. Related Works
The interest for uncertainty estimation dates back to the
days even before the rise of deep learning, entailing a
large body of literature on this topic. Based on whether
model ensemble is used and whether the model is stochas-



tic, uncertainty quantification methods could be roughly
grouped into three categories, including single determin-
istic methods, Bayesian neural networks and ensemble
methods. Please refer to [1] for a comprehensive survey.

Single deterministic methods [4, 5] estimate uncer-
tainty based on one single forward pass within a deter-
ministic network, and could be further split into external
approaches [6, 7] and internal approaches [2, 3, 8] depend-
ing on whether additional method is used for deriving un-
certainty estimation. Methods in this category typically
have lower requirements on computational resources
since no stochastic networks nor model ensembles are
needed, but suffer from sensitivity to initialization and
parameters compared with other categories. The pro-
posed TEDL method in this paper, as well as the original
EDL method, both fall into this category.

Bayesian neural networks cover all kinds of stochas-
tic DNNs, including methods based on variational in-
ference [9, 10, 11, 12, 13, 14, 15], sampling methods
[16, 17, 18, 19], and Laplace approximation [20, 21, 22].
Methods in this category usually have higher compu-
tational complexity in both the training and inference
phases due to stochastic sampling.

Ensemble methods [23, 24, 25, 26] combine the pre-
dictions from several different deterministic networks at
inference. Methods in this category typically have higher
requirements on both the memory and computational
resources at inference phase.

The proposed method also relates to the concept of
two-stage learning, which bears similarity to trans-
fer learning but has some subtle differences. Transfer
learning generally refers to the procedure that transfers
knowledge obtained from different but related source
domains to target domains, usually to reduce training
data required on the target domains. [27] gives a com-
prehensive survey on transfer learning. In contrast, in
two-stage learning [28, 29], although it also consists of
two consecutive stages, these two stages are often con-
ducted on the same data. In a typical two-stage learning
setting, the second stage should be the final stage that
yields the desired output, while the first stage serves as
a preparation step. Given such differences, the proposed
method should be categorized as two-stage learning.

3. Approach

3.1. A Recap on EDL Uncertainty
Quantification

The basic idea of EDL method is treating softmax out-
put as the pointwise estimation of the categorical dis-
tribution, and placing a Dirichlet prior over the distri-
bution of all possible softmax outputs. Then, following
the Dempster-Shafer theory, assume we have 𝐾 cate-

gories and 𝛼𝑖 = ⟨𝛼𝑖1, . . . , 𝛼𝑖𝐾⟩ is the parameter of a
Dirichlet distribution for the classification of sample 𝑖,
the authors propose to replace softmax with ReLU and
represent the Dirichlet parameter as 𝛼𝑖 = 𝑓(𝑥𝑖|Θ) + 1
where Θ represents network parameters and 𝑓(𝑥𝑖|Θ)
is the ReLU outputs. The 𝛼𝑖𝑗 here also represents the
subjective opinion collected from sample 𝑖 and category
𝑗, and 𝑆𝑖 =

∑︀𝐾
𝑗=1 𝛼𝑖𝑗 is referred to as the Dirichlet

strength. Note that 𝑆𝑖 is inversely proportional to uncer-
tainty: a larger 𝑆𝑖 indicates more evidence is collected
for sample 𝑖, and hence lower uncertainty.

Based on the above assumptions, the EDL loss is de-
fined as below:

ℒ(Θ) =

𝑁∑︁
𝑖=1

ℒ𝑖(Θ) + 𝜆𝑡ℒ𝐾𝐿 (1)

where ℒ𝑖(Θ) is formulated as the expected value of a basic loss
and ℒ𝐾𝐿 represents regularization. According to the authors
of [2], EDL method appears relatively more stable when sum
of squares loss is used as the basic loss, as below:

ℒ𝑖(Θ) =

𝐾∑︁
𝑗=𝑖

(𝑦𝑖𝑗 − �̂�𝑖𝑗)
2 +

�̂�𝑖𝑗(1− �̂�𝑖𝑗)

𝑆𝑖 + 1

=

𝐾∑︁
𝑗=1

(𝑦𝑖𝑗 −
𝛼𝑖𝑗

𝑆𝑖
)2 +

𝛼𝑖𝑗(𝑆𝑖 − 𝛼𝑖𝑗)

𝑆2
𝑖 (𝑆𝑖 + 1)

(2)

where 𝑦𝑖𝑗 and �̂�𝑖𝑗 denote the class label and expectation for
sample 𝑖 and class 𝑗, respectively.

Meanwhile, the above loss function is further regularized by
minimizing the KL divergence between the estimated Dirichlet
distribution 𝐷(𝑝𝑖|�̃�𝑖) and the uniform distribution, as below:

ℒ𝐾𝐿 =

𝑁∑︁
𝑖=1

𝐾𝐿 [𝐷(𝑝𝑖|�̃�𝑖) || 𝐷(𝑝𝑖|⟨1, . . . , 1⟩)] (3)

The coefficient 𝜆𝑡 in Equation (1) is heuristically set to increase
with epoch 𝑡 (zero-based), i.e., 𝜆𝑡 = min(1.0, 𝑡 * 𝜆) where
𝜆 = 0.1. Note that we denote the per-epoch increment as
𝜆. For brevity, we will treat 𝜆 rather than 𝜆𝑡 as the hyper-
parameter henceforth, since 𝜆𝑡 is determined only by 𝜆.

3.2. A Closer Look into the EDL Method
Equation (1) could be split into two parts: the first part is
Equation (2) which is designed to estimate the Dirichlet prior,
and the second part is the regularization term in Equation
(3) derived from KL divergence. Next, we will take a closer
look at these two parts respectively to understand the cause
of sensitivity.

As we mentioned previously, unlike cross-entropy loss
which is designed to learn the pointwise estimations of the
categorical distribution as a MAP estimate, the loss function
in Equation (2) is derived to learn the parameter of a Dirichlet
prior distribution over all the possible predictions. Therefore,
the pointwise estimation should also be covered by the Dirich-
let prior distribution. This perspective highlights the huge gap



Figure 2: AUC comparison between cross-entropy loss, EDL loss and TEDL loss, evaluated on the same validation data. All
the three methods are learnt on training corpus with 1M, 5M, 50M and 500M samples, respectively. In all the training settings,
EDL method achieves inferior AUC compared to cross-entropy loss, while the proposed TEDL method yields comparable AUC
than cross-entropy, outperforming EDL significantly.

in terms of how difficult the optimization problems behind
these two loss functions are, especially given that obtaining
a good MAP estimation is already a hard problem in many
applications. This perspective also highlights the importance
of a sufficiently large training data, as it would be meaningless
to model a distribution without sufficient samples.

In the meanwhile, the KL divergence also makes optimiza-
tion more complicated since it is not Lipschitz smooth. More
precisely, given a function 𝑓 , it is said to be Lipschitz smooth
if and only if there exists a finite value 𝐿 such that

‖∇𝑓(𝑎)−∇𝑓(𝑏)‖ < 𝐿 · ‖𝑎− 𝑏‖ (4)

In other words, the gradient of 𝑓 should exist and be
bounded by a finite value 𝐿. However, the regularization term
in Equation (3) does not satisfy this condition since its gradient
will go to infinity when 𝐷(𝑝𝑖|�̃�𝑖) → 0, as even though �̃�𝑖

is guaranteed to be positive, 𝑝𝑖 may still become very close
to zero when a certain �̃�𝑖 is extremely large, leading to very
large gradients and hence unstable training.

In summary, internal single deterministic methods are try-
ing to optimize an inherently difficult problem, with poten-
tially ill-conditioned loss functions due to existence of KL
divergence.

3.3. The Proposed Two-stage Learning
Framework

Having analyzed the possible reasons causing training sensi-
tivity, a more important question is how could we fix such
issues and make training more stable. At first glance, this ap-
pears to be infeasible since we can neither bypass distribution
modeling nor drop the terms related to KL divergence in loss
functions. In this paper, we propose an alternative approach,
which can fix both issues with a simple yet effective strategy:
decomposing the original problem into two sub-problems and
tackling one at a time, leading to a two-stage learning method
as illustrated in Figure 1. Compared with the original EDL
method, the only cost introduced by TEDL is a preparation
stage learning from the cross-entropy loss, however as we will

see in Section 4, such cost is well paid off given the significant
AUC increase and greatly improved robustness in training.

So why does such a simple strategy work? On one hand,
the first stage in TEDL learns a pointwise estimation of the
categorical distribution, which is a much easier problem com-
pared with modeling the entire distribution and entails much
fewer training samples. Then in the second stage, since the
model is initialized from the weights obtained in stage 1, it
amounts to modeling the prior distribution using the point-
wise estimation as certain anchor points, which is much easier
than modeling the prior from scratch, if we can assume that
the pointwise estimation is close to the expected value of the
prior. This assumption should be easily hold for most practical
applications, otherwise we will not be able to apply internal
single deterministic methods at all, since the expected value
from the prior distribution is unlikely to derive meaningful
predictions in that case.

On the other hand, by learning from cross-entropy loss, we
could effectively avoid assigning extremely small values to
𝑝𝑖, given that softmax involves exponential operations and
there is no point in pushing model outputs before softmax to
extremely large values. That means, when softmax is replaced
by ELU later in stage 2, it is unlikely for us to see extremely
large �̃�𝑖 values.

4. Experiments

4.1. Implementation Details
All experiments throughout this paper are conducted on a
binary classification task, with the goal to predict whether a
<query, ad> pair is relevant or not. Both the training (1.4M)
and validation samples (100K) are sampled from a large-scale
commercial search engine, with human-provided relevance
labels. In order to examine the impact of the size of training
data, we further create a synthetic training set with soft labels,
by sampling a large corpus and inference using an ensemble
of BERT [30] models fine-tuned on the human-labeled train-
ing set, similar to what we do in knowledge distillation [31].
This allows us to experiment on a much larger scale, without
breaking any assumptions in the EDL method. Without further



Figure 3: ROC AUC vs. uncertainty thresholds with 1M, 5M, 50M and 500M training corpus, respectively, and 𝜆 = 0.1.
The first row is for EDL, while the second row is for TEDL. This figure shows that under a relatively small 𝜆, the quality of
uncertainty learnt by both EDL and TEDL improves as training proceeds.

Figure 4: Uncertainty distribution of EDL (first row) and TEDL (second row), learnt on 1M, 5M, 50M and 500M training
samples with 𝜆 = 0.1. The first row is for EDL, while the second row is for TEDL.

clarification, we will henceforth refer to this synthetic training
set as our training corpus, and experiments will be conducted
on subsets sampled from this synthetic training set, with 1M,
5M, 50M and 500M samples, respectively.

In addition, in this paper we will use TwinBERT [32, 33] as

our deep classification model, which uses two BERT encoders
to encode query and ad respectively, and then calculates their
relevance score by cosine similarity. We choose this model
mainly for its simplicity and efficiency, and the conclusions of
this paper should hold for other model architectures as well,



Figure 5: Comparison of ROC AUC for EDL and TEDL, learnt on 1M training corpus with different 𝜆. Compared to EDL,
TEDL not only achieves higher ROC AUC, but also shows improved robustness towards 𝜆, especially when 𝜆 = 0.75 where
EDL method runs into the Dying ReLU problem.

since no particular assumptions for model architectures are
made in the proposed TEDL method.

In terms of metrics, since we are working on binary classifi-
cation task, we will use ROC AUC to evaluate the prediction
performance (in our experiments PR AUC shows a very simi-
lar trend to ROC AUC). Meanwhile, to measure the quality of
uncertainty, we follow the approach in [2] to split our valida-
tion data using different uncertainty thresholds first, and then
evaluate ROC AUC on each individual subset. For example,
when threshold is 0.1, ROC AUC will be calculated only on
validation samples with uncertainty lower than 0.1. Therefore,
if uncertainty is properly quantified, we should expect higher
ROC AUC on lower thresholds, since this is the subset that
our model feels more confident with. This way, we can plot a
curve over ROC AUC v.s. uncertainty thresholds.

4.2. Results and Analysis
4.2.1. Classification Performance evaluated by

ROC AUC

Figure 2 summarizes the per-epoch ROC AUC of models learnt
by cross-entropy loss, EDL method and the proposed TEDL
method, with 1M, 5M, 50M and 500M training samples respec-
tively. In all these settings, we consistently observe that the
ROC AUC from EDL method is much lower than that from
cross-entropy loss, while the proposed TEDL method is able
to achieve comparable performance than cross-entropy loss,
outperforming EDL significantly.

In addition, if we look into ROC AUC measured on different
epochs in Figure 2, we can also see that TEDL is much more
stable than EDL, especially when training corpus is relatively
small.

4.2.2. Quality of Uncertainty

As mentioned previously, we will measure the quality of the
learnt uncertainty by plotting a curve over ROC AUC v.s. un-
certainty thresholds, as shown in Figure 3, where the first row
corresponds to EDL, while the second row is for TEDL. By
comparing plots from different epochs, we can see that the
quality of uncertainty learnt from both EDL and TEDL gets

steadily improved over the training process, and the improving
pattern for EDL and TEDL are very similar. However, this only
happens when a relatively small 𝜆 is used. Later in Section
4.3 we will see that compared with EDL, TEDL is much more
robust towards 𝜆. We also plot the distribution of uncertainty
in each training epoch, as shown in Figure 4, where TEDL also
looks similar to EDL when 𝜆 is relatively small, but later in
Section 4.3 we will see their difference when 𝜆 gets larger.

4.3. Sensitivity towards Hyper-parameters
So far all the results we report are obtained under mild condi-
tions with 𝜆 = 0.1, however as we mentioned in Section 1, 𝜆
and the number of training epochs may have dramatic impact
on EDL, and hence it is necessary to examine how robust TEDL
is towards these two hyper-parameters.

4.3.1. ROC AUC

Figure 5 compares the ROC AUC obtained by EDL and TEDL
method, respectively, under different 𝜆 values. Similar to Fig-
ure 2, TEDL constantly outperforms EDL, and is more sta-
ble when more training epochs are used. In particular, when
𝜆 = 0.75 we observe the Dying ReLU problem in EDL, which
inspires us to replace ReLU by ELU in TEDL.

4.3.2. Quality of Uncertainty

Figure 6 and Figure 7 compare the quality of uncertainty learnt
by EDL and TEDL method, respectively, under different 𝜆 val-
ues. Compared with Figure 3 and Figure 4, the uncertainty
quality learnt from EDL degrades dramatically when larger 𝜆
is used, as shown in the case where 𝜆 = 0.25 and 𝜆 = 0.5.
By contrast, for TEDL, both its plots over ROC AUC vs. uncer-
tainty as well as its uncertainty distribution look very similar
to what we observed for 𝜆 = 0.1, demonstrating significantly
improved robustness towards 𝜆.

5. Conclusion
In this paper, we propose TEDL, a two-stage learning approach
to quantify uncertainty for deep classification models. TEDL



Figure 6: Comparison of ROC AUC vs. uncertainty for EDL (first row) and TEDL (second row), learnt on 1M training corpus
with different 𝜆, where TEDL shows significantly better robustness.

Figure 7: Comparison of uncertainty distribution for EDL (first row) and TEDL (second row), learnt on 1M training corpus
with different 𝜆, where TEDL shows significantly better robustness.

contains two stages: the first stage learns from cross-entropy
loss to obtain a good point estimate of the Dirichlet prior
distribution, and then the second stage learns to quantify un-
certainty via the reformulated EDL loss. We conduct extensive
experiments using training corpus sampled from a real com-

mercial search engine, which demonstrates that compared with
EDL, the proposed TEDL not only achieves higher AUC, but
also shows improved robustness towards hyper-parameters.
As future work, the uncertainty learnt by TEDL may be lever-
aged to develop active learning algorithms.
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