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Abstract
Nonlinear dimensionality reduction (NLDR) algorithms such as 𝑡-SNE are often employed to visually analyze high-dimensional
(HD) data sets in the form of low-dimensional (LD) embeddings. Unfortunately, the nonlinearity of the NLDR process
prohibits the interpretation of the resulting embeddings in terms of the HD features. State-of-the-art studies propose
post-hoc explanation approaches to locally explain the embeddings. However, such tools are typically slow and do not
automatically cover the entire LD embedding, instead providing local explanations around one selected data point at a
time. This prevents users from quickly gaining insights about the general explainability landscape of the embedding. This
paper presents a globally local and fast explanation framework for NLDR embeddings. This framework is fast because it
only requires the computation of sparse linear regression models on subsets of the data, without ever reapplying the NLDR
algorithm itself. In addition, the framework is globally local in the sense that the entire LD embedding is automatically
covered by multiple local explanations. The different interpretable structures in the embedding are directly characterized,
making it possible to quantify the importance of the HD features in various regions of the LD embedding. An example
use-case is examined, emphasizing the value of the presented framework. Public codes and a software are available at
https://github.com/PierreLambert3/glocally_explained.
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1. Introduction
Dimensionality reduction (DR) computes low-
dimensional (LD) representations of high-dimensional
(HD) data, e.g., to visually explore them or to curb the
curse of dimensionality [1]. The relevance of a DR
method for a given visualization task typically depends
on its preservation of the HD neighborhoods in the
resulting LD embedding [2]. Two major frameworks
have been proposed for projecting from HD to LD
coordinates [1]: one is based on preserving distances [3],
while the other is based on reproducing neighborhoods
[4, 5]. For instance, distance-preserving methods like
principal component analysis (PCA) [6] and classical
metric multidimensional scaling (MDS) [3] project HD
samples linearly; nonlinear variants of these methods
(e.g., [7, 8]) aim to preserve weighted Euclidean or
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approximately geodesic distances. Numerous other
schemes have also been developed that determine the
LD embedding design based on HD affinity matrices
[9, 10]. Regrettably, the local neighborhood preservation
of all of these techniques is limited in visualization
contexts by the norm concentration phenomenon
[11, 12], most probably due to their distance-preserving
nature [1, 13]. In contrast, the native shift invariance
of neighbor embedding (NE) algorithms [14] such as
Stochastic Neighbor Embedding (SNE) [5] mitigates
this phenomenon, leading to astonishing DR quality.
These achievements have naturally encouraged the
development of numerous SNE-based methods, such
as the popular 𝑡-SNE [15], UMAP [16], multi-scale
perplexity-free approaches [17, 18, 19], etc.

While these nonlinear DR (NLDR) algorithms deliver
impressively faithful LD embeddings with respect to the
HD data, their intrinsic nonlinearity greatly affects the
interpretability of the LD representations. Indeed, the
obtained LD dimensions are hardly or most often not in-
terpretable in terms of the HD features [20]. Since NLDR
methods are not interpretable by design, previous studies
have developed techniques to analyze and interpret the
LD embeddings, which is known as post-hoc explanation
or interpretability [21]. One can for instance cite [22],
which proposes to explain visual LD clusters thanks to
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Figure 1: Interface for the proposed globally local and fast explanation framework.

decision trees. On the other hand, [21] locally explain
𝑡-SNE embeddings by adapting LIME; the authors argue
that explaining the entire embedding at once would be
difficult, as 𝑡-SNE usually does not preserve large HD
distances well [20]. However, the local nature of 𝑡-SNE
motivates the computation of local explanations in the LD
embedding; LIME can then be revisited and performed
locally around a user-selected data point. Nevertheless,
such an approach has two main limitations: (1) it is slow,
and (2) it does not cover the entire LD embedding auto-
matically, as local explanations are only provided around
data points that have been selected, one at a time. This
approach is slow because, in order to explain a given data
point’s position in the embedding, 𝑡-SNE must be reap-
plied to many artificially simulated points around that
data point; the non-parametric nature of 𝑡-SNE, combined
with its significant computational cost, greatly increases
computation time, which decreases the potential for in-
teractivity. The second limitation of the method is that
the user only receives a local explanation around the
selected point in the embedding; she must thus explore
the various regions of the embedding manually. This is
not realistic in practice, especially when working with
large databases, and even more so since the approach is
not fast.

This paper aims to address these limitations by devel-
oping a fast and globally local explanation framework
for NLDR embeddings. Based on the BIOT explanation
approach [23], this framework learns sparse linear re-
gression models for subsets of the data set and does not
require a reapplication of the NLDR algorithm, making it

fast. The globally local nature of our approach refers to
the fact that multiple local explanations are automatically
computed over the entire LD embedding (i.e., globally).
Such an automatic processing enables the user to directly
glimpse the overall explainability landscape of the em-
bedding, as well as a structured overview of the impact of
the HD features in the various parts of the LD embedding.
The regions for which local explanations are learned in
the LD embedding can be determined in different ways
[24]: using a clustering algorithm such as K-means, as
in this work, thanks to a manual selection performed by
the user, or by recursively splitting the embedding into
subcells along the LD dimensions based on a model error
criterion.

Our fast and globally local explanation framework can
be viewed as taking the best of both linear and nonlin-
ear projection worlds: the LD embedding can indeed be
generated by a nonlinear DR algorithm, achieving much
better DR quality in terms of data visualization thanks to
increased flexibility and adaptability [12, 15, 2]. On the
other hand, the computed local explanations are linear
and sparse, which promotes interpretability. Moreover,
the globally local explanations make it possible to readily
depict the importance of the HD features in the different
regions of the LD embedding. As an experiment, an exam-
ple use-case on a public data set is presented, highlight-
ing the usefulness of the proposed approach. Free code
and software are publicly available online (https://github.
com/PierreLambert3/glocally_explained), enabling the
easy use of the proposed framework.

This paper is organized as follows: Section 2 first re-
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views some related works. Section 3 then presents our
proposed approach, while Section 4 discusses an example
use-case. Section 5 draws final conclusions.

2. Related works
Interpreting NLDR techniques is a challenging task. To
tackle this challenge, various approaches have been pro-
posed. Some papers (e.g., [25, 26, 27]) have proposed
methods for explaining the LD embedding dimensions
with respect to the HD features. Since local NLDR algo-
rithms such as 𝑡-SNE do not effectively preserve large dis-
tances, explaining the resulting embedding dimensions
with these methods may be misleading. Other methods
attempt to interpret NLDR results by explaining visual
clusters [22, 28, 29]. For example, in [22], the authors pro-
pose an interactive pipeline for explaining clusters in the
LD embedding using decision trees; this pipeline enables
the user to manually select LD clusters, which are then
explained in terms of the HD features with a decision
tree, an interpretable model. The resulting model can
be used to explain why certain data points are clustered
together and to identify the HD features that distinguish
the different clusters. In contrast, our proposed approach
aims to understand intra-cluster positions, i.e., the HD
features that make two points from the same cluster lie
at different corners of this cluster. Moreover, our frame-
work makes it possible to not only explain LD clusters,
but more generally interpret the overall positions of the
points in the embedding.

Other existing methods aim to locally and linearly ex-
plain the position of a specific instance in the LD space.
In particular, [21] adapts LIME [30] to locally explain 𝑡-
SNE embeddings. The original version of LIME involves
three steps. First, it samples instances around a point of
interest. Then, it queries the model for these instances.
Finally, it fits an interpretable model with the result of the
queries. In [21], the authors use a SMOTE oversampling
technique [31] to create new artificial neighbors for the
point of interest. To query 𝑡-SNE, the entire DR process
is re-applied for each sampled instance, since the 𝑡-SNE
mapping function is unknown. Finally, BIR [32] —which
is the predecessor of BIOT [23], a method employed in
our work —is used to produce local explanations; BIR
finds the rotation of the queried sampled data that results
in the best explanation model (in terms of model sparsity
and error). While the approach presented in [21] pro-
vides nice intuitions about the LD embedding structure,
it has several limitations. First, it can only compute one
local explanation at a time, for one selected point. Sec-
ond, the obtained explanation is highly dependent on the
artificial sampling. Finally, running the entire NLDR pro-
cess for all sampled instances is (very) time consuming,
and thus prohibits interactivity. The approach presented

in this paper addresses the limitations of [21] by (1) di-
rectly providing local explanations everywhere in the LD
embedding (i.e., globally local explanations), (2) avoid-
ing the need to sample new artificial data points, and (3)
relying only on the calculation of linear regression mod-
els, which ensures fast processing and hence facilitates
interactivity.

3. Proposed approach
This section introduces our proposed approach for glob-
ally local and fast explanations of NLDR embeddings.
Section 3.1 first summarizes our notations. Section 3.2
then details our methodology, and Section 3.3 finally
presents an optional fine-tuning strategy.

3.1. Notations
Matrices are denoted with bold-faced capital letters (e.g.,
𝑋), vectors with bold-faced lower-case letters (e.g., 𝑥) and
scalars with lower-case letters (e.g., 𝑥). A single element
from amatrix is denotedwith a lower-case letter with two
subscripts (e.g., 𝑥𝑖𝑗), the first indicating the row and the
second indicating the column. Instances are indexed by
the letter 𝑖 ∈ {1, ..., 𝑛}, features by the letter 𝑗 ∈ {1, ..., 𝑑},
embedding dimensions by the letter 𝑘 ∈ {1, ..., 𝑚} and
regions or subcells of the embedding by the letter ℓ ∈
{1, ..., 𝐿}.

3.2. General methodology
In [23], the Best Interpretable Orthogonal Transforma-
tion (BIOT) method was proposed to explain the dimen-
sions of multidimensional scaling (MDS) embeddings. In
the case of 𝑡-SNE, such an explanation strategy is not
directly applicable because 𝑡-SNE only preserves local
structure from the high-dimensional data. However, as
proposed in [21], 𝑡-SNE embeddings may be explained
locally. Instead of learning a BIOT explanation model for
the entire embedding (i.e., a single global explanation),
we propose learning different BIOT models for different
regions (or subcells) of the embedding (i.e. local expla-
nation). For a given region, the BIOT model identifies
the features that best explain the positioning of points
within that region of the embedding, independently of all
other regions. This approach can be applied to any non-
linear 2-D embedding, including embeddings generated
by 𝑡-SNE and its extensions (e.g., [33, 19]) or by other
NLDR algorithms (e.g., [16, 17, 9, 34]).

Let𝑋 (𝑛×𝑑) be the matrix of 𝑑 features used to generate
the embedding 𝑌 (𝑛 × 2). Furthermore, let �⃗� (𝑑 × 2) and 𝑤0
(2 × 1) contain the weights and intercepts for the linear
models relating the features in 𝑋 to each dimension of the
embedding 𝑌, where there is one model per dimension.



Finally, 𝑅 (2𝑥2) is an orthogonal transformation matrix
that is applied to 𝑌 to promote model sparsity and pre-
diction quality, and 𝜆 > 0 is a hyperparameter to control
model sparsity. For 2-D embeddings, the BIOT objective
function for global explanation is

𝐽0(�⃗� , 𝑤0, 𝑅) =
1
2𝑛

𝑛
∑
𝑖=1

2
∑
𝑘=1

(𝑦⊤𝑖 𝑟𝑘−𝑤0𝑘−𝑥
⊤
𝑖 𝑤𝑘)2+𝜆

2
∑
𝑘=1

‖𝑤𝑘‖1,

(1)
which is minimized w.r.t �⃗�, 𝑤0 and 𝑅 under the constraint
that 𝑅 is an orthogonal matrix (𝑅𝑅⊤ = 𝑅⊤𝑅 = 𝐼2).

Clearly, this objective function can be extended to the
case where different model parameters �⃗� (ℓ), 𝑤 (ℓ)

0 and 𝑅(ℓ)
are optimized for different regions ℓ of the embedding,
where the set of instances in region ℓ is denoted 𝒮ℓ. In
practice, the best segmentation of the embedding into re-
gions is unknown. In this paper, we propose segmenting
the embedding automatically by performing K-means on
the embedding data. The choice of the hyperparameter 𝐾
depends on the topology apparent in the embedding and
of the granularity of details desired by the user. Other
strategies are possible, for instance by recursively divid-
ing the LD dimensions along their medians.

3.3. Fine-tuning
In Section 3.2, the proposed strategy for automatic seg-
mentation (K-means) depends on the coordinates of the
instances in the embedding. However, the shape and size
of the zone that can be explained may not directly depend
on the spatial coordinates of the embedding. This means
that the regions identified using K-means may not be the
most optimal with respect to the quality of the resulting
explanations. In some cases, it is hence useful to fine-
tune the final regions by directly considering explanation
quality. To do so, we propose a method called Clustered
BIOT, which reassigns instances 𝑖 to explanation regions
𝒮ℓ based on a modification of BIOT. Further details on
Clustered BIOT can be found in Appendix A.

4. Experiments and discussion
This section presents an example use-case for the pro-
posed method using an interactive user interface. This
user interface is available on the public repository in-
dicated in the abstract. All of the featured embeddings
are representations of the winequality-red dataset, avail-
able in the UCI machine learning repository [35]. This
data set contains 11 physico-chemical variables describ-
ing various red wines. The embeddings are produced by
a recent NE algorithm that mixes 𝑡-SNE gradients with
those of a fast stochastic approximation of MDS, which
preserves HD data structures across multiple scales [34].

The interface displayed in Fig. 1 shows an embedding
with multiple local linear explanations: each explanation
is composed of a green and a burgundy axis. Explanation
A⃝ has been selected by the user; the color transparency
of the points increases linearly with the absolute differ-
ence between their position in the embedding and the
position predicted by the selected linear model (i.e., the
greater the error, the more transparent). This enables the
user to visualize the portion of the embedding for which
the selected linear model is faithful. The right panel de-
picts the relative importance of the HD features for each
axis of the selected explanation (i.e., A⃝ in this case), as
quantified by the local linear model weights; the horizon-
tal bar under each feature name represents the feature’s
signed linear projection weight (LPW) on the considered
axis, highlighting the importance of the feature in the
local explanation. For visual clarity, only the 5 features
with the greatest LPW magnitudes are depicted for each
local explanation axis. The feature total sulfur dioxide has
been selected by the user (mark B⃝). When selecting a
feature in the right panel, thick indicators appear on both
axes of all local explanations, with lengths proportional
to the LPW magnitudes of the corresponding feature on
all axes; mark C⃝ shows two such indicators. This makes
it possible to grasp the influence of an HD feature in the
various regions of the entire embedding.

Each view in Fig. 2 shows the importance of a particu-
lar feature in the embedding, with the respective feature
indicated at the bottom of the panel. The left view high-
lights that free sulfur dioxide is particularly important
when explaining the top portion of the embedding along
a vertical direction, whereas the horizontal direction can
be partly explained by the concentration of citric acid.
We observe that the structures apparent in the bottom-
left part of the embedding are not very dependent on the
three analyzed features.

5. Conclusion
This work proposes a globally local and fast explana-
tion framework that provides multiple local linear ex-
planations for 2-D data embeddings, enabling the user
to assess, at a glance, the importance of different HD
features, both locally and across the whole LD embed-
ding. An example use-case demonstrates that the method
can effectively reveal zones in the embedding where
points are organized according to specific HD features.
Finally, some accompanying software is provided (https:
//github.com/PierreLambert3/glocally_explained), target-
ing both DR researchers and experts seeking to analyse
their data with nonlinear dimensionality reduction visu-
alization tools.

Further works will include testing our framework with
actual end-users in the context of a real use case; their
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Figure 2: Importance of 3 features in the local explanations of an embedding.

feedback will enable the improvement of the various
design choices of our interface. In addition, a qualitative
comparison with other explainability methods such as
LIME will enable a more comprehensive evaluation of
the proposed method.
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A. Clustered BIOT
As mentioned in Section 3.3, the main method proposed
in this paper can be fine-tuned with a method we call
Clustered BIOT. Let 𝑧𝑖ℓ = 1 if instance 𝑖 is in region ℓ
and 0 otherwise. The matrix 𝑍 containing all elements
𝑧𝑖ℓ respects the general conventions of hard clustering
(each instance belongs to exactly one cluster and each
cluster contains at least one instance). Then, the objective
function for Clustered BIOT is

𝐽1(𝑍 , {�⃗� (ℓ), 𝑤 (ℓ)
0 ,𝑅(ℓ)}|𝐿ℓ=1)

= 1
2𝑛

𝑛
∑
𝑖=1

𝐿
∑
ℓ=1

𝑧𝑖ℓ
2
∑
𝑘=1

(𝑦⊤𝑖 𝑟
(ℓ)
𝑘 − 𝑤0

(ℓ)
𝑘 − 𝑥⊤𝑖 𝑤

(ℓ)
𝑘 )2 + 𝜆

2
∑
𝑘=1

‖𝑤 (ℓ)
𝑘 ‖1

(2)

which is minimized w.r.t 𝑍 and {�⃗� (ℓ), 𝑤 (ℓ)
0 , 𝑅(ℓ)}|𝐿ℓ=1 under

the constraints that (i) 𝑅(ℓ) is an orthogonal matrix ∀ℓ
and (ii) 𝑍 respects the clustering conventions above.

For fixed 𝑍, the solution for {�⃗� (ℓ), 𝑤 (ℓ)
0 , 𝑅(ℓ)}|𝐿ℓ=1 can be

found by training BIOT on each subset of instances 𝒮ℓ,
where 𝒮ℓ ∶= {𝑖 | 𝑧𝑖ℓ = 1}. For fixed �⃗� (ℓ), 𝑤 (ℓ)

0 and 𝑅(ℓ) and
a given instance 𝑖, the solution for 𝑧𝑖 is the vector that
minimizes

𝐿
∑
ℓ=1

𝑧𝑖ℓ
2
∑
𝑘=1

(𝑦⊤𝑖 𝑟
(ℓ)
𝑘 − 𝑤0

(ℓ)
𝑘 − 𝑥⊤𝑖 𝑤

(ℓ)
𝑘 )2. (3)

Since only one element of 𝑧𝑖 can be equal to one (instance
𝑖 can belong to only one cluster), the optimal cluster for
instance 𝑖 is whichever model ℓ minimizes the prediction
error:

argminℓ (𝑦
⊤
𝑖 𝑟

(ℓ)
𝑘 − 𝑤0

(ℓ)
𝑘 − 𝑥⊤𝑖 𝑤

(ℓ)
𝑘 )2. (4)

Thus, Clustered BIOT can be optimized by alternating
between clustering instances according to prediction er-
ror and fitting BIOT models to the clusters. An instance
𝑖 is assigned to cluster ℓ if BIOT model ℓ has the lowest
prediction error for that instance compared to the other
models.
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