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Abstract
In today’s data-driven world, the sensitivity of information has been a significant concern. With this data and additional
information on the person’s background, one can easily infer an individual’s private data. Many differentially private iterative
algorithms have been proposed in interactive settings to protect an individual’s privacy from these inference attacks. The
existing approaches adapt the method to compute differentially private(DP) centroids by iterative Llyod’s algorithm and
perturbing the centroid with various DP mechanisms. These DP mechanisms do not guarantee convergence of differentially
private iterative algorithms and degrade the quality of the cluster. Thus, in this work, we further extend the previous work
on ‘Differentially Private 𝑘-Means Clustering With Convergence Guarantee’ by taking it as our baseline. The novelty of our
approach is to sub-cluster the clusters and then select the centroid which has a higher probability of moving in the direction
of the future centroid. At every Lloyd’s step, the centroids are injected with the noise using the exponential DP mechanism.
The results of the experiments indicate that our approach outperforms the current state-of-the-art method, i.e., the baseline
algorithm, in terms of clustering quality while maintaining the same differential privacy requirements. The clustering quality
significantly improved by 4.13 and 2.83 times than baseline for the Wine and Breast_Cancer dataset, respectively.
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1. Introduction
Achieving extraordinary results is dependent on the data
on which the machine learning models are trained. Data
curators have a responsibility to provide datasets such
that the privacy of data is not compromised. However,
attackers use other public datasets to perform inference
and adversarial attacks to get information about an indi-
vidual in the dataset. Differential privacy is a potential
technique for giving customers a mathematical guarantee
of the privacy of their data[1]. There are two fundamen-
tal settings in which differential privacy is used on data:
in interactive setting data curator holds the data and re-
turns the response based on the queries requested by
third parties; while in non-interactive setting the curator
sanitized the data before publishing[2].
Iterative clustering algorithms provide important in-

sights about the dataset, which helps in a large number of
applications. They are prone to privacy threats because
they can reveal information about an individual with ad-
ditional knowledge. Existing approaches obtain the set
of centroids using Lloyd’s K-means algorithm, then per-
turb them with a differentially private mechanism to add
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privacy [3]. In contrast to Lloyd’s K-means algorithm,
which guarantees convergence, these algorithms do not
provide any convergence guarantee. Getting differen-
tially private centroids might not help in getting quality
inferences because of this non-convergence. We studied
an existing approach that provides this guarantee and
converges in twice the number of iterations to Lloyd’s al-
gorithm while maintaining the same differential privacy
requirements as existing works [4] [5]. Their algorithm
perturbs the centroids in a random direction from the
center of the cluster. However, this lowers the quality of
clustering, which is necessary for making inferences.
In this work, we propose a variant of the existing ap-

proach, which provides better clustering quality while
using the same privacy budget. We used the intuition
of Lloyd’s algorithm that the next centroid will move
in the direction where there is a higher number of data
points. Finally, we give the mathematical proof that our
approach at any instance gives better clustering quality
than the existing approaches. We have tested our ap-
proach on breat_cancer, wine, iris, and digits datasets.
We were able to get a significant improvement from the
previous approach in terms of clustering quality.
Interactive setting implies that the dataset is not dis-

closed to the user, however, the data curator returns the
response of each query received from the user by manip-
ulating it using DP strategy.

Our main contribution includes:

1. We proposed SubClustering approach which has
better clustering quality than the baseline (which
is the current SOTA in terms of clustering qual-
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ity). For the Wine and Breastcancer dataset, the
clustering quality improved by 4.13 and 2.83 times
respectively.

2. In addition to improving the clustering quality,
our algorithm used same privacy budget as that
of the existing work.

2. Related Work
The concept of differential privacy has inspired a plethora
of studies, particularly in the area of differentially pri-
vate k-means clustering [6][7][8] in an interactive setting.
The importantmechanisms of DP in the literature include:
the Laplace mechanisms (LapDP) [9], the exponential
mechanisms (ExpDP) [10], and the sample and aggregate
framework [11]. To achieve differential privacy, many im-
plementations included infusing Laplace noise into each
iteration of Lloyd’s algorithm. The proportion of noise
added was based on a fixed privacy budget. Some of the
strategies for allocating privacy budget included splitting
the overall privacy budget uniformly to each iteration
[12]. However, this requires us to calculate the number of
iterations for the convergence, prior to the execution of
algorithm, thus increasing the computational cost. Fur-
ther, researchers overcome this weakness by allocating
theoretically guaranteed optimal allocation method [6],
but the major assumption taken in this approach was
that every cluster has the same size, which does not align
with the real-world datasets. In another work, Mohan
et al. [8] proposed GUPT, which uses Lloyd’s algorithm
for local clustering of each bucket where the items were
uniformly sampled to different buckets. The final result
was the mean of locally sampled points in each bucket
with added Laplace noise. But, the clustering quality of
GUPT was unsatisfying because a large amount of noise
was added in the aggregation stage.

Based on the study of past literature on differentially
private k-means clustering, Zhigang et al. [3] concluded
that convergence of an iterative algorithm is important to
the clustering quality. To solve this, they introduced the
concept of the convergent zone and orientation controller.
With the help of a convergent zone and orientation con-
troller, they further create a sampling zone for selecting
a potential centroid for the 𝑖𝑡ℎ iteration. The approach
iteratively adds noise with an exponential mechanism
(ExpDP) by using prior and future knowledge of the po-
tential centroid at every step of Lloyd’s algorithm. The
approachmaintains the sameDP requirements as existing
literature, with guaranteed convergence and improve-
ment in clustering quality. However, their algorithm
perturbs the centroids in a random direction from the
center of the cluster, degrading the quality of clustering.
Thus, in this work, we further build upon the approach
and significantly improve the clustering quality with the

same epsilon privacy.

3. Preliminaries
The definitions used in this work are briefly discussed
in this section. The following is a formal definition of
Differential Privacy:

Definition 1 (𝜖-DP [9]). A randomised mechanism T
is 𝜖- differentially private if for all neighbouring datasets
𝑋 and 𝑋 ′ and for an arbitrary answer 𝑠 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑇 ), T
satisfies

𝑃𝑟[𝑇 (𝑋) = 𝑠] ≤ 𝑒𝑥𝑝(𝜖) ⋅ 𝑃𝑟[𝑇 (𝑋 ′) = 𝑠],

where 𝜖 is the privacy budget.
Here, 𝑋 and 𝑋 ′ differ by only one item. Smaller val-

ues of 𝜖 imply a better privacy guarantee. It is because
the difference between the two neighboring datasets is
reflected by the privacy budget. In this work, we use the
ExpDP and LapDP. In exponential DP for non-numeric
computation, they introduce the concept of scoring func-
tion 𝑞(𝑋 , 𝑥), which represents the effectiveness of the
pair (𝑋 , 𝑥). Here 𝑋 is the dataset and 𝑥 is the response to
the 𝑞(𝑋 , 𝑥) on X.
The formal definition of Exponential DP mechanism

is defined as follow:
Definition 2 (Exponential Mechanism [10]).

Given a scoring function of a dataset 𝑋, 𝑞(𝑋 , 𝑥), which
reflects the quality of query respond x. The expo-
nential mechanism T provides 𝜖-differential privacy,
if 𝑇 (𝑋) = {𝑃𝑟[𝑥] ∝ 𝑒𝑥𝑝( 𝜖⋅𝑞(𝑋 ,𝑥)

2Δ𝑞 )}, where Δ𝑞 is the
sensitivity of scoring function q(X,x), 𝜖 is the privacy
budget.

Definition 3 (Convergent & Sampling Zones[3]).
A region whose points satisfies the condition: { Node S:
‖𝑆 − 𝑆𝑖(𝑡)‖ < ‖𝑆𝑖(𝑡−1) − 𝑆𝑖(𝑡)‖} is the convergent zone. 𝑆𝑖(𝑡) is
defined as the mean of 𝐶𝑖(𝑡). A sub-region inside convergent
zone is defined as a sampling zone.

Definition 4 (Orientation Controller[3]). 𝑋𝑖
(𝑡) is a

direction from the center of the convergent zone to a point
on its circumference. This is the direction along which the
center of the sampling zone will be sampled, defined as the
orientation controller.

4. Approach
In this section, we explain our proposed approach and
the baseline approach.

4.1. Overview - KMeans Guarantee
(Baseline)

We took ”Differentially Private K-Means Clustering with
Convergence Guarantee” [3] as our baseline and im-



Figure 1: Overview of KMeans Guarantee Approach

proved the clustering quality by further building on it.
The key concept of the algorithm is to use ExpDP to in-
troduce bounded noise into centroids at each iteration of
Lloyd’s algorithm. The technique is designed in a way
that it ensures the new centroid is different from the cen-
troid of Lloyd’s algorithm while maintaining constraint
given in Lemma 1. The constraint guarantees that the
perturbed centroid will eventually converge with the
centroid of Lloyd’s algorithm.
Their algorithm has four main steps to update the

centroids at each Lloyd step t [3]. The overview of their
approach can be seen in (Figure : 1).

1. Let the differentially private centroid at iteration

𝑡 − 1 for a cluster 𝑖 be ̂𝑆𝑖
(𝑡−1)

. Using this centroid,
run one iteration of Lloyd’s algorithm to get the
current Lloyd’s centroid 𝑆𝑖(𝑡) for each cluster 𝑖.

2. Using 𝑆𝑖(𝑡) and 𝑆𝑖(𝑡−1), generate a convergent zone
for each cluster 𝑖 as described in 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡 𝑖𝑜𝑛 3.

3. Generate a sampling zone in the convergence zone
and an orientation controller 𝑋𝑖

(𝑡) for each cluster
i as defined in 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡 𝑖𝑜𝑛 3 𝑎𝑛𝑑 4 respectively.

4. Sample a differentially private ̂𝑆𝑖
(𝑡)

with ExpDP
in the sampling zone generated in step 3.

The definition for the convergent zone (for convergence
guarantee) and sampling zone (for centroid updating) is
defined in Definition 3.

4.2. Overview - SubCluster Guarantee
We build upon the KMeans Guarantee algorithm to
achieve better clustering quality. Our idea differs from
the baseline in terms of creating a sampling zone. For
each cluster, we execute Lloyd’s algorithm over its con-
vergent zone to generate its sub-clustering. Further, we
assign each sub-cluster with a probability linearly pro-
portional to the number of points it contains. Finally, we
sample the sub-cluster based on the assigned probability
and define it as the sampling zone of the convergent zone.
Drawing analogy from the KMeans Guarantee algorithm,

Algorithm 1: Differentially Private 𝑘−Means
SubClustering Algorithm

Input: X = {𝑥1, 𝑥2, ...., 𝑥𝑁}: Dataset with N data
points

k: number of clusters
𝜖𝑒𝑥𝑝: ExpDP privacy budget
𝜖 𝑙𝑎𝑝: Laplacian privacy budget for the converged
centroids.
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐾: number of sub-clusters per cluster
Output: S: Final clustering centroids

1 Select 𝑘 centroids S(0) = (𝑆(0)1 , 𝑆(0)2 , ..., 𝑆(0)𝑘 )
uniformly from X.

2 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑜𝑟𝐿𝑙𝑜𝑦𝑑 = number of iterations to run the
algorithm.

3 for iters i in 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑜𝑟𝐿𝑙𝑜𝑦𝑑 do
4 for each Cluster i at Iteration t do
5 𝐶(𝑡)𝑖 ← assign each 𝑥𝑗 to its closest

centroid 𝑆𝑖𝑡−1;
6 𝑆𝑖𝑡 ← centroid of 𝐶𝑖𝑡;
7 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑍𝑜𝑛𝑒𝑖(𝑡) ← List of data points

inside the spherical region having 𝑆𝑖𝑡 and
𝑆𝑖𝑡−1 as the endpoints of its radius.

8 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑍𝑜𝑛𝑒𝑖
(𝑡) ← run Algorithm 2 using

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑍𝑜𝑛𝑒𝑖(𝑡) , 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐾;

9 ̂𝑆𝑖
(𝑡)

← sample from 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑍𝑜𝑛𝑒𝑖
(𝑡)

using ExpDP with 𝑞 and 𝜖𝑒𝑥𝑝;

10 𝑆𝑖(𝑡) ← ̂𝑆𝑖
(𝑡)

11 Publish: 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑍𝑜𝑛𝑒𝑖
(𝑡), 𝑞, 𝜖𝑒𝑥𝑝, 𝑆𝑖(𝑡)

12 S ← add laplace noise with 𝜖 𝑙𝑎𝑝 to S(𝑡);

Algorithm 2: SubClusterSamplingAlgorithm
Input: ConvergentZone: Convergent Zone
internalK: Subclustering K
Output: 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑍𝑜𝑛𝑒𝑡𝑖

1 S(𝑡): Mean of 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑍𝑜𝑛𝑒𝑖(𝑡)

2 ConvergentZoneClusters ← Cluster
ConvergentZone using Lloyd’s algorithm and
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐾

3 ConvergentZoneProbability ← Assign
probabilities to the ConvergentZoneClusters
proportional to the number of points inside each
cluster.

4 SamplingZonei
(t) ← Sample a cluster from the

ConvergentZoneClusters using
ConvergentZoneProbability

5 Return: SamplingZonei
(t);



Figure 2: Overview of SubCluster Guarantee Approach

our orientation controller is this sub-clustering and sam-
pling technique. Intuitively, our algorithm ensures that
the sampling zone lies towards the region containing a
higher number of data points in an expected case. With
this, we guarantee that our differentially private centroid
moves in the direction where the number of data points
is higher, incorporating the intuition of Lloyd’s algorithm
without compromising on the 𝜖-differential privacy. The
probability of a differentially private centroid at 𝑖 − 1𝑡ℎ
iteration to move in the direction of a more populated re-
gion at the 𝑖𝑡ℎ step of Lloyd’s algorithm is also high. Thus,
we introduce the concept of sub-clustering in the conver-
gent zone and consequently sample one sub-cluster as
our sampling zone.

We sample the centroid from the sampling zone using
the ExpDP mechanism. Finally, we inject Laplace noise
in the centroids of the clustering when our algorithm
converges. It is because the differentially private cen-
troids obtained are a subset of one of the local minima
at which Lloyd’s algorithm converges. The overview of
the proposed approach can be seen in (Figure : 2). We
show that a randomized iterative algorithm satisfies an
invariant (given in the claim of Lemma 1) and always
converges (Proof: refer Lemma 1). Finally, we show
that the SubCluster algorithm is a randomized iterative
algorithm that satisfies the invariant(given in Lemma 1)
(Proof: Refer Lemma 2).

We have four main steps to update the centroids at
each Lloyd step t.

1. Let the differentially private centroid at iteration

𝑡 − 1 for a cluster 𝑖 be ̂𝑆𝑖
(𝑡−1)

. Using this centroid,
run one iteration of Lloyd’s algorithm to get the
current Lloyd’s centroid 𝑆𝑖(𝑡) for each cluster 𝑖.

2. Using 𝑆𝑖(𝑡) and 𝑆𝑖(𝑡−1), generate a convergent zone

for each cluster 𝑖 as described in 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡 𝑖𝑜𝑛 3.
3. SubCluster the convergence zone and sample one

of the sub-cluster as our sampling zone based on
the probability assigned to each sub-cluster. The
probability assignment is directly proportional to
the number of points in each sub-cluster.

4. Sample a differentially private ̂𝑆𝑖
(𝑡)

with EXpDP
in the sampling zone generated in step 3.

Our approach surpasses the baseline approach in terms
of clustering quality while maintaining the same DP re-
quirements as that of the KMeans Guarantee approach,
which is evident from the results obtained (Figure :
3). The better clustering quality is a result of our sub-
clustering strategy to perturb centroid with a higher prob-
ability than the baseline approach towards the direction
of the actual centroid generated by Lloyd’s algorithm.
The pseudo-code of our approach is shown in the Algo-
rithm 1 and Algorithm 2.

Lemma 1: [3] A randomised iterative algorithm 𝜏 is

convergent if, in 𝐶(𝑡)𝑖 (Cluster i at iteration t), ̂𝑆𝑖
(𝑡)
(sampled

centroid using 𝜏), 𝑆𝑖(𝑡−1)(centroid before recentering) and

𝑆𝑖(𝑡)(centroid of 𝐶
(𝑡)
𝑖 ) satisfies the invariant, || ̂𝑆𝑖

(𝑡)
−𝑆𝑖(𝑡)|| <

||𝑆𝑖(𝑡) − 𝑆𝑖(𝑡−1)|| in Euclidean distance, ∀𝑡, 𝑖.
We reproduce this lemma from our baseline approach

[3]. Lemma1 and Lemma 2 together provides the com-
pleteness and proof for the convergence of our approach.
If the distance between the sampled centroid ̂𝑆(𝑡)𝑖 from

the 𝐶(𝑡)𝑖 and the new centroid 𝑆(𝑡)𝑖 is less than the distance

between the new 𝑆(𝑡)𝑖 and the old centroid 𝑆(𝑡−1)𝑖 , then the
random iterative algorithm will always converge. Intu-
itively, the loss of 𝐶(𝑡)𝑖 is minimum if the mean of 𝐶(𝑡)𝑖 is
taken as centroid. But, if we slightly shift from the mean
of 𝐶(𝑡)𝑖 , then the loss will increase. However, if we can

ensure that any sampled point from 𝐶(𝑡)𝑖 fulfills the condi-

tion: || ̂𝑆𝑖
(𝑡)

− 𝑆𝑖(𝑡)|| < ||𝑆𝑖(𝑡) − 𝑆𝑖(𝑡−1)||, it will lead to a lesser
loss than 𝐽 𝑆

(𝑡−1)
𝑖 , thus, resulting into convergence of the

randomised iterative algorithm. For the mathematical
proof, refer [3].

Lemma 2: Differentially Private 𝑘−Means SubClus-
tering approach (SubClustering) is a randomised itera-

tive algorithm that satisfies the invariant || ̂𝑆𝑖
(𝑡)

− 𝑆𝑖(𝑡)|| <
||𝑆𝑖(𝑡) − 𝑆𝑖(𝑡−1)||.
Proof: SubClustering is an iterative algorithm that
samples a set of centroids for each iteration with Ex-
pDP mechanism, thus, making it a randomised itera-
tive algorithm. It subclusters the points lying inside
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑍𝑜𝑛𝑒(𝑡)𝑖 . After subclustering, it samples one
subcluster (sampling zone) with the assigned probabili-
ties (linearly proportional to the number of data points in
subcluster). Finally, it samples a datapoint from the sam-



Figure 3: Above figures plots the graph between costGap and epsilon budget for two approaches, the baseline as KmeansGuar-
antee and our approach SubClusterGuarantee. The algorithm was tested on four dataset, Digits (top-left), Wine (top-right),
Breast Cancer (bottom-left), and Iris (bottom-right) datasets.

pled subcluster with ExpDP and call it as the centroid of
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑍𝑜𝑛𝑒(𝑡)𝑖 . Thus, our sampling zone always lies

inside 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑍𝑜𝑛𝑒(𝑡)𝑖 . Therefore, the sampled point

lies inside 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑍𝑜𝑛𝑒(𝑡)𝑖 and it satisfies the invariant

|| ̂𝑆𝑖
(𝑡)

− 𝑆𝑖(𝑡)|| < ||𝑆𝑖(𝑡) − 𝑆𝑖(𝑡−1)||.

5. Experimental Setup

5.1. Dataset Used
We used following four datasets to test our work Sub-
Cluster Guarantee upon the baseline:

1. Iris [13] dataset comprises total of 150 datapoints
with four features and three classes.

2. Wine[13] dataset comprises total of 178 data-
points with 13 features and three classes.

3. Breast Cancer[13] dataset comprises total of
569 datapoints with 30 features and two classes.

4. Digits[13] dataset comprises of 1797 datapoints
with 64 dimensions and 10 classes.

5.2. Metric for Clustering Quality
To evaluate the clustering quality, we used the follow-
ing equation to calculate the normalised difference be-
tween the differentially private algorithms (here, Sub-

Cluster Guarantee approach) (𝐶𝑜𝑠𝑡𝐷𝑃) and Lloyd’s algo-
rithm (𝐶𝑜𝑠𝑡𝐿𝑙𝑜𝑦𝑑):

𝐶𝑜𝑠𝑡𝐺𝑎𝑝 =
|𝐶𝑜𝑠𝑡𝐷𝑃 − 𝐶𝑜𝑠𝑡𝐿𝑙𝑜𝑦𝑑|

𝐶𝑜𝑠𝑡𝐿𝑙𝑜𝑦𝑑
(1)

The smaller CostGap [3] represents the better quality of
clustering. In the experiments, we compare the clustering
quality of SubCluster Guarantee with KMeans Guarantee.

6. Results and Discussion
We tested our algorithm on four datasets. All the datasets
have different dimensions ranging from 4 to 64 dimen-
sions and training sets ranging from 150 to 1800. As
defined in metric smaller gap represents the better clus-
tering quality. From the (Figure : 3) we can observe
that, cost gap for all the dataset is smaller or equal to
the baseline. Thus, it is evident that our algorithm has
better clustering quality than the existing work for all the
datasets experimented. We varied internalK (parameter
for number of sub-clusters) from 2 to 5.
Each experiment was conducted 30 times in the case

of the Iris, Wine, and Breast cancer dataset and 10 times
for digits dataset due to computational constraints. Fi-
nally, for each dataset, we took the average of all the
experiments as our final result for plotting the graphs.



Figure 4: Above figures plots the graph between costGap and epsilon budget for different internalK in SubClusterGuarantee
Algorithm. The algorithm was tested for internalK=2,3,4,5 for all the four datasets, Digits (top-left), Wine (top-right), Breast
Cancer (bottom-left), and Iris (bottom-right). Please note: K and internalK are the same parameter

Comparing the SubCluster Guarantee (proposed ap-
proach) and K-means Guarantee approach (baseline) by
taking an average of all the cost gaps for varied epsilon,
and finally taking the ratio between K-means and Sub-
Cluster approach:

1. In case of Iris dataset, the cost gap is 1.1 times
smaller than baseline algorithm.

2. In case ofWine dataset, the cost gap is 4.13 times
smaller than baseline algorithm.

3. In case of Breast_Cancer dataset, the cost gap
is 2.83 times smaller than baseline algorithm.

4. In case of Digits dataset, the cost gap is almost
same as that of baseline algorithm.

6.1. Detailed Analysis
1. Iris: Iris dataset has four dimensions and a very

small training set of 150 data points. Our al-
gorithm achieves better clustering quality than
the baseline algorithm for smaller epsilon values.
Since the number of data points is less in Iris, the
impact of sub-clustering reduces, resulting in its
performance similar to that of the baseline ap-
proach. From (Figure : 4), we can observe that
changing the value of intenalK has a small impact
on the costGap due to a small number of points
in each sub-cluster. This is because there is a pos-
sibility that a sub-cluster has no data point when

internalK is increased causing zero probability
sub-cluster regions.

2. Wine: The wine dataset has 13 dimensions and
178 data points in the training set. Our algorithm
performs significantly better than the baseline, as
observed in (Figure : 3). It is because the base-
line algorithm is constrained to choose a theta in
any abrupt direction ranging from [−𝜋/2, 𝜋/2] as
shown in (Figure : 1). In contrast, our algorithm
shifts the centroids in the direction where the fu-
ture centroid of Lloyd’s algorithm is more likely
to move (in the expected case). From (Figure : 4),
it is evident that internalK=4 for the wine dataset
performs better than the rest of the internalK val-
ues. Here, the number of dimensions is more than
Iris. Therefore, the spatial arrangement will be in
an n-sphere which allows better sub-clustering.

3. Breast_Cancer: Breast_Cancer dataset has 569
data points in its training set and 30 dimensions.
Our algorithm performs exceptionally better than
the baseline, with internalK equal to 4. From
(Figure : 3), we can observe that there is no
monotonous trend for the costGap. Trends are
visible in other datasets due to the larger num-
ber of classification classes, whereas this dataset
has only two classes. Thus, adding Laplace noise
does not have a relation to the clustering quality.
Increasing the internalK improves the clustering



quality, with internalK being 4 having the least
loss. It is because this dataset has a high number
of dimensions and a larger number of training
points than other datasets.

4. Digits: It has 64 dimensions and 1797 data points
in the training dataset. Although it has a large
number of dimensions, our algorithm has a very
small improvement over the baseline algorithm as
seen in (Figure : 3). Because of the higher time
complexity of our algorithm, it is hard to tune
the internalK parameter. As the number of sam-
ples in a dataset increases, the internalK should
increase because a single cluster can contain a
large number of data points. But, due to limited
computational resources, we were not able to ex-
periment with it further. We took internalK to
be 5 for our experiments as it performed best in
the range [2, 5] as in the (Figure : 4). One of the
intriguing findings in the dataset’s results is that
the curves based on the internalK have a clearly
evident trend, which is a result of the large num-
ber of training data points.

Our proposed algorithm significantly improves over the
baseline in terms of clustering quality, especially for the
wine and breast cancer dataset. In addition our algorithm
maintains the same DP requirements as that of existing
works.

7. Conclusion
This work presents a novel method for improving the
clustering quality of differentially private k-means al-
gorithms while ensuring convergence. The novelty of
our approach is the sub-clustering of the cluster to select
the differentially private centroid, which has a higher
probability of moving in the direction of the next cen-
troid. We proved that our work surpasses the current
state-of-the-art algorithms in terms of clustering quality.
Especially for the Wine and Breast_Cancer dataset, the
clustering quality was significantly improved by 4.13 and
2.83 times than the baseline. In addition, we maintain
the same DP requirements as that of baseline and other
existing approaches.

8. Future Work
• In this work, we proved our claim using empirical
results. We further plan to validate the results
by providing mathematical bounds for the con-
vergence degree and rate of the SubClustering
Lloyd’s algorithm. In terms of clustering qual-
ity, the proposed algorithm in this work is com-
pared with k-means guarantee clustering only;

to prove the effectiveness of our work, we plan
to experiment with other algorithms in the lit-
erature including, PrivGene [14], GUPT [8] and
DWork [7].

• The DP requirements in this work are the same
as that of past literature, but in the future, we
plan to explore ways to improve the current DP
guarantees while maintaining the same clustering
quality as in this work.

• We used Exponential and Laplace mechanisms
of DP in the proposed approach; we further plan
to explore the third mechanisms, i.e., sample and
aggregate framework, by integrating it with the
current algorithm.

• In our algorithm, the number of data points inside
a cluster is variable. Thus we plan to choose an
internalK, custom to the size of the cluster to
improve the clustering quality.
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