
Fast optimization of weighted sparse decision trees for use
in optimal treatment regimes and optimal policy design
Ali Behrouz

1
, Mathias Lécuyer

1
, Cynthia Rudin

2
and Margo Seltzer

1

1University of British Columbia, Vancouver, British Columbia, Canada
2Duke University, Durham, North Carolina, USA

Abstract

Sparse decision trees are one of the most common forms of interpretable models. While recent advances have produced

algorithms that fully optimize sparse decision trees for prediction, that work does not address policy design, because the

algorithms cannot handle weighted data samples. Specifically, they rely on the discreteness of the loss function, which means

real-valued weights cannot be directly used. For example, none of the existing techniques produce policies that incorporate

inverse propensity weighting on individual data points. We present three algorithms for efficient sparse weighted decision

tree optimization. The first approach directly optimizes the weighted loss function but is computationally inefficient. Our

second approach scales better by transforming weights to integer values and using data duplication to transform the weighted

decision tree optimization problem into an unweighted, but larger, counterpart. Our third algorithm, which scales to much

larger datasets, uses a randomized procedure that samples each data point with a probability proportional to its weight. We

present theoretical bounds on the error of the two fast methods and show experimentally that these methods can be two

orders of magnitude faster than the direct optimization of the weighted loss, without losing significant accuracy.

Keywords
Optimal Sparse Decision Trees, Interpretable Machine Learning, Explainability, Optimal Treatment Regimes

1. Introduction
Sparse decision trees are a leading class of interpretable

machine learning models that are commonly used for pol-

icy decisions [e.g., 1, 2, 3]. Historically, decision tree opti-

mization has involved greedy tree induction, where trees

are built from the top down [4, 5, 6], but more recently

there have been several approaches that fully optimize

sparse trees to yield the best combination of performance

and interpretability [7, 8, 9, 10]. Optimization of sparse

optimal trees is NP-hard, and recent work has leveraged

the fact that the loss takes on a discrete number of val-

ues to provide a computational advantage [11, 12, 13, 14].

However, if one were to try to create a policy tree or esti-

mate causal effects using one of these algorithms, it would

become immediately apparent that such algorithms are

not able to handle weighted data, because the weights

do not come in a small number of discrete values. This

means that common weighting schemes, such as inverse

propensity weighting or simply weighting some samples

more than others [15, 16], are not directly possible with

these algorithms.

For example, consider developing a decision tree for

describing medical treatment regimes. Here, the cost

for misclassification of patients in different stages of the

Advances in Interpretable Machine Learning and Artificial Intelligence
’AIMLAI, October 21, 2022, Atlanta, GA
$ alibez@cs.ubc.ca (A. Behrouz); mathias.lecuyer@ubc.ca

(M. Lécuyer); cynthia@cs.duke.edu (C. Rudin); mseltzer@cs.ubc.ca

(M. Seltzer)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

disease could be different. To create an optimal policy,

we weight the loss from each patient and minimize the

sum of the weighted losses. While it is possible to con-

struct a model using CART’s suboptimal greedy splitting

procedure [5], the current fastest optimal decision tree

method, GOSDT [14], does not support this approach.

We extend the framework of GOSDT-with-

Guesses [13] to support weighted samples. GOSDT-

with-Guesses produces sparse decision trees with

closeness-to-optimality guarantees in seconds or

minutes for most datasets; we refer to this algorithm as

GOSDTwG. Our work introduces three approaches to

allow weighted samples.

A key contributor to GOSDTwG’s performance is its

use of bitvectors to compute the loss function. However,

introducing weights requires multiplying the weights by

this bitvector representation, which introduces a runtime

penalty of one to two orders of magnitude. We demon-

strate this effect in our first approach. Our second ap-

proach introduces a normalization and data duplication

technique to mitigate the slowdown due to real-valued

weights. Here, we transform the weights to small integer

values and then duplicate each sample by its transformed

weight. Our third approach, which scales to much larger

sample sizes, uses a stochastic procedure, where we sam-

ple each data point with a probability proportional to its

weight. Our experimental results show that: (1) the sec-

ond and third techniques decrease run time by up to two

orders of magnitude relative to that achieved by the the

direct approach, (2) we can bound the accuracy loss that

data duplication introduces; and (3) the weighted optimal

mailto:alibez@cs.ubc.ca
mailto:mathias.lecuyer@ubc.ca
mailto:cynthia@cs.duke.edu
mailto:mseltzer@cs.ubc.ca
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

decision tree technique can outperform natural baselines

in terms of running time, sparsity, and accuracy.

2. Related Work
Decision trees are one of the most popular forms of inter-

pretable models [17]. While full decision tree optimiza-

tion is NP-hard [18], it is possible to make assumptions,

e.g., feature independence, that simplify the hard op-

timization to cases where greedy methods suffice [19].

However, these assumptions are unrealistic in practice.

Other approaches [20, 21] assume that the data can be

perfectly separated with zero error and use SAT solvers

to find optimal decision trees; however, real data are

generally not separable.

Recent work has addressed optimizing accuracy with

soft or hard sparsity constraints on the tree size. Such

decision tree optimization problems can be formulated

using mixed integer programming (MIP) [9, 10, 12, 22,

23, 24], but MIP solvers tend to be slow. Several new

algorithms use customized dynamic programming algo-

rithms with branch-and-bound techniques to improve

decision tree optimization scalability. In particular, an-

alytical bounds combined with bitvector-based compu-

tation efficiently reduce the search space and improve

runtime [25, 26, 27]. Lin et al. [14] extend this approach

to use dynamic programming, which leads to even better

scalability. Demirović et al. [28] introduce constraints

on both depth and the number of nodes to improve scal-

ability. Recently, McTavish et al. [13] proposed smart

guessing strategies, based on knowledge gleaned from

black-box models, that can be applied to any optimal

branch-and-bound-based decision tree algorithm to re-

duce the run time by multiple orders of magnitude. While

these studies focus on improving runtime and accuracy,

they handle only uniform sample importance and do not

consider weighted data points. Our work neatly fills this

gap; our weighted objective function, data duplication

method, and sampling approach enable us to find near-

optimal decision trees quickly.

Several studies focus on learning tree- and list-based

treatment regimes from data [29, 30, 31, 32, 33, 34, 35].

However, none of these methods fully optimize the policy,

because the techniques used for optimization were not

known when the work was done.

3. Methodology
Let {(x𝑖, 𝑦𝑖, 𝑤𝑖)}𝑁𝑖=1 represent our training dataset,

where x𝑖 are 𝑀 -vectors of features, 𝑦𝑖 ∈ {0, 1, . . . ,𝐾}
are labels, 𝑤𝑖 ∈ R≥0

is the weight associated with data

x𝑖, and 𝑁 is the size of the dataset. Also, let x be the

𝑁 ×𝑀 covariate matrix, w be the 𝑁 -vector of weights,

and y be the 𝑁 -vector of labels, and let 𝑥𝑖𝑗 denote the

𝑗-th feature of x𝑖. To handle continuous features, we

binarize them either by using all possible split points

to create dummy variables [25] or by using a subset of

these splits as done by McTavish et al. [13]. We let x̃, the

binarized covariate matrix, be notated as x̃𝑖𝑗 ∈ {0, 1}.

3.1. Objective
Let 𝒯 be a decision tree that gives predictions {𝑦𝒯𝑖 }𝑁𝑖=1.

The weighted loss of 𝒯 on the is:

ℒw(𝒯 , x̃,y) = 1∑︀𝑁
𝑖=1 𝑤𝑖

𝑁∑︁
𝑖=1

1[𝑦𝑖 ̸= 𝑦𝒯𝑖]× 𝑤𝑖 . (1)

To achieve interpretability and prevent overfitting, we

provide the option to use either soft sparsity regulariza-

tion on the number of leaves, hard regularization on the

tree depth, or both [see 13]:

minimize

𝒯
ℒw(𝒯 , x̃,y)+𝜆𝐻𝒯 𝑠.𝑡.depth(𝒯) ≤ 𝑑, (2)

where 𝐻𝒯 is the number of leaves in 𝒯 and 𝜆 is a per-

leaf regularization parameter. We define 𝑅w(𝒯 , x̃,y) =
ℒw(𝒯 , x̃,y) + 𝜆𝐻𝒯 . We refer to 1[𝑦𝑖 ̸= 𝑦𝒯𝑖] as 𝐼𝑖(𝒯),
for simplicity. While in practice, depth constraints be-

tween 2 and 5 are usually sufficient, McTavish et al. [13]

provide theoretically-proven guidance to select a depth

constraint so that a single tree has the same expressive

power (VC dimension) as an ensemble of smaller trees

(e.g., a random forest or a boosted decision tree). The

parameter 𝜆 trades off between the weighted training

loss and the number of leaves in the tree.

3.2. Learning Weighted Trees
We present three approaches for handling sample

weights. The first is the direct approach, where we cal-

culate the weighted loss directly. Implementing this ap-

proach requires multiplying each misclassification by its

corresponding weight, which is computationally expen-

sive in any algorithm that uses bitvectors to optimize

loss computation. This overhead is due to replacing fast

bitvector operations with slower vector multiplications.

The direct approach slows GOSDTwG down by two or-

ders of magnitude. To avoid this computational penalty,

our second approach, data-duplication, transforms the

weights; specifically, we normalize, scale, and round the

weights to small integer values. We then duplicate sam-

ples, where the number of duplicates is the value of the

rounded weights, and use this larger unweighted dataset

to learn the tree. This method avoids costly vector multi-

plications and does not substantially increase run time

compared to the unweighted GOSDTwG. Finally, to scale

to even larger datasets, we present a randomized proce-

dure, called weighted sampling, where we sample each

data point with a probability proportional to its weight.

This process introduces variance (not bias) and scales to

large numbers of samples.

Direct Approach. We begin with the branch-and-bound

algorithm of McTavish et al. [13] and adapt it to support

weighted samples. Given a reference model𝑇 , they prune

the search space using three “guessing” techniques: (1)
guess how to transform continuous features into binary

features, (2) guess tree depth for depth-constrained mod-

els, and (3) guess tight lower bounds on the objective

for subsets of points to allow faster time-to-completion.

It is straightforward to see that the first two techniques

apply directly to our weighted loss function. However,

we need to adapt the third guessing technique to have

an effective and tight lower bound for the weighted loss

function. Let 𝑦𝑇𝑖 be the predictions of a potentially com-

plex reference model (e.g., a boosted decision tree model)

on training observation 𝑖. The reference model is used

as an upper bound on the performance of the sparse de-

cision tree we are optimizing. Let 𝑠𝑎 be the subset of

training observations that satisfy a boolean assertion 𝑎:

𝑠𝑎 := {𝑖 : 𝑎(x̃𝑖) = True, 𝑖 ∈ {1, ..., 𝑁}}
x̃(𝑠𝑎) := {x̃𝑖 : 𝑖 ∈ 𝑠𝑎} ,y(𝑠𝑎) := {𝑦𝑖 : 𝑖 ∈ 𝑠𝑎}
w(𝑠𝑎) := {𝑤𝑖 : 𝑖 ∈ 𝑠𝑎} .

Motivated by McTavish et al. [13], we define our guessed

lower bound on the achievable loss on subset 𝑠𝑎 as:

𝑙𝑏guess(𝑠𝑎) :=
1∑︀𝑁

𝑖=1 𝑤𝑖

∑︁
𝑖∈𝑠𝑎

1[𝑦𝑖 ̸= 𝑦𝑇𝑖]×𝑤𝑖+𝜆. (3)

Eq. 3 is a lower bound guess for 𝑅w(𝑡, x̃(𝑠𝑎),y(𝑠𝑎)),
because we assume that the (possibly black box) reference

model 𝑇 has a loss less than or equal to that of tree 𝑡 on

data 𝑠𝑎, and we know that any tree has at least one node

(hence the regularization term’s lower bound of 𝜆× 1).

Accordingly, in the branch-and-bound algorithm, to

optimize the weighted loss function introduced in Equa-

tion 2, we consider a subproblem to be solved if we find

a subtree that achieves an objective less than or equal to

its 𝑙𝑏guess. If we find such a subtree, our training perfor-

mance will be at least as good as that of the reference

model. For a subset of observations 𝑠𝑎, we let 𝑡𝑎 be the

subtree used to classify points in 𝑠𝑎, and𝐻𝑡𝑎 be the num-

ber of leaves in that subtree. We can define the subset’s

contribution to the objective as:

𝑅w(𝑠𝑎)(𝑡𝑎, x̃(𝑠𝑎),y(𝑠𝑎))

=
1∑︀𝑁

𝑖=1 𝑤𝑖

∑︁
𝑖∈𝑠𝑎

1[𝑦𝑖 ̸= 𝑦𝑡𝑎𝑖]× 𝑤𝑖 + 𝜆𝐻𝑡𝑎 .

For any dataset partition 𝐴, where 𝑎 ∈ 𝐴 corresponds

to the data handled by a given subtree of 𝑡:

𝑅w(𝑡, x̃,y) =
∑︁
𝑎∈𝐴

𝑅w(𝑠𝑎)(𝑡𝑎, x̃(𝑠𝑎),y(𝑠𝑎)) .

By introducing the above-mentioned lower bound guess,

we can now replace the lower bound of McTavish et al.

[13] with our lower bound and proceed with branch-and-

bound. Their approach is provably close to optimal when

the reference model makes errors similar to those made

in the optimal tree. Our approach using the weighted

lower bound is also close to optimal. Let 𝑠𝑇,incorrect be the

set of observations incorrectly classified by the reference

model 𝑇 , i.e., 𝑠𝑇,incorrect = {𝑖|𝑦𝑖 ̸= 𝑦𝑇𝑖 }, and 𝑡g be a tree

returned from our lower-bound guessing algorithm.

Theorem 1. (Performance Guarantee). Let 𝑅(𝑡g, x̃,y)
denote the objective of 𝑡g on the full binarized dataset (x̃,y)
for some per-leaf penalty 𝜆. Then for any decision tree 𝑡
that satisfies the same depth constraint 𝑑, we have:

𝑅(𝑡g, x̃,y) ≤
1∑︀𝑁

𝑖=1 𝑤𝑖

⎛⎝ ∑︁
𝑖∈𝑠𝑇,incorrect

𝑤𝑖

+
∑︁

𝑖∈𝑠𝑇,correct

1[𝑦𝑖 ̸= 𝑦𝑡𝑖]× 𝑤𝑖

⎞⎠+ 𝜆𝐻𝑡 .

That is, the objective of the guessing model 𝑡g is no worse
than the union of errors of the reference model and tree 𝑡.

Hence, the model 𝑡g achieves a weighted objective that

is as good as the error of the reference model (which

should be small) plus (something smaller than) the error

of the best possible tree of the same depth. The proof

appears in our supplementary material [36].

Motivation for Data Duplication. Surprisingly, in-

creasing the dataset size by replicating data is substan-

tially faster than using the direct approach. Decision

tree optimization requires repeatedly evaluating the ob-

jective. Small improvements in that computation lead

to a large improvement (possibly orders of magnitude)

in execution time. In the direct approach, computing

the objective (2) requires computing the inner product

w · ℐ , where ℐ𝑖 = 1[𝑦𝑖 ̸= 𝑦𝒯𝑖]. In the unweighted case,

as all weights are 1, this computation can be performed

using bitvectors, which is extremely fast. In the weighted

case, we resort to standard inner products, which are two

orders of magnitude slower (see Section 4). The data-

duplication approach allows us to use bitvectors as in the

unweighted case, preserving fast computation.

Data-duplication Algorithm. The data-duplication

algorithm is shown in Algorithm 1. We first normalize

all weights and scale them to (0, 1]. Given an integer,

𝑝 > 0, we then multiply each normalized weight by 𝑝 and

round to integers. We then duplicate each sample, x𝑖, by

its corresponding integer weight, �̂�𝑖. Once the data are

duplicated, we can use any optimal decision tree technique.

Our experimentsshow that if we choose the value of 𝑝
appropriately, this method improves training runtime

Algorithm 1: Data Duplication

Input :Dataset (x,y,w), duplication factor 𝑝 < 100
Output :Duplicated dataset �̃� , 𝑦

1 �̃� ← ∅; 𝑦 ← ∅;
2 Define �̃�𝑖 = round(𝑝 · (𝑤𝑖∑︀𝑁

𝑖=1 𝑤𝑖
));

3 for 𝑥𝑖 ∈ x do
4 for 𝑖 = 1, 2, . . . , �̃�𝑖 do
5 �̃� ← �̃� ∪ {𝑥𝑖}; 𝑦 ← 𝑦 ∪ {𝑦𝑖};
6 return �̃� , 𝑦

significantly without losing too much accuracy. After

data-duplication, there are no weights associated with

samples, and we can use the fast bit-vector computations

from the unweighted case.

Correctness of Data Duplication. One might ask if

the data duplication approach produces suboptimal so-

lutions, because its loss function is an approximation to

the weighted loss. If the weights do not change very

much when rounding to integers, the minimum of the

data duplication algorithm’s objective is very close to the

minimum of the original weighted objective. Recall

𝑅(𝑡) :=
1∑︀𝑁

𝑖=1 𝑤𝑖

∑︁
𝑖

𝑤𝑖𝐼𝑖(𝑡) + 𝜆#leaves.

Define the objective with the approximate weights as

�̃�(𝑡) :=
1∑︀𝑁

𝑖=1 �̃�𝑖

∑︁
𝑖

�̃�𝑖𝐼𝑖(𝑡) + 𝜆#leaves.

By design, the rounding phase rounds amplified weights,

ensuring that the absolute change in weights remains

small. That is, we know that ‖w − w̃‖∞ ≤ 𝜖. Note

that multiplying 𝑤𝑖s by a scalar cannot change the value

of the objective function. Accordingly, normalizing or

scaling weights by 𝑝 does not change the value of 𝑅(𝑡).
Therefore, without loss of generality, we can assume that

𝑤𝑖s are weights right before rounding.

Theorem 2. Let 𝑡* be a minimizer of the objective as 𝑡* ∈
argmin𝑡𝑅(𝑡), and 𝒯 be a minimizer of the approximate
loss function as 𝒯 ∈ argmin𝑡 �̃�(𝑡). If ‖w − w̃‖∞ ≤ 𝜖,

|𝑅(𝑡*)−�̃�(𝒯)| ≤ 𝑚𝑎𝑥{ (𝜁 − 1)𝜓 + 𝜖

𝜁
,
(𝜂 − 1)𝜓 + 𝜖

𝜂
},

where 𝜂 = max1≤𝑖≤𝑁

{︁
𝑤𝑖
�̃�𝑖

}︁
, 𝜁 = max1≤𝑖≤𝑁

{︁
�̃�𝑖
𝑤𝑖

}︁
,

and 𝜓 = max𝑖{𝑤𝑖,�̃�𝑖}
min𝑖{𝑤𝑖,�̃�𝑖}

.

In other words, the rounded solution provably will not

lose substantial performance, as long as both the additive

and multiplicative changes in weights due to rounding

are small. The value of 𝜂 and 𝜁 are usually small and near

1, if the original weights do not have extreme imbalances.

If the value of 𝜓 is large, then the direct approach is more

Table 1
Dataset samples features binary features

Lalonde 723 7 447
Broward 1954 38 588
Coupon 2653 21 87
Diabetes 5000 34 532
COMPAS 6907 7 134
FICO 10459 23 1917
Netherlands 20000 9 53890

efficient, so we should duplicate data. When we use data

duplication, the value of 𝜓 should also be small. The

proof is in our supplementary material [36].

Weighted Sampling. When the ratio between the

biggest and smallest weights is large, data duplication

might be inefficient if it requires creating many samples.

To address this issue, we present a stochastic sampling

process based on weights. Given an arbitrary amplifica-

tion number 𝑟, we sample 𝑆 = 𝑟 ×𝑁 data points such

that the probability of choosing x𝑖 is
w𝑖∑︀𝑁

𝑖=1 w𝑖
. After this

step, we can use any unweighted optimal decision tree

algorithm on the sampled dataset.

Quality Guarantee of Weighted Sampling. Let ℒ̃(.)
be the loss function on the sampled dataset, it is not hard

to see that E[ℒ̃] = ℒw , where ℒw is the value of the

misclassification (Eq. 1) on the weighted dataset. Based

on this fact, we have the following theorem:

Theorem 3. Given a weighted dataset 𝐷 =
{(x𝑖, 𝑦𝑖, 𝑤𝑖)}𝑁𝑖=1, an arbitrary positive real num-
ber 𝑟 > 0, an arbitrary positive real number 𝜀 > 0, and
a tree 𝒯 , if we sample 𝑆 = 𝑟 × 𝑁 data points from 𝐷,
�̃� = {(x̃𝑖, 𝑦𝑖)}𝑆𝑖=1, we have:

P
(︁
|ℒ̃(𝒯 , x̃, ỹ)− ℒw(𝒯 ,x,y)| ≥ 𝜀

)︁
≤ 2 exp

(︂
−2𝜀2

𝑆

)︂

4. Experiments
Our evaluation addresses the following questions: (1)
When is the direct approach more efficient than data-

duplication and weighted sampling? (2) In practice, how

well do the second and third proposed methods perform

relative to the direct approach? (3) How sparse and fast

are our weighted models relative to state-of-the-art opti-

mal decision trees? (4) How can our approach be used

for policy making? We use sparsity as a proxy for inter-

pretability, because it can be quantified, thus providing

an objective means of comparision [17].

4.1. Datasets
We use seven publicly available real-world datasets; Ta-

ble 1 shows sizes of these datasets: The Lalonde dataset

[37, 38], Broward [39], the coupon dataset, which was

collected on Amazon Mechanical Turk via a survey [40],

Diabetes [41], which is a health care related dataset, the

101 102 103 104
101

102

103

𝑞 (%)

R
un

ni
ng

Ti
m

e
(s

)
without data duplication with data duplication.

101 102 103 104
101

102

103

𝑞 (%)

R
un

ni
ng

Ti
m

e
(s

)

Figure 1: Training time of the model with and without data
duplication on different machines.

Fair Isaac (FICO) credit risk dataset [42] from the Explain-

able ML Challenge, and the COMPAS [43] and Nether-

lands [44] datasets, which are recidivism datasets. Unless

stated otherwise, we use inverse propensity score with

respect to one of the features as our weights.

We ran the experiments with different depth bounds

and regularization; each point in each plot shows the

results for one setting. A full description of the data sets

and configurations appear in our supplement [36].

4.2. Baselines
We compared our methods with the following baseline

models: (1) CART [5], (2) DL8.5 [45], and (3) Gradient

Boosted Decision Trees (GBDT) [46, 47]. CART and

GBDT can both handle weighted datasets, so we use

their default weighted implementation as the baselines.

As DL8.5 does not supported weighted datasets, we use

the data-duplication approach with it.

4.3. Results

Data duplication. We begin by demonstrating how

much the direct approach penalizes runtime relative to

data-duplication. We use the unweighted FICO dataset

and randomly pick 𝑞% of the original 𝒮 data points. We

assign each selected point 𝑤𝑒𝑖𝑔ℎ𝑡 = 2 by duplicating

it, producing a dataset of size (1 + 𝑞
100

) × 𝑁 , where

𝑁 is the size of the original data set, |𝑆|. We then com-

pare runtimes for this data-duplicated data set and the

original dataset in which we assign 𝑤𝑒𝑖𝑔ℎ𝑡 = 2 to the

selected samples and 𝑤𝑒𝑖𝑔ℎ𝑡 = 1 to the remaining sam-

ples. We run this experiment on two machines, with

different processors and amounts of memory, to show

the consistency of the results on different machines. The

full machine descriptions appear in our supplementary

material [36]. Figure 1 shows that when the size of the du-

plicated dataset is less than 100 times the original dataset,

the data-duplication approach is always faster.

Comparison of our approaches. We next compare

the relative accuracy achieved using all three approaches.

The star-shaped points in Figures 2 and 3 show the result

of this comparison. These results suggest a trade-off

between accuracy and running time. Weighted sampling

is the fastest approach, but it has the worst accuracy,

because it uses only subsets of the data. Data duplication,

while slower than weighted sampling, is faster than the

direct method, without losing much accuracy.

Sparsity vs. accuracy. The dotted line and round and di-

amond shapes in Figures 2 and 3(a) illustrate the accuracy-

sparsity tradeoff for different decision tree models (the

black line represents accuracy for GBDT). GOSDTwG pro-

duces excellent training and test accuracy with a small

number of leaves, and, compared to other decision tree

models, achieves higher accuracy for every level of spar-

sity. Results of other datasets can be found in [36].

Training time vs. test accuracy. Figures 3(b) and 3(c)

show the training time and accuracy for different meth-

ods. While the training times of GOSDTwG and CART

are almost the same, GOSDTwG achieves the highest

training and test accuracy in almost all cases. As DL8.5

timed out at one hour on all datasets except Lalonde, it

did not reach optimality and was outperformed by both

CART and GOSDTwG. Results of other datasets can be

found in our supplement [36].

LalondeCase Study. The Lalonde dataset is from the Na-

tional Supported Work Demonstration [38, 37], a labour

market experiment in which participants were random-

ized between treatment (9-12 month on-the-job training)

and control groups. Each unit 𝑈𝑖 has a pre-treatment

covariate vector 𝑋𝑖 and observed assigned treatment 𝑍𝑖.

Let 𝑌 1
𝑖 be the outcome if unit 𝑈𝑖 received the treatment

and 𝑌 2
𝑖 be the outcome if it was not treated. When a unit

is treated, we do not observe the outcome had it not been

treated and vice versa. We use the MALTS model [48]

to estimate these missing values by matching, producing

an estimate of the conditional average treatment effect.

We classify participants into three groups—“should be

treated,” “should be treated if budget allows,” and “should

not be treated” -– based on their conditional average treat-

ment effect estimate. Then we labelled the data points as

2, 1, and 0 if the estimated treatment effect is larger than

2000, between −5000 and 2000, and less than −5000,

respectively. We define the penalty for each misclassi-

fication as (i) cost = 0 if correctly classified, (ii) cost =

200 + 3× 𝑎𝑔𝑒 if label = 0 and misclassified, (iii) cost =

100+ 3× 𝑎𝑔𝑒 if label = 1 and misclassified, and (iv) cost

= 300 if label = 2 and misclassified. We linearly scale the

above costs to the range from 1 to 100, and in the case

of data-duplication, we round them to integers and treat

them as weights of the dataset. Figure 4 shows the tree

produced by GOSDTwG with a depth limit of 3; trees

with other depth limits appear in [36].

5. Conclusions
To find the optimal weighted decision tree, we first sug-

gest directly optimizing a weighted loss function. To

101

Number of Leaves (log scale)

89

90

91

92

93

94

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Number of Leaves
(Lalonde)

101

Number of Leaves (log scale)

60

62

64

66

68

70

72

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Number of Leaves
(Broward)

101

Number of Leaves (log scale)

64

66

68

70

72

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Number of Leaves
(Compas)

101

Number of Leaves (log scale)

68

70

72

74

76

78

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Number of Leaves
(Coupon)

101

Number of Leaves (log scale)

68

70

72

74

76

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Number of Leaves
(FICO)

101

Number of Leaves (log scale)

70

72

74

76

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Number of Leaves
(Netherlands)

101

Number of Leaves (log scale)

70

75

80

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Number of Leaves
(Diabetes)

Figure 2: Sparsity vs. training accuracy: All methods but CART and GBDT use guessed thresholds. DL8.5 frequently times
out, so there are fewer markers for it. GOSDTwG achieves the highest accuracy for every level of sparsity.

101

Number of Leaves (log scale)

87

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs Number of Leaves
(Lalonde)

101

Number of Leaves (log scale)

60

62

64

66

68

70

72

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs Number of Leaves
(Broward)

101

Number of Leaves (log scale)

72

74

76

78

80

82

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs Number of Leaves
(Diabetes)

(a) Sparsity vs. test accuracy:

101

Training Time (log scale)

89

90

91

92

93

94

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Run Time (Lalonde)

100 101 102 103

Training Time (log scale)

60

62

64

66

68

70

72

Tr
ai

n
Ac

cu
ra

cy
 (%

)

Train Accuracy vs Run Time (Broward)

101 102 103

Training Time (log scale)

70

72

74

76

78

80

82

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs Run Time
(Diabetes)

(b) Training time vs. training accuracy:

101

Training Time (log scale)

87

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs Run Time (Lalonde)

100 101 102 103

Training Time (log scale)

60

62

64

66

68

70

72

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs Run Time (Broward)

101 102 103

Training Time (log scale)

72

74

76

78

80

82

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs Run Time
(Diabetes)

(c) Training time vs. test accuracy:
Figure 3: GOSDTwG achieves the highest test accuracy for almost every level of sparsity. While CART is the fastest algorithm,
GOSDTwG uses its additional runtime to produce models with higher accuracy and that generalize better.

𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ≤ 11.5

𝑎𝑔𝑒 ≤ 31.5

𝑟𝑒75 ≤ 21497.509

𝑐𝑙𝑎𝑠𝑠

1

𝑐𝑙𝑎𝑠𝑠

0

ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐 ≤ 0.5

𝑐𝑙𝑎𝑠𝑠

1

𝑐𝑙𝑎𝑠𝑠

0

𝑟𝑒75 ≤ 897.409

𝑎𝑔𝑒 ≤ 18.5

𝑐𝑙𝑎𝑠𝑠

1

𝑐𝑙𝑎𝑠𝑠

2

𝑟𝑒75 ≤ 21497.509

𝑐𝑙𝑎𝑠𝑠

1

𝑐𝑙𝑎𝑠𝑠

0

Figure 4: The tree generated by GOSDTwG (depth limit 3)
on the Lalonde dataset.

improve efficiency, we present the data-duplication ap-

proach, which rounds all weights to integers and then

duplicates each sample by its weight. To further improve

efficiency, we present a stochastic process in which we

sample an unweighted dataset from our weighted dataset.

Our results suggest a trade-off of accuracy and runtime

among these approaches.

Acknowledgments
We acknowledge the following grant support: NI-

H/NIDA under grant number DA054994 and NSF un-

der grant number IIS-2147061. This research was

enabled in part by support provided by WestGrid

(https://www.westgrid.ca) and The Digital Research Al-

liance (https://alliancecan.ca/en). We acknowledge the

support of the Natural Sciences and Engineering Re-

search Council of Canada (NSERC).

https://www.westgrid.ca
https://alliancecan.ca/en

References
[1] D. Ernst, P. Geurts, L. Wehenkel, Tree-based batch

mode reinforcement learning, Journal of Machine

Learning Research 6 (2005) 503–556.

[2] A. Silva, M. Gombolay, T. Killian, I. Jimenez, S.-H.

Son, Optimization methods for interpretable dif-

ferentiable decision trees applied to reinforcement

learning, in: International Conference on Artifi-

cial Intelligence and Statistics (AISTATS), 2020, pp.

1855–1865.

[3] Y. Dhebar, K. Deb, S. Nageshrao, L. Zhu, D. Filev,

Interpretable-AI policies using evolutionary nonlin-

ear decision trees for discrete action systems, arXiv

e-print arXiv:2009.09521 (2020).

[4] J. R. Quinlan, C4.5: Programs for Machine Learning,

Morgan Kaufmann, 1993.

[5] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen,

Classification and Regression Trees, CRC press,

1984.

[6] D. Dobkin, T. Fulton, D. Gunopulos, S. Kasif,

S. Salzberg, Induction of shallow decision trees,

IEEE Trans. on Pattern Analysis and Machine Intel-

ligence (1997).

[7] A. Farhangfar, R. Greiner, M. Zinkevich, A fast

way to produce near-optimal fixed-depth decision

trees, in: Proceedings of the 10th International Sym-

posium on Artificial Intelligence and Mathematics

(ISAIM-2008), 2008.

[8] S. Nijssen, E. Fromont, Mining optimal decision

trees from itemset lattices, in: 13th ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining, 2007, pp. 530–539.

[9] D. Bertsimas, J. Dunn, Optimal classification trees,

Machine Learning 106 (2017) 1039–1082.

[10] O. Günlük, J. Kalagnanam, M. Li, M. Menickelly,

K. Scheinberg, Optimal decision trees for categori-

cal data via integer programming, Journal of Global

Optimization (2021) 1–28.

[11] S. Aghaei, M. J. Azizi, P. Vayanos, Learn-

ing optimal and fair decision trees for non-

discriminative decision-making, Proceedings of

the AAAI Conference on Artificial Intelligence 33

(2019) 1418–1426. URL: https://ojs.aaai.org/index.

php/AAAI/article/view/3943. doi:10.1609/aaai.
v33i01.33011418.

[12] S. Aghaei, A. Gómez, P. Vayanos, Strong optimal

classification trees, arXiv preprint arXiv:2103.15965

(2021).

[13] H. McTavish, C. Zhong, R. Achermann, I. Karimalis,

J. Chen, C. Rudin, M. Seltzer, Fast sparse decision

tree optimization via reference ensembles, in: AAAI

Conference on Artificial Intelligence, volume 36,

2022.

[14] J. Lin, C. Zhong, D. Hu, C. Rudin, M. Seltzer, Gen-

eralized and scalable optimal sparse decision trees,

in: International Conference on Machine Learning

(ICML), 2020, pp. 6150–6160.

[15] A. Linden, P. R. Yarnold, Estimating causal effects

for survival (time-to-event) outcomes by combin-

ing classification tree analysis and propensity score

weighting, Journal of Evaluation in Clinical Prac-

tice 24 (2018) 380–387.

[16] D. A. Cieslak, N. V. Chawla, Learning decision trees

for unbalanced data, in: Joint European Conference

on Machine Learning and Knowledge Discovery in

Databases, Springer, 2008, pp. 241–256.

[17] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semen-

ova, C. Zhong, Interpretable machine learning:

Fundamental principles and 10 grand challenges,

Statistics Surveys 16 (2022) 1–85.

[18] H. Laurent, R. L. Rivest, Constructing optimal bi-

nary decision trees is np-complete, Information

Processing Letters 5 (1976) 15–17.

[19] A. R. Klivans, R. A. Servedio, D. Ron, Toward at-

tribute efficient learning of decision lists and par-

ities., Journal of Machine Learning Research 7

(2006).

[20] N. Narodytska, A. Ignatiev, F. Pereira, J. Marques-

Silva, I. RAS, Learning optimal decision trees with

sat, in: 27th International Joint Conference on

Artificial Intelligence (IJCAI), 2018, pp. 1362–1368.

[21] H. Hu, M. Siala, E. Hébrard, M.-J. Huguet, Learning

optimal decision trees with maxsat and its inte-

gration in adaboost, in: 29th International Joint

Conference on Artificial Intelligence and the 17th

Pacific Rim International Conference on Artificial

Intelligence (IJCAI-PRICAI), 2020.

[22] S. Verwer, Y. Zhang, Learning optimal classifica-

tion trees using a binary linear program formula-

tion, in: AAAI Conference on Artificial Intelligence,

volume 33, 2019, pp. 1625–1632.

[23] C. Rudin, S. Ertekin, Learning customized and op-

timized lists of rules with mathematical program-

ming, Mathematical Programming C (Computation)

10 (2018) 659–702.

[24] M. G. Vilas Boas, H. G. Santos, L. H. d. C. Mer-

schmann, G. Vanden Berghe, Optimal decision trees

for the algorithm selection problem: integer pro-

gramming based approaches, International Transac-

tions in Operational Research 28 (2021) 2759–2781.

[25] X. Hu, C. Rudin, M. Seltzer, Optimal sparse de-

cision trees, in: Advances in Neural Information

Processing Systems, 2019, pp. 7267–7275.

[26] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer,

C. Rudin, Learning certifiably optimal rule lists for

categorical data, Journal of Machine Learning Re-

search 18 (2018) 1–78. URL: http://jmlr.org/papers/

v18/17-716.html.

[27] C. Chen, C. Rudin, An optimization approach to

https://ojs.aaai.org/index.php/AAAI/article/view/3943
https://ojs.aaai.org/index.php/AAAI/article/view/3943
http://dx.doi.org/10.1609/aaai.v33i01.33011418
http://dx.doi.org/10.1609/aaai.v33i01.33011418
http://jmlr.org/papers/v18/17-716.html
http://jmlr.org/papers/v18/17-716.html

learning falling rule lists, in: International Confer-

ence on Artificial Intelligence and Statistics (AIS-

TATS), 2018.

[28] E. Demirović, A. Lukina, E. Hebrard, J. Chan,

J. Bailey, C. Leckie, K. Ramamohanarao, P. J.

Stuckey, Murtree: Optimal classification trees via

dynamic programming and search, arXiv preprint

arXiv:2007.12652 (2020).

[29] H. Lakkaraju, C. Rudin, Learning cost-effective

and interpretable treatment regimes, in: Artificial

intelligence and statistics, PMLR, 2017, pp. 166–175.

[30] Y. Zhang, E. B. Laber, A. Tsiatis, M. Davidian, Using

decision lists to construct interpretable and parsi-

monious treatment regimes, Biometrics 71 (2015)

895–904.

[31] F. Wang, C. Rudin, Causal falling rule lists, arXiv

preprint arXiv:1510.05189 (2015).

[32] E. B. Laber, Y.-Q. Zhao, Tree-based methods for

individualized treatment regimes, Biometrika 102

(2015) 501–514.

[33] Y. Cui, R. Zhu, M. Kosorok, Tree based weighted

learning for estimating individualized treatment

rules with censored data, Electronic Journal of

Statistics 11 (2017) 3927–3953.

[34] K. Doubleday, H. Zhou, H. Fu, J. Zhou, An algorithm

for generating individualized treatment decision

trees and random forests, Journal of Computational

and Graphical Statistics 27 (2018) 849–860.

[35] Y. Sun, L. Wang, Stochastic tree search for estimat-

ing optimal dynamic treatment regimes, Journal

of the American Statistical Association 116 (2021)

421–432.

[36] A. Behrouz, M. Lecuyer, C. Rudin, M. Seltzer, Fast

optimization of weighted sparse decision trees for

use in optimal treatment regimes and optimal policy

design, 2022. URL: https://arxiv.org/abs/2210.06825.

doi:10.48550/ARXIV.2210.06825.

[37] R. Lalonde, Evaluating the econometric evaluations

of training programs with experiment data, Ameri-

can Economic Review 76 (1986) 604–20.

[38] R. H. Dehejia, S. Wahba, Causal effects in nonex-

perimental studies: Reevaluating the evaluation of

training programs, Journal of the American statis-

tical Association 94 (1999) 1053–1062.

[39] C. Wang, B. Han, B. Patel, F. Mohideen, C. Rudin, In

pursuit of interpretable, fair and accurate machine

learning for criminal recidivism prediction, Journal

of Quantitative Criminology (2022).

[40] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl,

P. MacNeille, A bayesian framework for learning

rule sets for interpretable classification, Journal of

Machine Learning Research 18 (2017) 1–37. URL:

http://jmlr.org/papers/v18/16-003.html.

[41] B. Strack, J. P. DeShazo, C. Gennings, J. L. Olmo,

S. Ventura, K. J. Cios, J. N. Clore, Impact of hba1c

measurement on hospital readmission rates: Anal-

ysis of 70,000 clinical database patient records,

BioMed Research International 2014 (2014) 781670.

URL: https://doi.org/10.1155/2014/781670. doi:10.
1155/2014/781670.

[42] FICO, Google, Imperial College London,

MIT, University of Oxford, UC Irvine, UC

Berkeley, Explainable Machine Learning

Challenge, https://community.fico.com/s/

explainable-machine-learning-challenge, 2018.

[43] J. Larson, S. Mattu, L. Kirchner, J. Angwin, How

we analyzed the COMPAS recidivism algorithm,

ProPublica (2016).

[44] N. Tollenaar, P. Van der Heijden, Which method

predicts recidivism best?: a comparison of statisti-

cal, machine learning and data mining predictive

models, Journal of the Royal Statistical Society:

Series A (Statistics in Society) 176 (2013) 565–584.

[45] G. Aglin, S. Nijssen, P. Schaus, Learning opti-

mal decision trees using caching branch-and-bound

search, in: AAAI Conference on Artificial Intelli-

gence, volume 34, 2020, pp. 3146–3153.

[46] Y. Freund, R. E. Schapire, A desicion-theoretic gen-

eralization of on-line learning and an application to

boosting, in: Conference on Computational Learn-

ing Theory, Springer, 1995, pp. 23–37.

[47] J. H. Friedman, Greedy function approximation:

a gradient boosting machine, Annals of Statistics

(2001) 1189–1232.

[48] H. Parikh, C. Rudin, A. Volfovsky, MALTS: Match-

ing after learning to stretch, arXiv preprint

arXiv:1811.07415 (2018).

https://arxiv.org/abs/2210.06825
http://dx.doi.org/10.48550/ARXIV.2210.06825
http://jmlr.org/papers/v18/16-003.html
https://doi.org/10.1155/2014/781670
http://dx.doi.org/10.1155/2014/781670
http://dx.doi.org/10.1155/2014/781670
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Objective
	3.2 Learning Weighted Trees

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Results

	5 Conclusions

