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Abstract
Affective human robot interaction (HRI) is quite complex since the robot interacts not only with the human but also with
the environment. Providing robots with emotional intelligence is critical in this field but also achieving public acceptance
and trust from the public when using robots is another challenge. Robots should infer and interpret human emotions and
behave in a trusted way ensuring safety. Since affective HRI aims at the system development that use emotions, it requires
knowledge from fields like computer science, psychology, and cognitive science. An affective autonomous robot interacts
with humans using affective technologies to detect emotions. Despite the fact that a typical robot-platform has embedded
several attributes like perception, decisions, and actions it is quite difficult to detect human emotions as well as to behave in a
re-assuring manner.
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1. Introduction
The impact of affective computing and robots can be
examined in the context of a smart house application. In a
smart house [1] there is interaction with a wide variety of
smart devices to robotic mechanisms. Such interactions
have altered the objective of the house itself as a prime
place to relax and unwind. Adding several smart devices
inside our environment without any synchronization
between them or planning regarding their integrated use
can have a negative impact, manifested mainly as anxiety,
stress and even insecurity. On the other hand, a properly
scheduled and coordinated environment or, equivalently,
a smart house ecosystem can significantly reduce stress
and in general contribute to a higher quality of life. This
happens only when the individual smart devices of a
house ecosystem areworking seamlessly and coordinated
in the background taking into consideration the house
occupants and not vice versa.

Among the major indicator of the well-being of human
occupants of a smart house is that of calmness, defined
as the state of mind having low arousal and valence [2].
Since calmness implies relatively low brain activity, it
can be clearly identified using EEG [3, 4, 5] or through
measurements related to ego-sensor data (smartwatch
[6], smartphone [7]). A smart house seeks to provide
an environment for increasing the calmness [8] by sens-
ing several related intrinsic parameters (temperature [9],
illumination [10], sound [11], et al.) and providing the
necessary outputs (heating ventilation and air condition-
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ing, light on/off state, loudspeaker music, et al.).
When it comes to affective computing considerations,

the principal concern is for designing and building sys-
tems and environments where the HRI is smooth and
human centered [12]. This includes building machines
that can sense and react to human emotions but also to be
reassuring, trusted and be considered safe by the public.

2. HRI: The case of a smart house
Our work presents the creation of an integrated environ-
ment that provides the foundation for a Smart house com-
puting experimental platform. The experimental study
enhances the frequent operations encountered in a smart
house by monitoring its state using a wireless sensor net-
work [13] and mobile robots [14]. This work describes
the developed HRI testbed shown in Figure 1, indicating
the following technologies that have been integrated to
the Smart house platform:

• A Media Server attached to a dedicated computer
(Intel i7-NUC).

• A supervising Data server (Intel i7-NUC) running
Ubuntu 16.04 which infers the human’s calm state
based on a 10 second sliding window of EEG read-
ings.

• The human brain activity is measured using an
inexpensive yet reliable portable EEG-device. In
this study the users’ brain activity is used to
validate the effect of various stimuli in a smart
home towards the achieved calmness. An Emo-
tiv EPOC+ EEG device [15] that transmits brain
signals using Bluetooth to a computer is used. It
can measure the brain waves of a human wearing
the device and can transmit whether the user’s
emotion state.
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Figure 1: Human-robot interaction testbed.

• A suite of sensors that monitor the environment’s
status (sound, CO, humidity, temperature, et.al);
these sensors are wirelessly connected to the su-
pervised Data serer.

The utilized sensors include:

• A smartwatch (Samsung Galaxy Watch Active 2)
running Tizen OS, which measures the heart rate
of its user every 10 sec.

• An attention inference device in the form of an
Android application running on a smartphone
that detects the human’s motion [1 bit word] and
the call’s state (Idle, Calling, Ringing) [2 bit word],
every 5 seconds

• A smart house monitoring device (LibeliumWasp-
mote and plug and play sensors) measuring: i)
carbon monoxide (every 60 sec), ii) temperature
(every 5 sec), iii) atmospheric pressure (every 5
sec), iv) humidity (every 5 sec), v) illuminance
(every 5 sec), and vi) luminosity (every 5 sec).

• A sound sensor (microphone) connected to an
Odroid XU-4 embeddedmicrocontroller thatmon-
itors the power spectrum of the surrounding
sound (over a 10 sec sliding window) and wire-
lessly transmits its normalized values [0 (noise-
less) up to 1 (loud)] to the server,

• A spherical camera (Ricoh Theta V) that streams
video at 4K-resolution to the data server; this cam-

era is mounted on the mobile robot and monitors
the surrounding space.

Moreover, a Google hub device acts as a data query
and actuation server and sends event-like (on/off) com-
mands to: a) a heat adjustment device (air cooler) for
regulating the temperature, b) smart power outlets that
connect WiFi RGB-light bulbs and other devices that
affect the surrounding illuminance, and c) a Bluetooth-
enabled loudspeaker device for playing streaming audio.
Finally, a mobile ground robot (Robotis’ Turtlebot

3 [16]) controlled by an Intel i7 NUC with consider-
able number crunching capabilities. This computer is
connected to the OpenCR (Cortex-M7) board and runs
ROS [17]. This robot is equipped with a 360∘ line LiDAR
that detects obstacles anywhere within 12-350 cm with a
1∘ angular resolution. This 2D-LiDAR is used for Hector
SLAM [18] and obstacle avoidance. The mobile robot
should not create additional attention while navigating
its path within the smart house. For this reason, the robot
should not be in the Field of View of the humans which
is monitored by an IMU placed along the EEG-device.

3. Affective computing for robot
applications

Humans living in an environment can perform percep-
tual, spatial, motor, and cognitive activities. In real life
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these activities are interleaved creating complex real life
situations. We generated several scenarios that consist
of different combinations of such activities, executed the
scenarios in our smart house platform prototype and
checked the human reaction using the EEG. Our ini-
tial results show that the user’s emotions (calmness) are
strongly influenced by the scheduling of the activities.
More experiments need to be conducted to examine how
user behaviour is influenced in different situations like
simultaneous processing of clues, situations with low
arousal and high arousal etc.
Several research directions can be followed based on

the above platform. An interesting problem to examine is
the use of AI based scheduler trained to the needs of the
user. The problem of smart home scheduling has been
examined mainly in the context of controlling appliances
for efficient energy consumption [19].

Social robots, shown in Figure 2 have been used for a
variety of applications. In [20], the major fields of appli-
cations for social robotics that include companionship,
healthcare, education, are investigated. Furthermore, the
incorporation of social attributes to the HRI under the
social effects of these robots are highlighted.
For example in the education field social robots have

been introduced for children education. In [21] social
robots introduce a new perspective in understanding
children learning. Robots are equipped with several sen-
sors and data analysis of the collected data during their
interaction with children can provide insights on the
learning process. An interesting result on HRI in the case
of children is presented in [22] where the authors use a
NAO humanoid robot to a handwriting partner to teach
children how to write.

In some cases the results of the use of social robots are
not so encouraging. Such a case can be seen in [23] the
authors examined the literature on using social robots
for mental health interventions i.e. for improving depres-
sion and concluded that the research results have low
internal and external validity. HRIs in social robotics can
be remote or proximate. The problem of proximate inter-
actions affects the Traits, Attitudes, Moods and Emotions
(TAME) of humans. Examples of proximate activities
between humans and robots can be as simple as the han-
dover of an item or as complicated as a joint surgery.
Human expectations and build of trust when considering
robot errors is of paramount importance as explained in
[24].
In our ongoing research, we are interested in proxi-

mate HRI [25], where humans interact with colocated
robots. This interaction affects the sociability because of
the robot’s functionality. Proximate HRI includes social,
emotive, and cognitive capabilities of this interaction.

The robot’s architecture is modified to account for the
underlying affective models. Inhere, the TAME frame-
work [26, 27] is adopted to facilitate the overall HRI. Self

Figure 2: Commercial Social Robots.

assessments, or psychometric tests, or ongoing studies
involving the Negative Attitudes toward Robots Scale
(NARS) will be used to evaluate the HRI. Figure 3 indi-
cates a mobile robot in our smart house that moves away
from the human’s Field of View in order not to affect
NARS.

Figure 3: Robot’s maneuver to decrease NARS

4. Conclusions
It is evident that in the field of HRI, there is a challenge
that needs to be addressed on how to add characteris-
tics and emotional intelligence to machines and environ-
ments so that the interactions with the humans to be
intuitive, smooth, natural and trusted. This paper pre-
sented the development of a platform that encompasses
several application fields and identifies future research
issues related to machines, emotional intelligence and
trust.
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