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Abstract
Differential privacy policies allow one to preserve data privacy while sharing and analyzing data. However, these policies
are susceptible to an array of attacks. In particular, often a portion of the data desired to be privacy protected is exposed
online. Access to these pre-privacy protected data samples can then be used to reverse engineer the privacy policy. With
knowledge of the generating privacy policy, an attacker can use machine learning to approximate the full set of originating
data. Bayesian inference is one method for reverse engineering both model and model parameters. We present a methodology
for evaluating and ranking privacy policy robustness to Bayesian inference-based reverse engineering, and demonstrated this
method across data with a variety of temporal trends.
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1. Introduction
In recent years, the number of devices connected to the
Internet and online services has increased drastically
[1] leading to an exponential growth in data generation
[2]. This trend is visible across different domains and
applications including among many others, streaming
medical, personal tracking, and energy use data [1]. Typ-
ically, sensing systems are digitized and connected to
network-based analysis tools, and the success of these
data streaming devices results in increasing adoption and
deployment.
Although the proliferation of connected devices in-

creases convenience across many aspects of life, it also
creates dangers when sharing sensitive information. This
is especially true for sharing unprotected data over the
Internet. Around 98% of device traffic is unencrypted and
transmitted over the Internet [3]. Cybercriminals have
taken notice of this behavior. On average, sensor-based
devices are probed for security vulnerabilities around 800
times per hour, with 400 login attempts and 130 success-
ful logins on each device [4].

To address these rapidly growing security risks, signif-
icant effort has been devoted to the development of pri-
vacy preservation algorithms and their integration into
existing platforms. Some of the most used algorithms
are randomization, k-anonymity, l-diversity, cryptogra-
phy, and differential privacy (DP) [5]. These methods
have been successfully demonstrated on big data [6], deep
learning [7], medical records [8], as well as other domains.
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Recent studies have shown that DP is the most effective
approach due to its rigorous privacy definition and low
computational overhead for continuous (i.e., streaming)
data sets [9]. A recent survey identified that DP provides
successful privacy preservation with the most common
DP mechanisms being Laplacian and Gamma distribu-
tions and randomized response [10].

A differentially private model ensures that adversaries
are incapable of inferring high confidence information
about a single record from released models or output re-
sults [11]. However, adversaries may manage to infer or
identify sensitive information from employing additional
unprotected publicly released data, especially equipped
with machine learning tools. Some common attack types
proposed include: re-identification attack, membership
inference attack, model inversion attack, model extrac-
tion attack, and model attribute inference attack [12].
These attacks seek to extract information about the data,
model, or attributes.
We investigate the use of Bayesian inference-based

attacks to identify the privacy policy employed when
pre-privacy protected data samples are available. In this
preliminary work we evaluate the likelihood of an adver-
sary to differentiate between a DP mechanism employing
either Gaussian or Laplacian additive noise. We build
on the previous work of [13]. Application to data with
different temporal trends are explored. Here the data
streams are sampled from zero-mean Gaussian processes
using different kernels, resulting in data with different
temporal trends. We then use analysis results to rank
privacy policy robustness to such reverse engineering.
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2. Model

2.1. Bayesian Inference
Bayesian inference [14] is a statistical sampling method
for determining the probability of a hypothesis given
data, through the use of Bayes’ theorem [15]. A common
application for Bayesian inference is to identify the most
likely parameters values 𝜃 of a generating model 𝑀(𝜃)
for observed data 𝑌. Toward this goal, for a given model,
a prior over the parameters is needed. The prior belief
for the parameter values 𝜃 is given by the probability
density function 𝑝(𝜃) (or the probability mass function
𝑃(𝜃) if the parameters 𝜃 take on discrete values.) The
probability of observing data 𝑌 given particular values
for the parameters is given by 𝑝(𝑌 |𝑀(𝜃)), also known
as the likelihood. Through the use of Bayes’ theorem,
the prior and likelihood are combined to determine the
probability of different values of 𝜃 given the observed 𝑌.
This probability is known as the posterior and is repre-
sented by 𝑝(𝑀(𝜃)|𝑌 ). Bayesian inference employs statisti-
cal sampling of the model parameters’ prior and forward
computation of the likelihood to evaluate the posterior.
For this work, Markov Chain Monte Carlo (MCMC) is
the Bayesian inference sampling method used.

2.2. Gaussian Process
Gaussian process [16] (GP) is a common Bayesian non-
parametric regression tool. To learn the function 𝑓 ∶
𝑋− > 𝑦 for the data 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖 , a prior is assumed
𝑝(𝑓 ) = 𝑁(𝜇(𝑥), 𝐾(𝑥, 𝑥′)) to quantify epistemic uncer-
tainty. Here 𝜇(𝑥) is a mean function and 𝐾(𝑥, 𝑥′) is a
covariance function. Expected noise in the data (aleatoric
uncertainty) is quantified by selected a likelihood, a com-
mon one being 𝑝(𝐷|𝑓 ) = 𝑁(𝑓 , 𝐼 𝜎2) which assumes het-
eroskedastic, normally distributed noise with standard
deviation 𝜎. The prior and likelihood are then com-
bined to determine the posterior. When the prior and
likelihood are both multivariate normal distributions,
the posterior is analytically solvable, giving 𝑝(𝑓 |𝐷) =
𝑁(𝜇𝑛(𝑥), 𝐾𝑛(𝑥, 𝑥′)), where:

𝜇𝑛(𝑥) = 𝜇(𝑥) + 𝑘𝑇(𝐾 + 𝜎2𝐼 )−1𝑦

𝐾𝑛(𝑥) = 𝐾(𝑥, 𝑥′) − 𝑘𝑇(𝐾 + 𝜎2𝐼 )−1𝑘′

Here 𝑦 is the vector of {𝑦𝑖} and 𝑘𝑖 = 𝐾(𝑥, 𝑥𝑖) and 𝑘′𝑖 =
𝐾(𝑥, 𝑥𝑖). For this work, the squared exponential, Matern
5/2, exponential, and Brownian kernels are used to define
data stream temporal trends.

2.3. Our approach
We present a methodology for ranking privacy policy
robustness to reverse engineering in the presence of ex-

posed or compromised data. We use probabilistic meth-
ods to determine the accuracy with which an adversarial
actor can identify the privacy policy and its employed
parameters from a compromised data stream. Bayesian
inference is used to quantify the likelihood (i.e., proba-
bility) of each privacy policy being the generating policy
and a posterior probability density function for each pol-
icy’s parameter. Here the target parameter is the privacy
lossmeasure value 𝜀. The privacy policies are then ranked
for robustness to this type of attack for the given data.

Ten data stream samples are drawn from each of four
Gaussian processes, which differ in kernel. The kernels
used are the squared exponential, Matern 5/2, exponen-
tial, and Brownian. These data streams are then each
privacy protected under two privacy policies - using
Gaussian additive noise or Laplacian additive noise. For
each policy, we explore the use of varying DP privacy
loss measure values of 𝜀 = [0.1, 0.5, 1.0]. We assume that
𝑥 number of pre-privacy protected data samples from
each data stream are exposed. We apply Bayesian infer-
ence to each of these situations and quantify the sum log
likelihood (SLL) of the generating privacy noise policy
being either Gaussian or Laplacian. When Bayesian in-
ference identifies that the true generating policy is less
likely than the alternative, that policy is ranked greater
in robustness to this form of privacy policy reverse en-
gineering. Here, to represent the adversarial attacker’s
limited knowledge of the privacy policy parameters, the
Bayesian inference uses a uniform prior over [10−1, 10−5]
and [10−3, 10] for 𝛿 and 𝜀, respectively.

For each set of data 𝐷(𝑚𝑖) privacy protected using pol-
icy 𝑚𝑖 ∈ {𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛}, we compute the four SLLs:
𝐿𝑖,𝑗 = 𝐿(𝑚𝑖|𝐷(𝑚𝑗)). The most likely policy is then selected.
A measure of whether the used policy is well obfuscated
is given by: Δ𝑖 = 𝐿𝑖,𝑗−𝐿𝑖,𝑖, withΔ𝑖 positive (negative) if the
wrong (right) policy is estimated to be more likely given
the data and vice versa. A larger positive value indicates
a more difficult challenge for Bayesian inference-based
reverse engineering and a larger negative value indicates
an easier challenge. We investigate Δ𝑖 as a function of
data stream generating kernel, 𝜀 value, and size of ex-
posed data stream sample.

2.3.1. Assumption

We assume that 𝑥 number of raw data points are available.
We investigate the robustness of DP Gaussian and Lapla-
cian additive noise to the exposure of varying numbers of
data points as well as different values of the DP privacy
loss measure 𝜀.

2.3.2. Investigating Privacy Risks

We performed Bayesian inference experiments to deter-
mine the privacy policy and its parameters used for pri-



vacy protection. Here the target data stream is privacy
protected using the equation: 𝑦𝑖 = 𝑦𝑖 + 𝑛𝑖 with data index
𝑖 and noise 𝑛𝑖 given by either the Gaussian or Laplacian
distribution with mean of zero and scale (or standard
deviation) given by the following equations:

𝜎 =
√
2 ∗ 𝑙𝑜𝑔( 1.25

𝛿
) ∗

𝑠𝑒𝑛𝑠𝑖𝑡 𝑖𝑣 𝑖𝑡𝑦
𝜀

(1)

𝑠𝑒𝑛𝑠𝑖𝑡 𝑖𝑣 𝑖𝑡𝑦 =
√
𝑀𝑎𝑥𝐴𝐸2

2
(2)

where MaxAE is maximum allowed error, a function
of the raw data. Here the MaxAE is set to one tenth
the value of the current data stream value [17]. The ad-
versary is able to obtain data samples prior to privacy
protection along with the same data after privacy protec-
tion. The pre-privacy protected data can be obtained in
a few ways including public exposure by the data stream
sensor, by the user (e.g., sharing data on social media),
or by the adversary temporarily placing a similar sens-
ing device close to the first, e.g., using a microphone or
software hack to listen in to part of a conversation held
over a cellphone or IoT device. The resulting pre-privacy
protected data can then be used to reverse engineer the
privacy policy. Knowledge of the privacy policy can then
be used to extract raw data from privacy protected data
collected before or after the data exposure occurs as in
[13].

3. Results
Figure 1 compares the robustness to Bayesian inference-
based model determination for the Laplacian and Gaus-
sian additive noise privacy policies. The difference in
SLL Δ𝑖 = 𝐿𝑖,𝑗 − 𝐿𝑖,𝑖 for each investigated case is shown,
where Δ𝐿𝑎𝑝𝑙𝑎𝑐𝑒 is plotted in orange and Δ𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is plot-
ted in green. The means of each are indicated by a solid
line and the standard deviation is indicated by the col-
ored regions. Diamond markers indicate a positive mean
value and squares indicate a negative mean value - these
correspond to the wrong and right policy having greater
likelihood, respectively. Interestingly Δ𝐿𝑎𝑝𝑙𝑎𝑐𝑒 tends to
be larger than Δ𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, indicating a greater ease in iden-
tifying the Gaussian policy over the Laplacian policy.
Additionally, both means tend to lower values with in-
creasing number of exposed data samples. In other words,
with access to larger amounts of pre-privacy protected
data there is an increasing probability in identifying the
correct policy, as would be expected. Additionally, a
relationship between the choice of kernel or 𝜀 and the
resulting Δ𝑖 is not clear. Further investigation should be
performed where the variance of additive noise is a larger
percentage of the data stream variance.

Figure 2 provides a plot of robustness to Bayesian
inference-based parameter determination. The deviation
in identifying the correct value of 𝜀 is plotted for each
case. Red, orange, green, and blue indicate 𝐿(𝑚𝑖|𝐷(𝑚𝑗))
for 𝐿(𝐿𝑎𝑝|𝐷(𝐿𝑎𝑝)), 𝐿(𝐺𝑎𝑢𝑠|𝐷(𝐿𝑎𝑝)), 𝐿(𝐿𝑎𝑝|𝐷(𝐺𝑎𝑢𝑠)) and
𝐿(𝐺𝑎𝑢𝑠|𝐷(𝐺𝑎𝑢𝑠)) respectively. A greater 𝜀 increases the
difficulty in identifying 𝜀. A greater robustness to param-
eter determination is shown by 𝐿(𝐿𝑎𝑝|𝐷(𝐿𝑎𝑝)), while a
lower robustness is seen for 𝐿(𝐺𝑎𝑢𝑠|𝐷(𝐺𝑎𝑢𝑠)). The ap-
plication of the Laplacian additive noise policy tends to
provide greater robustness over the Gaussian policy. As
expected, there also appears to be a subtle reduction in
parameter estimation error with an increasing number
of data points.

4. Conclusion
Asmore data is shared online, the need for privacy preser-
vation is becoming critical to ensure user confidence in
sharing and analyzing personal data with online services.
In this paper we investigated the robustness of privacy
policies when a subset of pre-privacy protected data is ex-
posed. We demonstrate a methodology for selecting the
privacy policy that is more difficult to identify through
Bayesian inference-based model and parameter determi-
nation. For the range of data stream trends investigated,
the Laplacian noise privacy policy was more difficult
to identify compared to the Gaussian policy, for both
Bayesian inference-based model and parameter determi-
nation.
We hope our results and discussion will be helpful to

the community using privacy protection for their data
sets.
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