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Abstract
In Location-Based Services(LBS), user behavior naturally has a strong dependence on the spatiotemporal information,
𝑖.𝑒., in different geographical locations and at different times, user click behavior will change significantly. Appropriate
spatiotemporal enhancement modeling of user click behavior and large-scale sparse attributes is key to building an LBS model.
Although most of existing methods have been proved to be effective, they are difficult to apply to takeaway scenarios due to
insufficient modeling of spatiotemporal information. In this paper, we address this challenge by seeking to explicitly model
the timing and locations of interactions and proposing a Spatiotemporal-Enhanced Network, namely StEN. In particular,
StEN applies a Spatiotemporal Profile Activation module to capture common spatiotemporal preference through attribute
features. A Spatiotemporal Preference Activation is further applied to model the personalized spatiotemporal preference
embodied by behaviors in detail. Moreover, a Spatiotemporal-aware Target Attention mechanism is adopted to generate
different parameters for target attention at different locations and times, thereby improving the personalized spatiotemporal
awareness of the model. Comprehensive experiments are conducted on three large-scale industrial datasets, and the results
demonstrate the state-of-the-art performance of our methods. In addition, we have also released an industrial dataset for
takeaway industry to make up for the lack of public datasets in this community.
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1. Introduction
Location-Based Services (LBS) are mobile services that
provide the user with current location-relevant content
on smartphones or other services. Among them, take-
away service is the most popular and convenient com-
mercial service. Like other LBS, it also requires timely
delivery, which results in a strong dependence on time
and geographical location for users. In this way, recom-
mending products suitable for the user’s temporal and
spatial demands in LBS is a pretty challenging problem.

Recently, some methods[1, 2, 3] have been proved effec-
tive in e-commerce through the user’s historical behavior,
but it is not easy to adapt them into the LBS scenario. The
main reason is that most of them do not pay attention to
users’ strong spatial and temporal demands. For instance,
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a user prefers fast food in the work area on weekdays and
may choose fried chicken in his or her residential area on
weekends. This changes in user behavioral interests are
bonded with the changes of location and time. Although
there are some initial efforts[4, 5] to integrate spatiotem-
poral information into sequential recommendation, most
of them consider partial spatiotemporal information, and
efforts to fully and thoroughly model such integrated
spatiotemporal patterns are still lacking. Different from
the above scenarios, there are some common attributes
in the takeaway scenario which have a weak correlation
with the user’s historical behavior. For example, milk
tea is naturally suitable to be recommended at afternoon
tea. On the other hand, the historical behaviors of users
imply their personal dietary preferences.

To tackle above problems, we propose a
Spatiotemporal-Enhanced Network(StEN), to bet-
ter meet users’ temporal and spatial demands. Specially,
StEN applies Spatiotemporal Profile Activation (StPro)
module to model user’s common spatiotemporal
preference by activating attribute features (user and
item). For the personalized spatiotemporal preference
of users, a novel Spatiotemporal Preference Activation
(StPre) and a Spatiotemporal-aware Target Attention
(StTA) module are proposed. StPre disassembles the spa-
tiotemporal preference embodied by the user’s historical
behavior in detail, which including Temporal Evolving
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Activation(TEA), Temporal periodic Fusion(TPF) and
Spatial Preference Activation(SPA). While StTA employs
different spatiotemporal information to generate
different parameters and feed them into target attention
to improve the personalized spatiotemporal awareness
of the model. In addition, we have released an industrial
dataset for takeaway industry to make up for the lack of
public datasets in this community.

All our contributions can be summarized as follows:

• StEN applies Spatiotemporal Profile Activation
(StPro) module to model user’s common spa-
tiotemporal preference by activating attribute fea-
tures (user and item).

• For the personalized spatiotemporal preference
of users, a novel Spatiotemporal Preference Acti-
vation (StPre) is proposed, which disassembles
the spatiotemporal preference embodied by the
user’s historical behavior in detail, and extracts
preferences from three small modules: Tempo-
ral Evolving Activation (TEA), Temporal Periodic
Fusion (TPF) and Spatial Preference Activation
(SPA).

• We also propose a Spatiotemporal-aware Target
Attention (StTA) module, which employs differ-
ent spatiotemporal information to generate dif-
ferent parameters and feed them into target atten-
tion to improve the personalized spatiotemporal
awareness of the model

• In addition, we have also released an industrial
dataset for takeaway industry to make up for the
lack of public datasets in this community. Experi-
mental results demonstrate that our method has
achieved the state-of-the-art on three large-scale
industrial datasets and the online A/B testing re-
sults further show its practical value.

2. Related Work

2.1. Sequence-based Model
Earlier deep CTR approaches hope to eliminate the com-
plicated work of feature engineering jobs and focus
more on automatically mining the correlations between
features[6, 7, 8, 9, 10]. Later on, researchers[1, 2, 3]
found that the users’ historical behavior sequence con-
tains richer and more direct information, which brought
breakthroughs to the entire recommendation commu-
nity. Many researches focus on exploring potential in-
terests in the user’s historical behavior sequence. They
extract sequence features by incorporating structures
such as Pooling, RNN, and Attention into the model.
YoutubeDNN[11] proposes a feature embedding on items
method and then takes the average value to extract his-
torical sequence features. DIN[1] believes that interests

in the user’s historical behavior sequence are diverse.
Faced with a particular product, only part of the interests
associated with that product will influence user’s behav-
ior. Based on this, DIN designs a local activation module
to extract different user interests from the sequence for
various target commodities. DIEN[2] further explores
the interrelationships between users’ historical behaviors
and proposes the concept of user interest evolution. It
designs an auxiliary loss and a structure based on GRU.
Inspired by the success of the self-attention mechanism
in sequence-to-sequence tasks, BST[12] leverages a trans-
former layer instead of GRU to mine information about
the user’s interest. DSIN[3] observes that the user’s inter-
ests in a short period are concentrated, while long-term
interests are scattered. It splits the sequence into differ-
ent sessions and explores the information through the
self-attention mechanism and Bi-LSTM module. SIM[13]
proposes an interest mining method for life-long user
sequences. However, all historical behavior sequences of
users are very long, which may lead to time-consuming
and noise problems. To overcome this, SIM provides
a search-based long sequence extraction method to ex-
tract top-k behavior sequences from life-long sequences
through soft and hard search technology.

2.2. Time Aware Attention Model
The above deep CTR models do not explicitly make use
of the click time information in the user’s historical be-
havior, where the click time information has an impact
on the user’s evolutionary behavior and the user’s peri-
odic behavior. The user’s evolutionary behavior denotes
that the user’s interest changes over time, and the user’s
periodic behavior indicates the user’s periodic actions.
Specially, TIEN[14] pays more attention to the user’s
evolutionary behavior, and believes that the closer the
historical behavior is to the current time, the greater
the weight should be. TLSAN[15] leverages the absolute
value of the time difference and then uses its reciprocal
as the time position embedding. TiSASRec[16] models
items’ relative time intervals by sine and cosine func-
tion to explore the evolutionary behavior of users and
then utilizes items’ absolute temporal signals, such as
month(M), weekday(W), date(D) and hour(H), to detect
periodic behavior of users. TimelyRec[17] captures po-
tential irregularity information in user’s periodic pat-
terns, and then integrates the information to compute
the similarity between target time and users interactions
with an attention mechanism.

2.3. Spatiotemporal Model
Spatial location is also important for some location-aware
platforms, such as Facebook Places[18] and Airbnb[19].
Thus, it is a natural way to integrate temporal in-
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Figure 1: Our StEN consists of three modules: Spatiotemporal Profile Activation(StPro), Spatiotemporal Preference Activa-
tion(StPre) and Spatiotemporal-aware Target Attention(StTA).
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Figure 2: The architecture of Spatiotemporal Profile Activa-
tion(StPro) and Spatiotemporal Preference Activation(StPre).
StPre includes three models: Temporal Evolving Activa-
tion(TEA), Temporal periodic Fusion(TPF) and Spatial Pref-
erence Activation(SPA).

formation and spatial location to optimize recommen-
dation models. However, due to the complexity of
model design, publicly available existing work is lim-
ited. CaledarGNN[20] utilizes GNN and GRU to extract

the segmented time and geographic information in the
user’s historical behavior sequence. While effective, it is
applied to article browsing of web pages without regard
to the geographic location of the item. So it is not suit-
able for our takeaway industry. TRISAN[21] extracts the
spatiotemporal information from the user’s historical be-
havior sequence by employing two spatial activation and
one temporal similarity activation modules in the model.
However, it does not detail the information contained
in the user’s spatiotemporal behavior, which leads to in-
sufficient spatiotemporal information exploring. While
TRISAN is of great relevance for our purposes, unfortu-
nately, the method has not been open-sourced and the
dataset used in this paper is not publicly available. So
we cannot perform method comparisons with it in the
Section 4.

3. Spatiotemporal-Enhanced
Network

3.1. Preliminary
In this paper, we denote 𝑥 = (𝑚,𝑢, 𝑠𝑡, 𝑏) ∈ 𝒳 as input
data, where 𝑚 is the target item feature, 𝑢 is the user, 𝑏
is the user click behavior and 𝑠𝑡 is the spatiotemporal
feature.

In particular, we geocode1 the user’s latitude and longi-
tude and convert them to hexadecimal numbers to obtain

1https://en.wikipedia.org/wiki/Geohash



geohash-6, which is then combined with the user’s Area-
of-Interest(AOI)[22] and serve as the spatial feature 𝑔 in
this paper. While the temporal feature is represented by
hour of day, time period of day(breakfast, lunch, after-
noon tea, dinner and night snack) and day of the week.
User features 𝑢 include user id, user gender and other fea-
tures, while item features 𝑖 include item id, item category
and other features. Before all features enter the model,
we will perform a vectorized representation of them. For
the convenience of description, in the latter part of this
article, 𝑚,𝑢, 𝑠𝑡, 𝑏 all represent the embedding vectors of
the corresponding features. Denoting 𝑦 ∈ 𝒴 as the click
label, and our CTR prediction task can be defined as:

𝒫(𝑦 = 1|𝑥) = 𝑓(𝑥; 𝜃)(𝑥 ∈ 𝒳 ) (1)

where 𝑓(𝑥; 𝜃) is a probability value obtained after we
forward the input data 𝑥 into any CTR network, and
then activate by a sigmoid function. 𝜃 represents the
parameters of the network. Typically, each of our user
history behaviors includes the item 𝑣, the item’s location
𝑙, the click time 𝑡 and the click period of time 𝑝. The
CTR task of Equation 1 above is then mainly achieved
by minimizing the following cross-entropy loss function
during training,

ℒ(𝑓, 𝑥𝑖, 𝑦𝑖) =
1

𝑁

𝑁∑︁
𝑖=1

−𝑦𝑖𝑙𝑜𝑔𝑓(𝑥𝑖; 𝜃)

−(1− 𝑦𝑖)𝑙𝑜𝑔(1− 𝑓(𝑥𝑖; 𝜃))

(2)

where 𝑦𝑖 ∈ {0, 1} is the ground-truth label, 𝑁 is the
mini-batch size and 𝑖 is the index of the input data. We
set 𝑁 to 1024 in this paper.

3.2. Spatiotemporal Profile Activation
This module is mainly used to capture common spa-
tiotemporal preferences that are less correlated with user
behavior. E-commerce scenarios only need to consider
the personalized behavior of user, but in the takeaway
scenario, we need to consider the impact of time and lo-
cation on users and items. For instance, there is a natural
difference between the user’s order in the workplace and
the residential area. Therefore, we use spatiotemporal
features 𝑠𝑡 to extract common spatiotemporal preference
for the static item and user features. Below we will take
the user feature as an example,

𝑎𝑡𝑡𝑢 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
𝐹𝐶𝑢(𝑠𝑡) · 𝑢𝑇

√
𝑑𝑢

)𝑢 (3)

where 𝐹𝐶𝑢(𝑠𝑡) ∈ R𝑑𝑠𝑡*𝑑𝑢 , is the linear transforma-
tion of the 𝑠𝑡, 𝑑𝑢 is the last dimension of 𝑢, 𝑑𝑠𝑡 is the
last dimension of 𝑠𝑡. Inspired by [1], we then concate-
nate 𝑢 and 𝑎𝑡𝑡𝑢 and add their differences, their com-
mon values, to get the final activation value ℎ𝑢 =
𝑐𝑜𝑛𝑐𝑎𝑡(𝑢, 𝑎𝑡𝑡𝑢, 𝑢− 𝑎𝑡𝑡𝑢, 𝑢 * 𝑎𝑡𝑡𝑢).

Through the above same activation method, we can
obtain the final activation value of the item and is denoted
as ℎ𝑚. Finally, we concat the above activation values to
obtain the spatiotemporal profile activation value ℎ𝑠𝑡𝑝𝑟𝑜.
Fig. 2(a) shows the structure.

3.3. Spatiotemporal Preference Activation
We further propose a Spatiotemporal Preference Acti-
vation(Stpre) to model the personalized spatiotemporal
preference embodied by user behaviors in detail.

3.3.1. Temporal Evolving Activation(TEA)

The time sequence of user clicks will have a certain im-
pact on the current behavior. For example, a user who
frequently clicks on milk tea in a short period of time will
cause him to be more willing to click on dessert in the
next time slot. To model this temporal evolving pattern,
we first calculate the time interval 𝑡𝑖 between request
time 𝑡𝑟 and each historical behavior click time 𝑡𝑗 . Then
we eliminate the noise by applying a nonlinear transfor-
mation to the time interval, thus obtaining the temporal
evolution factor 𝑓𝑡𝑒,

𝑓𝑡𝑒 = 𝐹𝐶2(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐹𝐶1(𝑒
−𝑡𝑖))) + 𝑒−𝑡𝑖 (4)

where 𝐹𝐶1 ∈ R𝑁*𝑁ℎ and 𝐹𝐶2 ∈ R𝑁ℎ*𝑁𝑙 denotes two
fully connected layers, 𝑡𝑖 ∈ R𝑁*𝑁𝑙 , 𝑁ℎ is the hidden
size, and 𝑁𝑙 is the sequence length we set. In this paper,
we abbreviate the structure of Equation 4 as FFN. Then
we normalize the above temporal evolution factor 𝑓𝑡𝑒
through a softmax function to get the weight of temporal
evolution𝑤𝑡𝑒. After that, 𝑤𝑡𝑒 can help to obtain temporal
activation features related to the behavior order,

𝑎𝑡𝑡𝑡𝑒𝑎 = 𝑤𝑡𝑒 · 𝐹𝐹𝑁(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝐶𝑡(𝑢)) · 𝑏) (5)

where 𝐹𝐶𝑡(𝑢) ∈ R𝑁𝑢*1, 𝑁𝑢 is the last dimension
of the feature 𝑢. Finally our robust temporal evo-
lution fusion feature be obtained by ℎ𝑡𝑒𝑎 = 𝑤𝑚 *
𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹𝐹𝑁(𝑏))+𝑤𝑡𝑒𝑎*𝑎𝑡𝑡𝑡𝑒𝑎. Mean weight
𝑤𝑚 and time interval weight 𝑤𝑡𝑒𝑎 are two trainable
weight parameters used to balance the output. The mod-
ule is depicted in Fig. 2(c).

3.3.2. Temporal periodic Fusion(TPF)

User historical behavior contains rich but scattered be-
havioral interests. However, when we explore user behav-
ior from the perspective of time period, we are pleased
to find that users’ behavioral interests are more concen-
trated and periodic. Model would be messy if we directly
learn mixed user behavior without any behavioral slices.



In this case, we propose a Temporal periodic Fusion mod-
ule to learn the user periodic preference in takeaway
industry.

Based on the period of time 𝑝, we first divide the
user historical behavior 𝑏 into five time slices 𝑏 =
{𝑏𝑝𝑏, 𝑏𝑝𝑙, 𝑏𝑝𝑡, 𝑏𝑝𝑑, 𝑏𝑝𝑠}. Then we feed each period of time
sequence into the FFN and mean pooling in turn to get
the characteristics of breakfast behaviors 𝑚𝑒𝑎𝑛𝑝𝑏, lunch
behaviors 𝑚𝑒𝑎𝑛𝑝𝑙, afternoon tea behaviors 𝑚𝑒𝑎𝑛𝑝𝑡,
dinner behaviors 𝑚𝑒𝑎𝑛𝑝𝑑, and night snack behaviors
𝑚𝑒𝑎𝑛𝑝𝑠. Take the breakfast behavior as an example,

𝑚𝑒𝑎𝑛𝑝𝑏 = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹𝐹𝑁(𝑏𝑝𝑏)) (6)

Further, to obtain a more general periodic representation
ℎ𝑡𝑝𝑓 , we fuse the above periodic characteristics through
an average operation. Fig. 2(d) illustrates a outline of this
architecture.

3.3.3. Spatial Preference Activation(SPA)

User’s geographic location affects his personalized di-
etary choices. For example, when the user works in com-
pany, he may choose rice, and when the user is at home,
he may prefer fried chicken. We call this the user’s spatial
preference. To capture this spatial preference, we utilize
the spatial features 𝑔 and combine them with the user’s
feature 𝑢. We then feed the above-combined values into
a fully connected layer and activate through a sigmoid
function to get the geolocation activation value of 𝑞𝑠𝑝𝑎,

𝑞𝑠𝑝𝑎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝐶𝑞(𝑐𝑜𝑛𝑐𝑎𝑡(𝑔, 𝑢))) (7)

where 𝐹𝐶𝑞 ∈ R𝑁𝑔𝑢*1, 𝑁𝑔𝑢 is the dimension of the
combine value 𝑔 and𝑢. Further, we use 𝑞𝑠𝑝𝑎 to activate all
of the user history behavior to explore the user’s spatial
preferences ℎ𝑠𝑝𝑎 through FFN and mean pooling. The
architecture can be observed in Fig. 2(b).

Finally, we fuse the output of the above three small
modules together to obtain our final spatiotemporal pref-
erence activation value ℎ𝑠𝑡𝑝𝑟𝑒 = ℎ𝑡𝑒𝑓 + 𝑤𝑡𝑝𝑓 * ℎ𝑡𝑝𝑓 +
𝑤𝑠𝑝𝑎 * ℎ𝑠𝑝𝑎. Period of time weight 𝑤𝑡𝑝𝑓 and spatial
weight 𝑤𝑠𝑝𝑎 are also two trainable weight parameters
used to balance the output.

3.4. Spatiotemporal-aware Target
Attention

To more effectively explore the spatiotemporal rela-
tionships between historical user behavior and target
item, we propose a Spatio-temporal-aware Target Atten-
tion(StTA) mechanism. Drawing on the ideas of CAN[23]
and AdaptPGM[24], we generate different parameters
through spatiotemporal information for target atten-
tion, thereby improving the personalized spatiotemporal

awareness of the model. Taking 𝑊𝑄, 𝑏𝑄 as an example,
we can get that,

𝑄𝑃𝑎𝑟𝑎𝑚 = 𝑊𝑞 · 𝑠𝑡+ 𝑏𝑞 → 𝑊𝑄, 𝑏𝑄 (8)

where 𝑊𝑞 ∈ R𝐷×(𝑑𝑖*𝑑𝑜+𝑑𝑜) and 𝑏𝑞 ∈ R𝑑𝑖*𝑑𝑜+𝑑𝑜 are
the parameters of a fully-connected layer. 𝐷 is the dimen-
sion of 𝑠𝑡, 𝑑𝑖 is the dimension of input embedding (such
as target item embedding 𝑚 or user behavior embedding
𝑏) and 𝑑𝑜 is the dimension of final output embedding.
Then we can split 𝑄𝑃𝑎𝑟𝑎𝑚 into two parts(𝑊𝑄, 𝑏𝑄) as
parameters of the subsequent target attention fully con-
nected layer. Specially, we take the first 𝑑𝑖*𝑑𝑜 parameters
as 𝑊𝑄 and the last 𝑑𝑜 parameters as 𝑏𝑄. In the same way,
we can obtain 𝐾𝑃𝑎𝑟𝑎𝑚(𝑊𝐾 , 𝑏𝐾 ) and 𝑉𝑃𝑎𝑟𝑎𝑚(𝑊𝑉 , 𝑏𝑉 )
through the spatiotemporal feature 𝑠𝑡. After that, we uti-
lize the primitive target attention mechanism to obtain
the final module output ℎ𝑡𝑎,

𝑄 = 𝑊𝑄 ·𝑚+ 𝑏𝑄,

𝐾 = 𝑊𝐾 · 𝑏+ 𝑏𝐾 ,

𝑉 = 𝑊𝑉 · 𝑏+ 𝑏𝑉

ℎ𝑡𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝑑𝐾

)𝑉

(9)

Where 𝑑𝑘 is the dimension of 𝐾 . Fig. 1(a) illustrates the
structure.

3.5. Dense Tower for StEN
Once we have all the feature vector representations, we
can fuse all the above module outputs to get the final pre-
diction 𝑑𝑒𝑛𝑠𝑒0 = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑠𝑡𝑝𝑟𝑜, ℎ𝑠𝑡𝑝𝑟𝑒, ℎ𝑡𝑎). A three-
layer perceptron structure is then applied,

𝑑𝑒𝑛𝑠𝑒𝑖+1 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐵𝑁(𝐹𝐶𝑓𝑖(𝑑𝑒𝑛𝑠𝑒𝑖)))
(10)

where 𝑖 = 0, 1, 2. We then get the prediction
of click via a sigmoid activation 𝒫(𝑦 = 1|𝑥) =
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝐶𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑑𝑒𝑛𝑠𝑒3)). 𝐹𝐶𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ∈ R𝑁*1.
Finally, we optimize the parameters of our whole model
by Equation 2 defined above. The detail is illustrated in
Fig. 1(a).

4. EXPERIMENTS

4.1. Datasets
Due to the lack of public spatiotemporal datasets in the
takeaway industry, we conducted experimental compar-
isons on three industrial datasets (𝐷1, 𝐷2 and 𝐷3) col-
lected from Ele.me, a major LBS platform in China. The
dataset 𝐷1 mainly recommend stores to users, which
consists of over 5 billion samples. Dataset 𝐷2 and 𝐷3

mainly recommend meals to users and contain more than



Table 1
Statistics of the dataset used in this paper. ML indicates median length.

Datasets 𝒟1 𝒟2 𝒟3

Total Size 5541799773 575941170 177114244
# Feature 388 218 38
# Users 49249999 28706270 14427689
# Items 2750505 12302502 7446116
# Clicks 343277081 5626279 3140831

ML of User Behaviors 39.66 41.59 41.19

Table 2
Overall performance on 𝒟1, 𝒟2 and 𝒟3. StPro: Spa-
tiotemporal Profile Activation. StPre: Spatiotemporal Pref-
erence Activation. DIN+StPro+StPre, DHAN+StPro+StPre,
DIEN+StPro+StPre are three variation models to investigate
the generalization of our module.

Model 𝒟1 𝒟2 𝒟3

DIN 0.7209 0.7294 0.6403
DHAN 0.7265 0.7312 0.6419
DIEN 0.7346 0.7452 0.6531

DIN+StPro+StPre 0.7236 0.7324 0.6434
DHAN+StPro+StPre 0.7271 0.7336 0.6445
DIEN+StPro+StPre 0.7348 0.7458 0.6571

StEN 0.7353 0.7535 0.6627

500 million and 100 million samples, respectively. For
𝐷3, we collected one week’s data from the server logs as
training set and one day’s data as the test set. We have
publicly released the dataset 𝐷3

2 to further advance
the exploration of spatiotemporal patterns in the LBS
community. The details of our datasets can be seen in
Table 1.

4.2. Experimental Settings
All models in this paper are implemented with Pyhton
2.7 and Tensorflow 1.4. AdagradDecay[25] is chosen as
our optimizer to train the model. To avoid overfitting
in the early stage of model training and maintain the
training stability, we adopt a warm-up[26] strategy for all
methods. We set the learning rate to 0.001 and gradually
increased it to 0.015 within 1M steps. We set the batchsize
𝑁 to 1024. We repeated all the experiments five times
and averaged the metrics to obtain more reliable results.
In our experiments, We adapt Area Under Cure (AUC)
and RelaImpr[27] as our evaluation metric.

To show the effectiveness of our method, we select
three well-known and industry-proven CTR prediction
models as our baselines.

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=131047

DIN: Deep Interest Network (DIN) designs a local ac-
tivation module to capture the information in the user
behavior sequence that will affect the user behavior when
facing the target item. At the same time, DIN does not
model the interrelationships among items in a sequence
of actions.
DHAN: Deep Hierarchical Attention Net-

works(DHAN) designs a set of attention networks with
multi-dimensional and multi-level structures, which
can capture the interest expression of users in various
dimensions. At the same time, the attention network
can extract features that are similar to the knowledge
expression of the tree structure.

DIEN: Deep Interest Evolution Network (DIEN) adapts
the interest evolution factors in user behavior. It designs
an AUGRU-based module to model the evolution process
and trend of user interests.

4.3. Overall Performance Comparison
Table 2 compares StEN with three well-known CTR
prediction models on 𝐷1, 𝐷2 and 𝐷3. We find that
DHAN[28] performs better than DIN[1] on both datasets
due to the addition of a multi-dimensional and multi-
level attention mechanism. For example, DHAN surpass
DIN on by margins of 0.56% on dataset 𝐷1. Notably, 0.1%
improvement of AUC is significant for online model de-
ployment to improve the actual CTR in production. Due
to the excellent performance of LSTM module in explor-
ing user behavior sequence, DIEN[2] outperforms DHAN
in both datasets. However, it is worth noting that recur-
rent neural networks such as LSTM have slow training
and prediction problems and are prone to high response
time problems when serving online. By comparison, our
StEN advantages all of them to a new level. We have
achieved AUC=0.7353, AUC=0.7525 and AUC=0.6627
on 𝐷1, 𝐷2 and 𝐷3, respectively. Our method is 0.96%
higher than current best results (DIEN) on dataset 𝐷3.

At the same time, to investigate the generalization of
our module, we have conducted variation experiments
by adding StPre and StPro to the above baseline models.
Note that the main difference among the above three
methods is the attention module, so our StTA will not



(a) Eleme App homepage (b) Eleme App recommendations page

Figure 3: Screenshots of the Eleme mobile App. (a) and (b) are the recommendation results of the online-serving model (red
box) and StEN (green box) during afternoon tea, where the right of (a) and (b) (green box) are more suitable for afternoon tea.

Table 3
Ablation study on 𝒟1 and 𝒟2. StPro: Spatiotemporal Profile
Activation. TEA: Temporal Evolving Activation. TPF: Temporal
Periodic Fusion. SPA: Spatial Preference Activation. StPre:
Spatiotemporal Preference Activation. StTA: Spatiotemporal-
aware Target Attention.

Methods
𝒟1 𝒟2

AUC RelaImpr AUC RelaImpr
BaseModel 0.7332 0.00% 0.7414 0.00%

w/ StPro 0.7345 0.56% 0.7474 2.49%
w/ TEA 0.7345 0.56% 0.7500 3.56%
w/ TPF 0.7342 0.43% 0.7479 2.69%
w/ SPA 0.7348 0.69% 0.7476 2.57%

w/ StPre 0.7349 0.73% 0.7521 4.43%
w/ StTA 0.7350 0.77% 0.7499 3.52%

StEN 0.7353 0.90% 0.7535 5.01%

be added to interfere. It can be observed from Table 2
that when we directly adapt our two proposed activation
modules to the three baselines mentioned above, there is a
certain stable improvement in performance. For example,
DIN obtains a significant improvement of 0.27% on 𝐷1

, 0.30% on the 𝐷2 and 0.31% on the 𝐷3, while DIEN
has the weaker improvement of 0.02% on 𝐷1 , 0.06%
on 𝐷2 and 0.4% on the 𝐷3. All these variation models
further demonstrate that our proposed modules have
good generalizability and can be added to other existing
models as a plug-and-play module.

4.4. Ablation Study
To investigate the effectiveness of our proposed method,
we conduct ablation studies in Table 3. Our BaseModel

in this paper consists of a primitive Target Attention
module mentioned in Section 3.4. Observed from Table 3,
each module has played a different positive role after
being added.

We then show the effect of Spatiotemporal Profile Ac-
tivation (StPro) by adding it to the BaseModel. Observed
From Table 3, we can see that our "w/ StPro" has brought a
relatively stable improvement in effect. In particular, com-
pared to BaseModel, the offline AUC rises from 0.7332 to
0.7345 (+0.13%) and 0.7414 to 0.7474 (+0.6%) when tested
on 𝐷1 and 𝐷2, respectively. The results demonstrate
that Spatiotemporal Profile Activation is an effective way
to model user’s common spatiotemporal preference.

Next, we validate the effectiveness of Spatiotemporal
Preference Activation (StPre) over the model. As reported
in table 3, "w/ StPre" increases the results of "BaseModel"
by 0.17% and by 1.07% on dataset of 𝐷1 and 𝐷2, respec-
tively. In order to see the effect of the three small modules
(TEA, TPF and SPA) in StPre, we also performed some
ablation experiments in Table 3. We can observe that
module SPA shows the best performance when tested on
dataset 𝐷1, while module TEA achieves better perfor-
mance when tested on dataset 𝐷2. This illustrates that in
different scenarios, the user’s spatiotemporal preferences
will focus on different emphasis, specific focus needs to
be specifically determined.

We also evaluate the effect of Spatiotemporal-aware
Target Attention (StTA) mechanism. In Table 3,
we observe a significant improvement after adding
Spatiotemporal-aware Target Attention into the system.
For example, "w/ StTA" achieves an offline AUC of 0.7350
when tested on the dataset of 𝐷1. This is higher than
"BaseModel" by 0.18%. The improvement demonstrates
that our proposed Target Attention mechanism can meet



the user’s spatiotemporal demands compared to the prim-
itive target attention module. Injecting our StTA into the
model could improve the effectiveness of system in LBS.
Furthermore, our "StEN(StPre+StPro+StTA)" consistently
improves the results of "w/ StPre", "w/ StPro" and "w/
StTA". This is because more appropriate spatiotempo-
ral enhancement has been conducted by integrating the
three module we proposed in this paper.

4.5. Online A/B Testing
We have deployed our method on the Ele.me platform and
conducted an online A/B test for one month in November
2021, which is under the bucket test. One bucket is the
BaseModel we have defined in Section 4.4 and the other
bucket is our model StEN. Compared with the online-
serving BaseModel, our method has increased the CTR of
one-hop by 1.6%, the CTR of the second-hop by 2.4%, the
order volume by 2.1%, and the order UV by 2.4%. These
online benefits from our method are crucial for the rec-
ommendation systems of Ele.me. On the one hand, an
efficient model can improve user click efficiency. On the
other hand, the emphasis on spatiotemporal characteris-
tics can also improve user experience and increase the
user stickiness of the platform.

For better understanding, we also compare the recom-
mendation results of the online-serving model with our
StEN on the Ele.me platform, as shown in Figure 3. The
items (red box) on the left of Figure 3(a) and Figure 3(b)
are not suitable for afternoon tea, but are more appropri-
ate for breakfast and staple food, respectively. While our
StEN (green box) recommends the sweetmeats and milk
tea that are suitable for afternoon tea. Therefore, StEN
does a better job of capturing users’ strong spatial and
temporal demands and can improve the user experience.

5. Conclusions
In this paper, we propose a novel spatiotemporal-
enhanced network StEN. In particular, StEN applies a
StPro module to capture common spatiotemporal prefer-
ence by activating attribute features. A StPre module is
further applied to model the personalized spatiotemporal
preference embodied by the behaviors in detail. More-
over, a StTA mechanism is adopted to generate different
parameters for target attention at different locations and
times, thereby improving the personalized spatiotempo-
ral awareness of the model. Comprehensive experiments
are conducted on three large-scale industrial datasets,
and the results demonstrate the state-of-the-art perfor-
mance of our methods.
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