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Abstract
Model-agnostic machine learning interpretability methods like LIME which explain the predictions of elaborate machine
learning models suffer from a lack of robustness in the explanations they provide. Small targeted changes to the input can
result in large changes in explanations even when there are no significant changes in the predictions made by the machine
learning model. This is a serious problem as it undermines the trust one has in the explanations made. We propose to solve the
problem by smoothening the predictions of the machine learning model as a preprocessing step. We smoothen the predictions
by taking multiple samples from the neighbourhood of each input data point and averaging the output predictions. Through
our preliminary experiments, we show that the explanations are more robust because of smoothening thus making them
more reliable.
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1. Introduction
The sudden improvement in performance of machine
learning through deep learning and tree ensemble meth-
ods has led to an explosion in the adoption of machine
learning in a wide variety of prediction tasks in multi-
ple domains like image, text, tabular data, etc. While
the increased performance has made machine learning
models much more useful in practice, it has come at the
cost of interpretability; one can no longer trivially ex-
plain the decisions made by machine learning models
the same way one could for statistical models like lin-
ear regression in the past. While we can do without
interpretability in cases where the consequences of the
downstream decisions are little, like in the case of recom-
mending movies, interpretability becomes important in
high-stakes situations like predicting whether or not a
person has cancer[1]. In such a case, it is not just impor-
tant to know what the predictions of the model are, but
also how the predictions were made.

A number of model-agnostic interpretability methods
exist to help explain the predictions made by machine
learning models. Partial Dependence Plots[2] show the
marginal effect of a feature on the outcome. Individual
Conditional Expectation plots[3] do the same by making
separate plots for each individual thus allowing one to
see the variance (and not just the mean) of the effect of
each feature. The above two have a problem wherein
we consider the effect of very unlikely counterfactual
scenarios in the case where the features in the dataset
are strongly correlated.
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Shapley values[4] take a game-theoretic approach and
assume different features take part in a collaboration to
assign a score for an instance. The shapley value for a fea-
ture is the average increment in the score obtained by the
inclusion of said feature in the collaboration. While using
shapley values has a strong mathematical foundation, it
has the downside where the computational cost for cal-
culation is exponential to the number of features. While
methods like Tree SHAP[5] exist to more efficiently cal-
culate the values, there are issues with the robustness[6]
of shapley values which have not yet been resolved.

Local Interpretable Model-Agnostic Explanations
(LIME)[7] is a method that estimates a local surrogate
model in the vicinity of each data point and uses the
coefficients of the local model to interpret the decisions
made by the model. It is related to SHAP through Ker-
nel SHAP[8], a way to get approximate SHAP values.
One advantage of LIME over shapley values is that LIME
can produce sparse explanations which don’t rely on too
many features resulting in more human-friendly explana-
tions. However, issues regarding the robustness[6] of the
explanations provided by LIME have been raised. Our
goal in this paper is to find ways to improve the robust-
ness of the interpretations made by LIME to improve the
reliability and therefore trustworthiness of the provided
explanations.

2. Problem Setup
The original LIME algorithm works as follows, given a
trained model and a target data point:

1. Sample data around the neighbourhood of the
data point.

2. Get the predicted values for the sampled data
points.
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3. Fit a surrogate model to the generated data
weighted by distance from the target data point.

4. Explain the prediction of the main model with
the coefficients of the surrogate model.

The explanations generated by the above algorithm can
be unstable for a number of reasons.

One source of instability is the sampling of data
points[9] that is done randomly, ignoring any correla-
tion between features. Methods have been developed
to estimate the required number of samples to get sta-
ble explanations[10] or do away with randomness in the
sampling altogether[11].

Another potential cause for instability in explanations,
especially pertinent to the case of tabular data, is the
discretization of the numerical features. While for the
most part this can yield more consistent explanations,
target data points near the boundaries can have unstable
explanations even when the model predictions (which
don’t rely on discretization) in the vicinity are relatively
stable.

3. Related Work
The measurement of the stability (or lack thereof)
of LIME’s explanations isn’t a new research problem.
Alvarez-melis et al.[6] have shown that small pertuba-
tions to the input can cause a large change in the output
without much of a change in the predictions made by the
model. They use the definition of Lipschitz continuity
to get the maximum possible difference in explanation
within the neighbourhood of the data point to be ex-
plained. Their approach is similar to prior work that
was done to inspect the lack of robustness of predictions
made by neural networks[12].

Visani et al.[13] introduce two novel metrics grounded
in statistics to measure the extent to which repeated sam-
pling of the data leads to a variance in the explanations.
Their metrics quantify the variance of the selected fea-
tures and coefficient values, the lower the better.

Much more recently, Garreau et al.[14] performed a
very deep analysis into the workings of LIME for tabular
data and (among other things) found that when the sur-
rogate model (the one trained for interpretability) uses
ordinary least squares, and the number of sampled data
points is large, the estimations by LIME are robust to mild
perturbations. This suggests that the cause of instability
could lie elsewhere.

4. Our Method
For our method, we smoothen the predictions of the
model we want to explain with the help of Gaussian
noise. We do so because we hypothesize that the lack

Table 1
Preliminary experiments on the Boston dataset (the lower the
score the better)

Algorithm Lipschitz Discontinuity Score

LIME 2.78
LIME smoothed 2.60

of robustness in the explanations caused by LIME is not
because of LIME itself but rather the jaggedness of the
predictions made by the model.

We smoothen the predictions by averaging the predic-
tions made on random perturbations on the data points.
We consider the case where all features of the data point
are numeric and continuous in this study. We perturb
each feature by adding it with gaussian noise of zero
mean. We refer to the standard deviation of the gaussian
noise to be the "strength" parameter. This is because the
greater the "strength" parameter, the larger the pertur-
bations and the smoother the averaged predictions will
be (assuming enough samples) and so the "stronger" the
smoothening effect. We choose a strength value of 0.1
for our experiments and take 100 random samples for
each data point for the smoothening process.

5. Experiments and Discussion
Our hypothesis is that smoothening the predictions will
yield explanations that are more robust. To test this hy-
pothesis, we look at the extent to which the variance of
LIME’s explanations change before and after smoothen-
ing the predicting function. We define a metric called Lip-
schitz Discontinuity Score (LDS) Score which is derived
from the expression used in the definition of Lipschitz
Continuity. Our approach is similar to the one used in
[6]. LDS is defined as follows:

𝐿𝐷𝑆 =
1

𝑁

𝑁∑︁
𝑖=1

max
𝑗 ̸=𝑖

||𝑓(𝑥𝑖)− 𝑓(𝑥𝑗)||2
||𝑥𝑖 − 𝑥𝑗 ||2

(1)

In the above expression, N is the number of records in the
dataset, i and j are indices to denote individual records
and take values from 1 to N, and 𝑓(𝑥𝑖) is the vector of
coefficients we get from the explanations of the LIME
algorithm.

We perform preliminary experiments on the publicly
available Boston dataset, a dataset with 12 covariates for a
regression problem. We parameterize the LIME algorithm
to explain with only 3 features. The base model used is
the random forest regressor from scikit-learn. We use the
default parameters of the random forest since it suffices
for the purposes of this study. We estimate the LDS
on the Boston dataset using 10-fold cross validation. In
table 1, we compare the LDS of the explanations of LIME



for two cases: with and without smoothening. We find
that there is a substantial improvement in the LDS when
smoothening the predictions, in line with our hypothesis.

6. Future Work
In this paper, we smoothen the predictions of the machine
learning model by sampling neighbouring points ran-
domly multiple times and taking the average of the out-
put. We do this to increase the robustness of the explana-
tions by LIME. We chose white noise since the approach is
similar to the original LIME algorithm, but since its intro-
duction, various improved sampling strategies have been
proposed that result in more robust explanations[15, 16].
Trying those other sampling methods for the purpose of
smoothening the predictions is beyond the scope of this
extended abstract and can be considered as one avenue
for future research.

While we perform preliminary experiments with tabu-
lar data, our hypothesis can be potentially true for other
forms of data, more so due to the greater dimensionality
of data like image, text, etc. In order to extend the idea
to other forms of data, the key will be to find how best
to perturb the input to get smooth predictions.

Lastly, we test our hypothesis with LIME and found
promising results. Since the instability of explanations
of other interpretability methods can also be (at least
partly) explained by unstable predictions of the machine
learning model, we suspect our idea can be applied to
improve other model interpretability methods too.

As we can see, there is a lot of scope for future work
and we are excited to see how research develops in this
direction.

7. Conclusion
In this paper, we propose a way to improve the robustness
of LIME, a model-agnostic explainer of the predictions
of machine learning models. We propose smoothening
the predictions made by the model to increase the con-
sistency of the predictions made by the model, thereby
making the explanations more trustable. We explain how
we smoothen predictions using random noise and per-
form some preliminary experiments on publicly-available
datasets to achieve promising results. We also outline
future steps that can be taken to increase the scope of
the research.
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