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Abstract
It has been shown that differential privacy bounds improve when subsampling within a randomized mechanism. Episodic
training, utilized in many standard machine learning techniques, uses a multistage subsampling procedure which has not
been previously analyzed for privacy bound amplification. In this paper, we focus on improving the calculation of privacy
bounds in episodic training by thoroughly analyzing privacy amplification due to subsampling with a multi-stage subsam-
pling procedure. The newly developed bound can be incorporated into existing privacy accounting methods.

1. Introduction
As more data is being utilized by algorithms and machine
learning techniques, rigorously maintaining the privacy
of this data has become important. Cyber security, health,
and census data collection are all examples of fields that
are seeing increased scrutiny for ensuring the privacy
of data, and it is well known that just anonymizing the
data by removing features such as name is not sufficient
to guarantee privacy due to vulnerabilities such as re-
identification attacks, especially in the case when an
adversary has access to auxiliary knowledge or data (see
e.g. [1, 2]).

Differential privacy, first introduced by Dwork, is one
technical definition of privacy that has been studied
widely in the literature [3, 4]. This definition provides
rigorous guarantees for the privacy of data that is uti-
lized by an algorithm and has several nice properties like
robustness to post processing and strong composition
theorems.

Machine learning practitioners initially integrated dif-
ferential privacy by naively applying these composition
theorems algorithm by assuming that the algorithm ac-
cessed the entire training set on each step of training.
Abadi et al. [5] noticed the data is subsampled into
batches, so only a subset of the data is utilized for each
step of training. This allowed for improved privacy bounds;
however, they assumed that batches were created us-
ing Poisson sampling. Later authors showed improved
bounds for creating batches using simple random sam-
pling without replacement [6]. And most recently, Balle
et al. [7] provided a fully unified theory for determining
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the privacy amplification due to subsampling as well as a
complete analysis for Poisson and simple random subsam-
pling both with and without replacement subsampling
methods.

The subsampling methods analyzed previously include
many of the subsampling methods utilized by machine
learning; however, the methods does not capture batches
formed by algorithms that use episodic training. Episodic
training methods are utilized by a variety of machine
learning algorithms, such as meta learning (e.g., [8, 9])
or metric learning (e.g., [10, 11]) algorithms. Domain
generalization algorithms have also frequently utilized
episodic training [12].

In this paper, we analyze the privacy amplification
due to the subsampling method utilized in an episodic
training regime. Specifically, we notice forming batches
in episodic training is a multistage subsampling method,
and we provide a complete analysis of the improved dif-
ferential privacy bounds when applying a mechanism to
a sample drawn using multistage subsampling. The re-
sulting theorem can be easily applied to episodic training
methods and integrated with privacy accounting meth-
ods such as the moment’s accountant [5]. This bound
can also be utilized by practitioners of other domains
that use multistage subsampling within their algorithms.

2. Background and Related Works

2.1. Multistage Subsampling
In a multistage sampling procedure, the universe from
which samples are drawn is partitioned. These partitions
may contain the examples we are ultimately interested
in sampling or may contain one or several levels of parti-
tions. The subsampling procedure is to sample partitions
at each level until examples are sampled. For example,
if we are interested in the demographics of students at
a school, we could partition students by teacher, sample
some number of teachers and then sample students from
each sampled teacher.

To see that episodic training is a multistage subsam-
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pling procedure, consider how training batches are formed
in Algorithm 2 of [8]. In this work, a subset of tasks are
sampled from a collection of tasks, then the examples are
sampled and provided to the training algorithm. This is
a 2-stage sampling procedure since the training data is
only partitioned into two levels: tasks and examples. In
multistage subsampling, the first level of partitions are
the primary sampling units and the final level is called
the ultimate sampling units and this final level contains
the examples we are ultimately interested in sampling.
For more details on multistage subsampling, see e.g., [13].

2.2. Differential Privacy
Since our analysis utilizes the tools of Balle et al. [7], we
introduce the necessary notations and definitions from
it. Let 𝒰 be an input space equipped with a binary sym-
metric relation ≃𝒰 that describes the concept of neigh-
boring inputs. For our purposes, 𝒰 is a universe that the
training data is drawn from and the relation will be the
add-one/remove-one relation, thus two training sets are
related if they differ by the addition or removal of one
element.

Given a randomized algorithm or mechanism ℳ :
𝑋 → P(𝑍), where P(𝑍) is the set of probability mea-
sures on the output space 𝑍 , ℳ is (𝜀, 𝛿)-differentially
private w.r.t ≃𝒰 if for every pair 𝒯 ≃𝒰 𝒯 ′ and every
measurable subset 𝐸 ⊆ 𝑍 ,

Pr[ℳ(𝒯 ) ∈ 𝐸] ≤ 𝑒𝜀Pr[ℳ(𝒯 ′) ∈ 𝐸] + 𝛿.

Utilizing the tools from [7] requires expressing differen-
tial privacy in terms of 𝛼-divergence given by

𝐷𝛼(𝜇||𝜇′) := sup
𝐸

(𝜇(𝐸)− 𝛼𝜇(𝐸))

of two probability measures 𝜇, 𝜇′ ∈ P(𝑍), where 𝐸
ranges over all measurable subsets of 𝑍 . Differential pri-
vacy can then be stated in terms of 𝛼-divergence; specif-
ically, a mechanism ℳ is (𝜀, 𝛿)-differentially private if
and only if 𝐷𝑒𝜖(ℳ(𝒯 )||ℳ(𝒯 ′)) ≤ 𝛿 for every adjacent
datasets 𝒯 ≃𝒰 𝒯 ′.

We can now define the privacy profile of a mechanism
ℳ as 𝛿ℳ = sup𝒯 ≃𝒰𝒯 ′ 𝐷𝑒𝜖(ℳ(𝒯 )||ℳ(𝒯 ′)), which
associates each privacy parameter 𝛼 = 𝑒𝜀 with a bound
on the 𝛼-divergence between the results of the mecha-
nism on two adjacent datasets.

Two theorems from [7] are important in our analysis.
The first is Advanced Joint Convexity, which we restate in
terms of 𝛼 = 𝑒𝜀 since we are interested in applying this
theorem to improve the privacy bounds due to multistage
subsampling.

Theorem 1. ([7], Advanced Joint Convexity of 𝐷𝑒𝜀 ) Let
𝜇, 𝜇′ ∈ P(𝑍) be measures satisfying 𝜇 = (1 − 𝜂)𝜇0 +
𝜂𝜇1 and 𝜇′ = (1 − 𝜂)𝜇0 + 𝜂𝜇′

1 for some 𝜂, 𝜇0, 𝜇1, 𝜇
′
1.

Given 𝜀 > 0, let 𝜀′ = 𝑙𝑜𝑔(1+𝜂(𝑒𝜀−1)) and 𝛽 = 𝑒𝜀/𝑒𝜀
′
,

the following holds:

𝐷𝑒𝜀
′ (𝜇||𝜇′) = 𝜂𝐷𝑒𝜀(𝜇1||(1− 𝛽)𝜇0 + 𝛽𝜇′

1)

The final theorem provides the concrete privacy ampli-
fication that we need for our analysis. Before presenting
this, we need to define when two distributions 𝜐, 𝜐′ ∈
P(𝑌 ) are 𝑑𝑌 -compatible. Let 𝜋 be a coupling of 𝜐, 𝜐′,
define 𝑑𝑌 (𝑦, 𝑦′) = 𝑑𝑌 (𝑦, supp(𝜐′)) where (𝑦, 𝑦′) ∈
supp(𝜋) and the distance between a point 𝑦 and supp(𝜐′)
is defined to be the distance between 𝑦 and the closest
point in supp(𝜐′).

Theorem 2. Let 𝐶(𝜐, 𝜐′) be the set of all couplings
between 𝜐 and 𝜐′ and for 𝑘 ≥ 1 let 𝑌𝑘 = {𝑦 ∈ supp(𝜐) :
𝑑𝑌 (𝑦, supp(𝜐′)) = 𝑘}. If 𝜐 and 𝜐′ are 𝑑𝑌 -compatible,
then the following holds:

min
𝜋∈𝐶(𝜐,𝜐′)

∑︁
𝑦,𝑦′

𝜋𝑦,𝑦′𝛿ℳ,𝑑𝑌 (𝑦,𝑦′)(𝜀) =
∑︁
𝑘≥1

𝜐(𝑌𝑘)𝛿ℳ,𝑘(𝜀)

We are now equipped to begin an analysis of the pri-
vacy amplification due to multistage subsampling.

3. OUR APPROACH: Privacy
Bounds for Multistage
Sampling Analysis

We will begin the analysis with an example. Through
this example, we will introduce the notation necessary
for the general analysis.

Example 3.1. Let 𝒰 be a universe of 18 examples from
which the database or training data is drawn from. Sup-
pose we can categorize the data from the universe at 3
different levels, so we will perform a 3-stage sampling.
Let

𝒰 = 𝑈1 ∪ 𝑈2

= (𝑈11 ∪ 𝑈12 ∪ 𝑈13) ∪ (𝑈21 ∪ 𝑈22)

=
(︀
{𝑢111, 𝑢112, 𝑢113, 𝑢114} ∪ {𝑢121, 𝑢122}

∪ {𝑢131, 𝑢132, 𝑢133}
)︀
∪
(︀
{𝑢211, 𝑢212, 𝑢213, 𝑢214}

∪ {𝑢221, 𝑢222, 𝑢223, 𝑢224, 𝑢225}
)︀

In this example, 𝑈𝑖1 for 𝑖 ∈ {1, 2} are the primary sam-
pling units, the 𝑈𝑖1𝑖2 are the ultimate sampling units and
the 𝑢𝑖1𝑖2𝑖3 are the examples that would be provided to a
training algorithm.

In general, let 𝒰 be a universe from which the training
data is drawn and suppose a finite number of levels, 𝑁𝐿,
partition this universe. Define 𝑈𝑖 be the primary sam-
pling units and let 𝑈𝑖1𝑖2···𝑖𝑁𝐿−1

be the sampling units of
the 𝑈𝑖1𝑖2···𝑖𝑁𝐿−2

unit. 𝑈𝑖1𝑖2···𝑖𝑁𝐿−1
is an ultimate sam-

pling unit which contain the examples we are interest in



sampling. Note that we require that each sampling unit
be of finite size except the ultimate sampling units, which
may be infinite. The multistage sampling procedure can
be described by Algorithm 1: Multistage Sampling. Most
episodic training procedures only use 2- or 3-stage sam-
pling but we analyze the general case; which may have
applications to other scientific domains (e.g. medical do-
mains) where multistage sampling may have more levels.

Algorithm 1: Multistage Sampling

Set 𝑃𝑟𝑒𝑣𝐿𝑒𝑣𝑒𝑙 :=
⋃︀

𝑈𝑖

Set 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 := ∅
Given 𝑛𝑗 : the number of units to be sampled at

each level (1 ≤ 𝑗 ≤ 𝑁𝐿)
for 𝑗 ∈ {1, ...., 𝑁𝐿} do

for 𝑆 ∈ PrevLevel do
sample without replacement 𝑛𝑗 elements

from 𝑆
add sampled elements to 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙

end
𝑃𝑟𝑒𝑣𝐿𝑒𝑣𝑒𝑙 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 := ∅

end

Now, let 𝒯 ⊂ 𝒰 be the training data or database we
are analyzing. We will require that the training data has
at least one element from each sampling unit described
above. Thus we only allow the ultimate sampling units
of the training data 𝑇𝑖1𝑖2···𝑖𝑁𝐿−1

⊂ 𝑈𝑖1𝑖2···𝑖𝑁𝐿−1
, to be

a non-empty finite subset of the ultimate sampling units
with at least 𝑛𝑁𝐿 elements (i.e. at least the number of
units that will be sampled from the ultimate sampling
units). All other sampling units defined for the universe
will remain the same for the training set.

We want to analyze the privacy bound on algorithms
that use a multistage subsampling procedure on 𝒯 . To do
this, we will apply the theorems from [7] and will analyze
this sampling procedure under the add-one/remove one
relation. We begin by defining a probability measure
for this sampling procedure. We can do this by simply
defining

𝜇(𝑡𝑖1𝑖2···𝑖𝑁𝐿
) =

∏︀𝑁𝐿
𝑗=1 𝑛𝑗

|𝑈𝑖1 ||𝑈𝑖1𝑖2 | · · · |𝑇𝑖1𝑖2···𝑖𝑁𝐿−1
|

where 𝑡𝑖1𝑖2···𝑖𝑁𝐿
is in the ultimate unit 𝑇𝑖1𝑖2···𝑖𝑁𝐿−1

.
Now consider 𝒯 ′ created by removing one element

from 𝒯 , say without loss of generality, 𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
1 for

some 𝑖1, 𝑖2, ..., 𝑖𝑁𝐿−1 . The probability measure 𝜇′ for
sampling from 𝒯 ′ can be defined similar to above. We
wish to compute the total variational distance between
these two measure so that we can apply the Advanced

Coupling Theorem from [7]. We just need to compute:

𝑇𝑉 (𝜇, 𝜇′) = 1−
∑︁
𝑢∈𝑈

min (𝜇(𝑢), 𝜇′(𝑢))

Note we can easily extend our probability measures 𝜇, 𝜇′

to the entire universe by setting the inclusion probability
to 0 for any element not in 𝑇 or 𝑇 ′. For all elements
𝑡 ∈ 𝒯 ′ ∖ 𝑇𝑖1𝑖2···𝑖𝑁𝐿−1

, we have min(𝜇(𝑡), 𝜇′(𝑡)) =

𝜇(𝑡) = 𝜇′(𝑡). Since 𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
1 ̸∈ 𝒯 ′, we also have

min(𝜇(𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
1), 𝜇

′(𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
1)) = 0 . So we

just need to consider the elements of the ultimate unit
from which we removed an element. Since, we removed
an element from this unit, the probability 𝜇′(𝑡) > 𝜇(𝑡)
since 𝑇 ′

𝑖1𝑖2···𝑖𝑁𝐿−1
(the ultimate unit missing an element

in 𝑇 ′) has fewer elements than 𝑇𝑖1𝑖2···𝑖𝑁𝐿−1
, therefore

for all 𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
𝑖 ∈ 𝑇 ′

𝑖1𝑖2···𝑖𝑁𝐿−1
and 𝑖 ̸= 1, we have

𝜇(𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
𝑖) < 𝜇′(𝑡′𝑖1𝑖2···𝑖𝑁𝐿−1

𝑖) where

𝜇(𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
𝑖) =

∏︀𝑁𝐿
𝑗=1 𝑛𝑗

|𝑈𝑖1 ||𝑈𝑖1𝑖2 | · · · |𝑇𝑖1𝑖2···𝑖𝑁𝐿−1
|

𝜇′(𝑡′𝑖1𝑖2···𝑖𝑁𝐿−1
𝑖) =

∏︀𝑁𝐿
𝑗=1 𝑛𝑗

|𝑈𝑖1 ||𝑈𝑖1𝑖2 | · · · |𝑇 ′
𝑖1𝑖2···𝑖𝑁𝐿−1

| .

Thus∑︁
𝑢∈𝒰

min (𝜇(𝑢), 𝜇′(𝑢)) =
∑︁
𝑡∈𝒯 ′

𝜇(𝑡) = 1−𝜇(𝑡𝑖1𝑖2···𝑖𝑁𝐿−1
1).

Hence the total variational distance is just the inclusion
probability of the element we removed. Determining the
total variational distance when adding an element from
𝒰 to 𝒯 is similar to the above argument.

We can now provide an amplified privacy bound for
multistage subsampling.

Theorem 3. Let ℳ′ be a subsampled mechanism on 𝒯
described by Algorithm 1 and let 𝑚1𝑚2 . . .𝑚𝑁𝐿−1 be
the index of the penultimate sampling unit that satisfies

min
𝑖1,𝑖2,...,𝑖𝑁𝐿−1

(|𝑈𝑖1 ||𝑈𝑖1𝑖2 | · · · |𝑇𝑖1𝑖2···𝑖𝑁𝐿−1
|).

Then, for any 𝜖 ≥ 0, we have that 𝛿ℳ′(𝜖′) ≤ 𝜂𝛿ℳ′(𝜖)

for and 𝜂 =
∏︀𝑁𝐿

𝑗=1 𝑛𝑗

|𝑈𝑚1 ||𝑈𝑚1𝑚2 |···|𝑇𝑚1𝑚2···𝑚𝑁𝐿−1
| and 𝜖′ =

𝑙𝑜𝑔(1 + 𝜂(𝑒𝜖 − 1)) under the add-one/remove-one rela-
tion.

To fully complete the proof, let 𝒯 , 𝒯 ′ be training sets
drawn from 𝒰 with 𝒯 ≃𝑟 𝒯 ′ under the add-one/remove-
one relation ≃𝑟 and let 𝑆𝛾(𝒯 ) denote the subsampling
mechanism described by Algorithm 1 for 𝛾 = 𝑇𝑉 (𝜇, 𝜇′).
Let 𝒯0 = 𝒯 ∩ 𝒯 ′, then by definition of ≃𝑟 , 𝒯0 = 𝒯 or
𝒯0 = 𝒯 ′. Let 𝜔0 = 𝑆𝛾(𝒯0), 𝜇 = 𝑆𝛾(𝒯 ) and 𝜇′ =



𝑆𝛾(𝒯 ′). Then the decompositions of 𝜇 and 𝜇′ induced
by their maximal coupling have that 𝜇1 = 𝜔0 when
𝒯0 = 𝒯 or 𝜇′

1 = 𝜔0 when 𝒯0 = 𝒯 ′. We only need to
consider 𝒯0 = 𝒯 ′ since this is when the maximum is
obtained in applying advanced joint convexity. Finally,
we note that one can easily create a 𝑑≃𝑟 -compatible pair
according to the definition provided in [7] by first sam-
pling 𝑦 from 𝜇 and building 𝑦′ by adding 𝑣 (which may
be empty) to 𝑦. Thus for each dataset pair, by Theorem
7 of [7], we have 𝛿𝑀′(𝜀′) ≤ 𝛾𝛿𝑀 (𝜀). In order to get a
bound for all possible training set pairs, we need to take
𝜂 = 𝑚𝑖𝑛(𝒯 ,𝒯 ′)(𝛾𝒯 ≃𝑟𝒯 ′). This occurs exacty when we
remove an element from the penultimate unit with index
𝑚1𝑚2 ·𝑚𝑁𝐿−1 which completes the proof.

We briefly mention how one might incorporate this
new bound into a privacy accounting method. Many
accounting methods, like the moments accountant [5],
use the moment generating function in conjunction with
the Gaussian mechanism to calculate the privacy bounds
while a machine learning algorithm is training. Using
Theorem 4 from [7] with our new bound one can easily
derive a subsampled Gaussian that can be utilized in
algorithms like those described in [5, 14].

4. Conclusion
This paper completely analyzes the privacy amplification
due to multistage subsampling. This provides the correct
privacy bounds for any algorithm that utilizes multistage
subsampling, such as machine learning algorithms that
use episodic training. Our future goal is to perform exper-
iments to better understand privacy in machine learning
algorithms that use episodic training like meta-learning
algorithms. We hope our presented approach and discus-
sion will prove useful to other researchers wanting to
apply privacy bounds on multistage sampling in other
studies and applications.
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